Displaying publications 1 - 20 of 93 in total

Abstract:
Sort:
  1. Halimah Muhamad, Nashriyah Mat, Tan, Yew Ai, Ismail, B.S.
    MyJurnal
    The adsorption equilibrium time and effects of pH and concentration of ¹⁴C-labeled chlorpyrifos
    O,O-diethyl O-(3, 5, 6 trichloro-2-pyridyl)-phosphorothiote in soil were investigated. Two types of Malaysian soil under oil palm were used in this study; namely clay loam and clay soil obtained from the Sungai Sedu and Kuala Lumpur International Airport (KLIA) Estates, respectively. Equilibrium studies of chlorpyrifos between the agricultural soil and the pesticide solution were conducted. Adsorption equilibrium time was achieved within 6 and 24 hours for clay loam and clay soil, respectively. It was found that chlorpyrifos adsorbed by the soil samples was characterized by an initial rapid adsorption after which adsorption remained approximately constant. The percentage of ¹⁴C-labeled chlorpyrifos adsorption on soil was found to be higher in clay loam than in clay soils. Results of the study demonstrated that pH affected the adsorption of chlorpyrifos on both clay loam and clay soils. The adsorption of chlorpyrifos on both types of soil was higher at low pH with the adsorption reduced as the pH increased. Results also suggest that chlorpyrifos sorption by soil is concentration dependent.
    Matched MeSH terms: Aluminum Silicates
  2. Taha MR, Mobasser S
    PLoS One, 2015;10(12):e0144071.
    PMID: 26659225 DOI: 10.1371/journal.pone.0144071
    This paper presents the findings of a study on adsorption of dichlorodiphenythreechloroethen (DDT) and polychlorinated biphenyls (PCBs) on three nanomaterials including Multi walled Carbon Nanotube (MWNT), nano-clay and nano-alumina. DDT and PCBs are of significant concern due their high toxicity and long environmental half-lives. Experiments were conducted using batch adsorption procedures at different DDT and PCBs concentrations, from 10 to 60 mg/L. The amounts of MWNT, nano-clay and Nano-alumina used were 0.25%, 0.50%, 0.75%, 1%, 2% and 10%. The adsorption of PCBs solution onto the MWNT, nano-clay and nano-alumina was characterized by an initial rapid adsorption which eventually became constant within 22, 20, and 17 hours, respectively. The adsorption of DDT solution onto the MWNT, nano-clay and nano-alumina was also characterized by an initial rapid adsorption which gradually became constant within 22, 22 and 16 hours, respectively. Results of this study indicated that MWNT was a better adsorbent material compared to nano-clay and nano-alumina for both contaminants in this study. While at 10% of MWNT 88.9% and 77% of DDT and PCB were removed by MWNT, respectively. The effect of pH and temperature were also investigated.
    Matched MeSH terms: Aluminum Silicates/chemistry
  3. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P, Lakshmipriya T, et al.
    Sci Rep, 2019 11 19;9(1):17013.
    PMID: 31745155 DOI: 10.1038/s41598-019-53573-9
    Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm-1 to 1650 cm-1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M-1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
    Matched MeSH terms: Aluminum Silicates/chemistry
  4. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P, Anbu P, Lakshmipriya T
    Sci Rep, 2020 02 25;10(1):3351.
    PMID: 32099019 DOI: 10.1038/s41598-020-60208-x
    An incredible amount of joss fly ash is produced from the burning of Chinese holy joss paper; thus, an excellent method of recycling joss fly ash waste to extract aluminosilicate nanocomposites is explored. The present research aims to introduce a novel method to recycle joss fly ash through a simple and straightforward experimental procedure involving acidic and alkaline treatments. The synthesized aluminosilicate nanocomposite was characterized to justify its structural and physiochemical characteristics. A morphological analysis was performed with field-emission transmission electron microscopy, and scanning electron microscopy revealed the size of the aluminosilicate nanocomposite to be ~25 nm, while also confirming a uniformly spherical-shaped nanostructure. The elemental composition was measured by energy dispersive spectroscopy and revealed the Si to Al ratio to be 13.24 to 7.96, showing the high purity of the extracted nanocomposite. The roughness and particle distribution were analyzed using atomic force microscopy and a zeta analysis. X-ray diffraction patterns showed a synthesis of faceted and cubic aluminosilicate crystals in the nanocomposites. The presence of silica and aluminum was further proven by X-ray photoelectron spectroscopy, and the functional groups were recognized through Fourier transform infrared spectroscopy. The thermal capacity of the nanocomposite was examined by a thermogravimetric analysis. In addition, the research suggested the promising application of aluminosilicate nanocomposites as drug carriers. The above was justified by an enzyme-linked apta-sorbent assay, which claimed that the limit of the aptasensing aluminosilicate-conjugated ampicillin was two-fold higher than that in the absence of the nanocomposite. The drug delivery property was further justified through an antibacterial analysis against Escherichia coli (gram-negative) and Bacillus subtilis (gram-positive).
    Matched MeSH terms: Aluminum Silicates/pharmacology*; Aluminum Silicates/chemistry
  5. Abdul Rahim Samsudin, Umar Hamzah, Zuraidah Ramli
    Sains Malaysiana, 2007;36:159-163.
    An integrated geophysical study was conducted to investigate the subsurface regional structure and the presence of a Quaternary sedimentary basin in the Olak Lempit - Banting area of Selangor, Malaysia. A regional gravity survey and the high resolution reflection seismic were employed to determine the thickness and areal distribution of the alluvial sedimentary basin as well as to investigate the depth and topography of the bedrock in the study area. The sedimentary basin hosts one of the most important coastal alluvial aquifer which was used to cater the shortage of domestic water supply during the worst water crisis that hit the state of Selangor in 1998. The surface geological map shows that in general 70% of the study area is covered by Quaternary deposits of Beruas, Gula and Simpang Formations which overlie the sedimentary bedrock of Kenny Hill Formation. The Beruas Formation consists of mainly clay, sandy clay and peat of Holocene fluviatile-estuarine deposits, whereas the Gula Formation represents Holocene marine to estuarine sediments which mostly consists of clay and minor sand. The Simpang Formation (Pleistocene) is a continental deposit comprising of gravel, sand, clay and silt. The underlying Kenny Hill Formation consists of a monotonous sequence of interbedded shales, mudstones and sandstones. The rock is Carbonaceous in age and it forms an undulating surface topography in the eastern part of the study area. A total of 121 gravity stations were established using a La Coste & Romberg gravity meter and the elevations of most of the stations were determined barometrically using Tiernan-Wallace altimeters. The high resolution seismic reflection using the common mid point (CMP) or roll along technique was carried out using a 24 channel signal enhancement seismograph and high frequency geophones. A total length of about 1.7 km stacked seismic section has been acquired in this survey and a nearby borehole data was used for interpretation. A relative Bouguer anomaly map shows an elongated zone of low gravity anomaly trending approximately NW-SE which is interpreted to be the deposition center of the Quaternary basin. The interpreted gravity profiles running across the central area of the study area show that the basin has thickness varies from tenth to several hundred meters with maximum depth to bedrock of about 275m. A gravity profile which passes through the eastern edge of the basin was modeled with depth to bedrock of about 178m below ground which agrees very well with those obtained from the interpreted seicmic section and borehole data. The stacked seismic section shows several high amplitude parallel to sub-parallel reflection overlying discontinuos and low reflection pattern. Reflections on the eastern part of the section is much shallower than the one observed on the western part which clearly indicates the presence of basinal structure with a total interpreted depth to bedrock of about 200 meters.
    Matched MeSH terms: Aluminum Silicates
  6. Mishra RK, Ramasamy K, Lim SM, Ismail MF, Majeed AB
    J Mater Sci Mater Med, 2014 Aug;25(8):1925-39.
    PMID: 24831081 DOI: 10.1007/s10856-014-5228-y
    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.
    Matched MeSH terms: Aluminum Silicates*
  7. Zal U’yun Wan Mahmood, Zaharudin Ahmad, Che Abd Rahim Mohamed, Abdul Kadir Ishak, Norfaizal Mohammed
    MyJurnal
    The distribution, enrichment and pollution status of metals in sediment cores from the Sabah-Sarawak coastal waters were studied. Seven sediment cores were taken in July 2004 using a gravity box corer. The metals of Cu, Zn and Pb were analyzed by ICP-MS to assess the pollution status of the sediments. The sediment fine fraction and organic carbon content was also analyzed. Enrichment Factor (EF), Geoaccumulation Index (Igeo) and Pollution Load Index (PLI) was calculated as criteria of possible contamination. The results showed that collected sediments were composed with clay, silt and sand as 12 – 74%, 27 – 72% and 0 – 20%, respectively. Meanwhile, organic carbon contents were relatively low and constant over time, based on sediment depth profiles, and it did not exceed 5% at any sampling station. The average metal concentrations in sediment cores at all sampling station were distributed in the ranges of 1.66 ± 1.36 – 6.61 ± 0.12 μgg-1 for Cu, 26.55 ± 1.04 – 57.94 ± 1.58 μgg-1 for Zn and 3.99 ± 0.10 – 14.48 ± 0.32μgg-1 for Pb. According to calculations of EF, Igeo and PLI, it can be concluded that concentrations of Cu, Zn and Pb were not significantly affected by pollution from anthropogenic sources at the seven sampling locations. Thus, the metal content of Cu, Zn and Pb in sediment should not cause pollution problem to the marine environment of Sabah-Sarawak coastal waters and further response measures are not needed.
    Matched MeSH terms: Aluminum Silicates
  8. Siti Fatimah Saipuddin, Ahmad Saat
    Science Letters, 2018;12(2):11-18.
    MyJurnal
    Radon gas has been known as one of the main factors that cause breathing complications which lead to lung cancer, second only after smoking habit. As one of the most commonly found Naturally Occurring Radioactive Materials (NORM), its contribution to background radiation is immense, and its contributors, Uranium and Thorium are widely available on Earth and have been in existence for such a long time with long half-lives. Indoor radon exposure contributed by building materials worsens the effects. The probability of inhaling radon-polluted air and being surrounded by it in any buildings is very high. This research is focused on the detection of radon emanation rate from various building materials which are commonly being used in Malaysia. Throughout this research, common building materials used in constructions in Malaysia were collected and indoor radon exposure from each material was measured individually using Tight Chamber Method coupled to a Continuous Radon Monitor, CRM 1029. It has been shown that sand brick is the biggest contributor to indoor radon compared to other samples such as sand, soil, black cement, white cement, and clay brick. From the results, materials which have high radon emanation could be reconsidered as building materials and mitigation action can be chosen, suitable to its application.
    Matched MeSH terms: Aluminum Silicates
  9. Abd. Rahim Samsudin, Umar Hamzah, Abd. Ghani Rafek, Haryono
    The whole Bachok area is covered by alluvial deposit. The alluvium has three aquifers at depth of 0 - 5, 15 - 30 and 40 - 60 meters below surface. Preliminary geophysical surveys including seismic refraction, reflection and resistivity techniques have been carried out to investigate thickness and depth of the aquifers, depth of bedrock and the salinity of the underground water. Results show that the position of first aquifer has been well determined by seismic refraction technique. Whereas the details of deeper aquifers and the bedrock have been determined by seismic reflection techniques. Geoelectrical resistivity low obtained for the first aquifer suggest that it could be due to either salt water intrusion or the presence of marine clay.
    Keseluruhan kawasan Bachok merupakan endapan aluvium. Endapan ini mempunyai tiga akuifer pada kedalaman 0 - 5 meter, 15 - 30 meter dan 40 - 60 meter. Kajian geofizik pada tahap awal yang merangkumi aspek seismos biasan, seismos pantulan dan kerintangan geoelektrik telah dilakukan untuk menyiasat ketebalan dan kedalaman akuifer, kedalaman batu dasar dan kemasinan air tanah. Hasil kajian menunjukkan bahawa teknik seismos biasan telah dapat menghasilkan maklumat mengenai kedudukan akuifer pertama. manakala teknik seismos pantulan menghasilkan maklumat terperinci mengenai akuifer kedua dan ketiga serta batu dasar. Nilai kerintangan geoelektrik rendah bagi akuifer pertama menunjukkan sama ada disebabkan oleh intrusi air masin atau kehadiran lempung samudera.
    Matched MeSH terms: Aluminum Silicates
  10. Biswas B, Sarkar B, Rusmin R, Naidu R
    Environ Int, 2015 Dec;85:168-81.
    PMID: 26408945 DOI: 10.1016/j.envint.2015.09.017
    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.
    Matched MeSH terms: Aluminum Silicates/chemistry*
  11. Rizwan Maqbool, Waqar Ali, Muhammad Ather Nadeem, Tasawer Abbas
    Sains Malaysiana, 2018;47:51-58.
    Boron is considered important to improve the drought resistance, yield and protein contents of pulses. Two years of field experiment was conducted to evaluate the effect of boron application and water stress given at vegetative and flowering stages on growth, yield and protein contents of mungbean during spring 2014 and 2015. The experiment was laid out in randomized complete block design with split-plot arrangement giving more emphasis to boron. The experiment comprised three water stress levels (normal irrigation, water stress at vegetative stage and water stress at reproductive phase) and four boron levels (0, 2, 4 and 6 kg ha-1). Final seed yield was significantly increased by different levels of boron application both under normal and water stressed conditions. The increase in yield was mainly due to greater plant height, number of pods bearing branches, number of pods per plant, number of seeds per pod and 1000-grain weight. Boron application at 4 kg ha-1 caused 17%, 10% and 4% increase in grain yield under normal irrigation, stress at vegetative stage and water stress at reproductive phase, respectively. Protein contents were also increased (9-16%) at same boron treatment. Most parameters showed a marked decrease at higher dose (6 kg ha-1) of boron. In conclusion, the boron application at rate of 4 kg ha-1 in clay-loam soil performed the best to enhance mungbean growth, yield and seed protein both under normal and water stressed conditions.
    Matched MeSH terms: Aluminum Silicates
  12. Madun, A., Wijeyesekera, D.C., Ahmad Tajuddin, S.A., Zainalabidin, M.H., Yunus, R., Baharudin, M.F.
    MyJurnal
    Seismic surface waves are a non-destructive technique used to obtain the dynamic properties of soil by measuring the shear wave velocity and calculating the shear modulus of soil. The shear modulus is one of the parameters to measure the stiffness of materials. This study evaluates soil profiles and the position of the sensor while conducting measurements of two , soil profiles, i.e. lateral and vertical non-homogeneities, using a continuous surface wave analysis (CSW) and multi-channel analysis of surface waves (MASW). Results showed the dispersive curve demonstrated an increased shear wave velocity with increasing depth for the sensor pair measurements on the clay (between columns), and decreased shear wave velocity with increasing depth for the sensor pair measurements on the column. In both instances the surface wave velocity results influenced by the depth and size of the wavelength, indicating that depth and wavelength controlled the volume of measurement in an elliptical shape. Therefore, the shear wave velocities and thus stiffness measured from the surface wave velocity techniques are represented the volume of soil measured across the sensor length.
    Matched MeSH terms: Aluminum Silicates
  13. Shariffah-Muzaimah SA, Idris AS, Madihah AZ, Dzolkhifli O, Kamaruzzaman S, Maizatul-Suriza M
    World J Microbiol Biotechnol, 2017 Dec 18;34(1):15.
    PMID: 29256103 DOI: 10.1007/s11274-017-2396-1
    Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (> 98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.
    Matched MeSH terms: Aluminum Silicates
  14. Choo CK, Kong XY, Goh TL, Ngoh GC, Horri BA, Salamatinia B
    Carbohydr Polym, 2016 Mar 15;138:16-26.
    PMID: 26794733 DOI: 10.1016/j.carbpol.2015.11.060
    Development of new materials for different applications especially as bio-composites has received great attention. This study concentrates on development of a biopolymer based on chitosan (CT) and halloysite nanotubes (HNT) and evaluates the copper removal intake as a potential application of this bio-composite. In this study, CT/HNT beads were prepared by ultrasonic-assisted extrusion-dripping method for the first time. Two sources of HNTs (i.e. Dragonite and Matauri Bay) were added into a chitosan solution (2wt.%) at various loading fractions (25, 50, 75wt.%). The effect of ultrasound as a mixing device was also studied by varying the amplitude at constant frequency of 25%, 50% and 75%. Characteristics and physical properties of the prepared CT/HNT beads were also analyzed by SEM, FTIR, TGA and BET the results show that introducing HNT to chitosan increases the adsorption capacity toward copper ions; however HNT loading fraction above 50wt.% resulted in a decrease in adsorption capacity attributed to limited accessibility of the amino groups. The adsorption capacity of the CT/HNT beads prepared from Dragonite source had a larger adsorption capacity of 14.2mg/g as compared to that of Matauri Bay, 10.55mg/g. It was observed that the adsorption capacity of the beads toward copper ions decreased when the loading fraction of HNT is increased at constant ultrasound amplitude. The result of this study helps to understand the links between the characteristics and adsorption abilities of CT/HNT beads.
    Matched MeSH terms: Aluminum Silicates/chemistry*
  15. Mohd Amin MF, Heijman SG, Rietveld LC
    Water Sci Technol, 2016;73(7):1719-27.
    PMID: 27054745 DOI: 10.2166/wst.2016.001
    In this study, a new, more effective and cost-effective treatment alternative is investigated for the removal of pharmaceuticals from wastewater treatment plant effluent (WWTP-eff). The potential of combining clay with biodegradable polymeric flocculants is further highlighted. Flocculation is viewed as the best method to get the optimum outcome from clay. In addition, flocculation with cationic starch increases the biodegradability and cost of the treatment. Clay is naturally abundantly available and relatively inexpensive compared to conventional adsorbents. Experimental studies were carried out with existing naturally occurring pharmaceutical concentrations found and measured in WWTP-eff with atrazine spiking for comparison between the demineralised water and WWTP-eff matrix. Around 70% of the total measured pharmaceutical compounds were removable by the clay-starch combination. The effect of clay with and without starch addition was also highlighted.
    Matched MeSH terms: Aluminum Silicates/chemistry*
  16. Ying Wang, Yonghui Chen, Zhenhua Hu, Qiang Feng, Desen Kong
    Sains Malaysiana, 2017;46:2231-2239.
    Ground improvement using artificial crust composite foundation, consisting of stabilization of soft clay and composite foundation, is an effective technique for the treatment of deep soft soil layers under infrastructure embankments. In this study, the load responses and settlement performance of this improvement technique were investigated using two centrifuge model tests to compare the variations of the vertical deformation, pore water pressure, axial force of the piles and tensile stress at the bottom of the artificial crust in the crust composite foundation with those in pile-supported embankment. The results of centrifuge model tests showed that the load responses and settlement performance of artificial crust composite foundation was different from the pile-supported embankment, which displayed mainly that the final middle settlement of crust composite foundation can be reduced by about 15% compared with those of pile-supported embankment with the same length of pile and construction cost. The deformation of the crust with the characteristics of the plate was found based on the change of the tensile stress. Additionally, the excess pore water pressure in the crust composite foundation was lower owing to the stress diffusion effect of the crust during the loading period and the dissipation rate of excess pore water pressure was slower due to lower permeability of the crust at the same loading period. Eventually, the axial force of the middle piles was reduced. At the same time, the boundary stress was functioned with the crust, the axial force of the side piles was improved. The comparison of measured and calculated results was carried out using the stress reduction ratio, the result shows that the bearing capacity of the subsoil in the crust composite was improved.
    Matched MeSH terms: Aluminum Silicates
  17. Faris MA, Abdullah MMAB, Muniandy R, Abu Hashim MF, Błoch K, Jeż B, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803313 DOI: 10.3390/ma14051310
    Geopolymer concrete has the potential to replace ordinary Portland cement which can reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers, as well as different types of end-shape fibers, could alter the performance of geopolymer concrete. The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength was studied. The results show that the pattern in physical properties of geopolymer concrete for both types of fibers addition is almost similar where the slump is decreased with density and water absorption is increased with the increasing amount of fibers addition. However, the addition of hook steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density and water absorption compared to the sample with the addition of straight steel fibers. However, the difference is not significant. Besides, samples with the addition of hook steel fibers give better performance for compressive and flexural strength compared to the samples with the addition of straight steel fibers where the highest is at 1.0% of fibers addition.
    Matched MeSH terms: Aluminum Silicates
  18. Mousavi S, Leong SW
    Sains Malaysiana, 2017;46:97-106.
    This paper investigates the compressibility characteristics of compacted clay treated with cement, peat ash and silica
    sand. For this purpose, one dimensional consolidation tests were conducted to determine the soil consolidation properties.
    The test specimens were trimmed from the compaction test specimen. The 1D consolidation test specimen was subjected
    to the normal pressures of 2.5, 5, 10, 20, 40, 80 and 160 kPa in sequence on the test specimen which was saturated with
    distilled water. At the end of the loading period of 80 kPa, the vertical load was removed and the specimen was allowed
    to expand for 24 h for the purpose of evaluating of its swelling behavior. The results showed that void ratio of the soil
    specimens decreased with increasing effective normal pressure. The laboratory investigation clearly demonstrates that,
    settlement is as the compression of a soil specimen due to vertical loading applied at the top surface of the 1D consolidation
    test specimen. It was concluded that, the compression settlement of the stabilized soil with the binder composition of
    18% cement, 2% peat ash and 5% silica sand improved by almost 1.3-fold. A notable discovery is the suitability of the
    stabilized soil for road embankment and low lying marginal area for foundation works; also solving the environmental
    problems in relation to peaty ground. However, sufficient laboratory and field testing are required.
    Matched MeSH terms: Aluminum Silicates
  19. Na’im Syauqi Hamzah, Redzuwan Yahaya, Amran Ab. Majid, Muhammad Samudi Yasir, Ismail Bahari
    MyJurnal
    At present, soil and mineral based building material such as bricks are one of the main components in building construction in Malaysia. This building material is a direct source of radiation exposure since it contains naturally occurring radioactive materials (NORM). In this study, clay brick samples used were obtained from 7 factories in Selangor and Johore, Malaysia. The activity concentrations of 226 Ra, 232 Th and 40 K in these samples of clay bricks were determined using a comparative method and was analysed using gamma spectrometry with HPGe detector. The mean values of activity concentrations for 226 Ra, 232 Th and 40 K were found to be in the range of 39.04 ± 0.88 Bqkg-1 - 73.61 ± 5.32 Bqkg-1, 43.38 ± 2.60 Bqkg-1 - 73.45 ± 1.51 Bqkg-1, and 381.54 ± 11.39 Bqkg-1 - 699.63 ± 15.82 Bqkg-1, respectively. The radiation hazard of NORM in the samples was estimated by calculating the radium equivalent activity (Raeq), external hazard index (Hex) and internal hazard index (Hin). Radium equivalent activity (Raeq) determined was in the range of 151.90 Bqkg-1 - 194.22 Bqkg-1 which is lower than the limit of 370 Bqkg-1 (equivalent to 1.5 mSvyr-1 ) recommended in the NEA-OECD report in 1979, whereas external hazard index (Hex) and internal hazard index (Hin) were between 0.20 – 0.26 and 0.52 - 0.71 respectively. The annual effective dose rate exposure to a dweller received from the clay bricks was calculated to be in the range of 0.35 ± 0.18 mSvy-1 - 0.43 ± 0.09 mSvy-1.
    Matched MeSH terms: Aluminum Silicates
  20. Syed Baharom Syed Osman, Mohammad Nabil Fikri, Fahad Irfan Siddique
    MyJurnal
    The long term objective of this research is to look into the possibility of replacing soil strength parameters such as cohesion and angle of friction with electrical resistivity value for the purpose of computing among others, factor of safety in slopes or bearing capacity of soil. This paper however is limited to the investigation of correlation between electrical resistivity with some selected soil parameters. Electrical resistivity tests, using a basic multi meter, steel moulds and other related equipment, were conducted in the laboratory on soil samples with variations in soil type, compaction energy and moisture content. The samples consisted of predominantly clay, silt and sandy size particles and were compacted in a 100 x 100 mm square mould, while the corresponding electrical resistivity tests were carried out using the disc electrode method in accordance to BS 1377. The values of the electrical parameters such as voltage, current and resistance, with the corresponding value of soil parameters such as cohesion, angle of friction and moisture content, were measured and recorded. The results of the tests produced some initial crude relationships between electrical resistivity and the selected soil parameters. The strongest correlation between electrical resistivity and angle of internal friction, φ, was obtained from the clay size samples with R2 of 0.824, while the maximum correlation between electrical resistivity and moisture content again was obtained through the clay samples with R2 of 0.818. From the other results and graphs analyzed, some consistencies and specific trends of behaviour observed gave some early indications that a more detail and precise correlation between electrical resistivity and soil strength parameters could be very well possible in future.
    Matched MeSH terms: Aluminum Silicates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links