Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Mak JW
    Trop Biomed, 2004 Dec;21(2):39-50.
    PMID: 16493397
    Intestinal protozoa are increasingly being studied because of their association with acute and chronic diarrhoea in immunocompromised as well as immunocompetent patients. Various community outbreaks due to contamination of water or food with these protozoa have further highlighted their importance in public health. Among these important pathogens are Giardia duodenalis, Entamoeba histolytica, Cryptosporidium parvum, Cyclospora cayetanensis, Isospora belli, and microsporidia. Except for the cyst-forming G. duodenalis and E. histolytica, the others are intracellular and form spores which are passed out with the faeces. These organisms are also found in various animals and birds and zoonotic transmission is thought to occur. These infections are distributed worldwide, with a higher prevalence in developing compared to developed countries. However, the relative importance of zoonotic infections especially in developing countries has not been studied in detail. The prevalence rates are generally higher in immunodeficient compared to immunocompetent patients. Higher prevalence rates are also seen in rural compared to urban communities. Most studies on prevalence have been carried out in developed countries where the laboratory and other health infrastructure are more accessible than those in developing countries. This relative inadequacy of laboratory diagnosis can affect accurate estimates of the prevalence of these infections in developing countries. However, reports of these infections in travellers and workers returning from developing countries can provide some indication of the extent of these problems. Most studies on prevalence of amoebiasis in developing countries were based on morphological identification of the parasite in faecal smears. As the pathogenic E. histolytica is morphologically indistinguishable from that of non-pathogenic E. dispar, estimates of amoebiasis may not be accurate. The epidemiology of human microsporidia infections is not completely understood. Two species, Enterocytozoon bieneusi and Encephalitozoon intestinalis, are associated with gastrointestinal disease in humans and it is believed that human to human as well as animal to human infections occur. However, the importance of zoonotic infections has not been fully characterised. G. duodenalis cysts, microsporidia and Cryptosporidium oocysts have been detected in various ground water resources, but their role in community outbreaks and maintenance of the infection has not been fully characterised. The taxonomic classification and pathogenic potential of B. hominis are still controversial. While considered by many as yeast, fungi or protozoon, recent sequence analysis of the complete SSUrRNA gene has placed it within an informal group, the stramenopiles. This review covers recent published data on these zoonotic infections and examines their public health importance in Asian countries.
    Matched MeSH terms: Amebiasis
  2. Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, et al.
    Sci Rep, 2019 02 28;9(1):3122.
    PMID: 30816269 DOI: 10.1038/s41598-019-39528-0
    Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.
    Matched MeSH terms: Amebiasis/drug therapy
  3. Mitsuwan W, Sin C, Keo S, Sangkanu S, de Lourdes Pereira M, Jimoh TO, et al.
    Heliyon, 2021 May;7(5):e06976.
    PMID: 34027178 DOI: 10.1016/j.heliyon.2021.e06976
    Plants with medicinal properties have been used in the treatment of several infectious diseases, including Acanthamoeba infections. The medicinal properties of Cambodian plant extracts; Annona muricata and Combretum trifoliatum were investigated against Acanthamoeba triangularis. A total of 39 plant extracts were evaluated and, as a result, 22 extracts showed positive anti-Acanthamoeba activity. Of the 22 extracts, 9 and 4 extracts showed anti-Acanthamoeba activity against trophozoites and cysts of A. triangularis, respectively. The minimum inhibitory concentration of A. muricata and C. trifoliatum extracts against trophozoites and cysts was 500 and 1,000 μg/mL, respectively. The combination of A. muricata at 1/4×MIC with chlorhexidine at 1/8×MIC demonstrated a synergistic effect against trophozoites, but partial synergy against cysts. A 40% reduction in trophozoites and 60% of cysts adhered to the plastic surface treated with both extracts at 1/2×MIC were noted comparing to the control (P < 0.05). Furthermore, a reduction of 80% and 90% of trophozoites adhered to the surface was observed after pre-treatment with A. muricata and C. trifoliatum extracts, respectively. A 90% of cysts adhered to the surface was decreased with pre-treatment of A. muricata at 1/2×MIC (P < 0.05). A 75% of trophozoites and cysts from Acanthamoeba adhered to the surface were removed after treatment with both extracts at 4×MIC (P < 0.05). In the model of contact lens, 1 log cells/mL of trophozoites and cysts was significantly decreased post-treatment with both extracts compared to the control. Trophozoites showed strong loss of acanthopodia and thorn-like projection pseudopodia, while cysts demonstrated retraction and folded appearance treated with both extracts when observed by SEM, which suggests the potential benefits of the medicinal plants A. muricata and C. trifoliatum as an option treatment against Acanthamoeba infections.
    Matched MeSH terms: Amebiasis
  4. Mat Amin N
    Trop Biomed, 2004 Dec;21(2):57-60.
    PMID: 16493399
    Naegleria fowleri is a free-living amoeba, known as a causative agent for a fatal disease of the central nervous system (CNS) in man such as Primary amoebic meningoencephalitis (PAM). Factors contributing to its pathogenicity and its distribution in the environment have been investigated by previous researchers. In case of its pathogenicity, several enzymes such as phospolipase A and sphingomyelinase, have been proposed to probably act as aggressors in promoting PAM but no study so far have been conducted to investigate the presence of proteinase enzyme in this amoeba although a 56kDa cystein proteinase enzyme has been identified in Entamoeba histolytica as an important contributing factor in the amoeba's virulence. In this preliminary study, a pathogenic amoeba, Naegleria fowleri (strain NF3) was examined for the presence of proteinases. Samples of enzymes in this amoeba were analysed by electrophoresis using SDS-PAGE-gelatin gels. The results showed that this amoeba possesses at least two high molecular weight proteinases on gelatin gels; their apparent molecular weights are approximately 128 kDa and approximately 170 kDa. Band of approximately 128 kDa enzyme is membrane-associated and its activity is higher at alkaline pH compared with lower pH; at lower pH, its activity is greatly stimulated by DTT. The approximately 170 kDa band enzyme appears to be inactivated at pH 8.0, at lower ph its activity is higher and DTT-dependance. The activity of this enzyme is partially inhibited by inhibitor E-64 but markedly inhibited to antipain suggesting it belongs to the cysteine proteinase group.
    Matched MeSH terms: Amebiasis
  5. Mungroo MR, Shahbaz MS, Anwar A, Saad SM, Khan KM, Khan NA, et al.
    ACS Chem Neurosci, 2020 08 19;11(16):2438-2449.
    PMID: 31961126 DOI: 10.1021/acschemneuro.9b00596
    Naegleria fowleri and Balamuthia mandrillaris are protist pathogens that infect the central nervous system, causing primary amoebic meningoencephalitis and granulomatous amoebic encephalitis with mortality rates of over 95%. Quinazolinones and their derivatives possess a wide spectrum of biological properties, but their antiamoebic effects against brain-eating amoebae have never been tested before. In this study, we synthesized a variety of 34 novel arylquinazolinones derivatives (Q1-Q34) by altering both quinazolinone core and aryl substituents. To study the antiamoebic activity of these synthetic arylquinazolinones, amoebicidal and amoebistatic assays were performed against N. fowleri and B. mandrillaris. Moreover, amoebae-mediated host cells cytotopathogenicity and cytotoxicity assays were performed against human keratinocytes cells in vitro. The results revealed that selected arylquinazolinones derivatives decreased the viability of B. mandrillaris and N. fowleri significantly (P < 0.05) and reduced cytopathogenicity of both parasites. Furthermore, these compounds were also found to be least cytotoxic against HaCat cells. Considering that nanoparticle-based materials possess potent in vitro activity against brain-eating amoebae, we conjugated quinazolinones derivatives with silver nanoparticles and showed that activities of the drugs were enhanced successfully after conjugation. The current study suggests that quinazolinones alone as well as conjugated with silver nanoparticles may serve as potent therapeutics against brain-eating amoebae.
    Matched MeSH terms: Amebiasis
  6. Iqbal K, Abdalla SAO, Anwar A, Iqbal KM, Shah MR, Anwar A, et al.
    Antibiotics (Basel), 2020 May 25;9(5).
    PMID: 32466210 DOI: 10.3390/antibiotics9050276
    The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
    Matched MeSH terms: Amebiasis
  7. Mahboob T, Nawaz M, de Lourdes Pereira M, Tian-Chye T, Samudi C, Sekaran SD, et al.
    Sci Rep, 2020 06 02;10(1):8954.
    PMID: 32488154 DOI: 10.1038/s41598-020-65728-0
    Acanthamoeba, a genus that contains at least 24 species of free-living protozoa, is ubiquitous in nature. Successful treatment of Acanthamoeba infections is always very difficult and not always effective. More effective drugs must be developed, and medicinal plants may have a pivotal part in the future of drug discovery. Our research focused on investigating the in vitro anti- acanthamoebic potential of Leea indica and its constituent gallic acid in different concentrations. Water and butanol fractions exhibited significant amoebicidal activity against trophozoites and cysts. Gallic acid (100 µg/mL) revealed 83% inhibition of trophozoites and 69% inhibition of cysts. The butanol fraction induced apoptosis in trophozoites, which was observed using tunnel assay. The cytotoxicity of the fractions and gallic acid was investigated against MRC-5 and no adverse effects were observed. Gallic acid was successfully loaded within poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles with 82.86% encapsulation efficiency, while gallic acid showed 98.24% in vitro release at 48 hours. Moreover, the gallic acid encapsulated in the PLGA nanoparticles exhibited 90% inhibition against trophozoites. In addition, gallic acid encapsulated nanoparticles showed reduced cytotoxicity towards MRC-5 compared to gallic acid, which evidenced that natural product nanoencapsulation in polymeric nanoparticles could play an important role in the delivery of natural products.
    Matched MeSH terms: Amebiasis/drug therapy*
  8. Gilman RH, Davis C, Gan E, Bolton M
    Am J Trop Med Hyg, 1976 Sep;25(5):663-6.
    PMID: 183555
    The indirect hemagglutination test was used to study antibody titers to Entamoeba histolytica in different Malaysian populations. Eighty-seven percent of Orang Asli (western Malaysian aborigines) adults and 79% of Orang Asli children with acute amebic dysentery were seropositive. However, significantly fewer children (39%) with amebic dysentery had high titer responses (titer greater than or equal to 1:1,280) than did adults with amebic dysentery (76%). No correlation between proctoscopic severity and amebic titer was found. Forty-four percent of asymptomatic family members were seroresponders. Satak, an Orang Asli village located near towns, had significantly more seroresponders (32%) than did the isolated, deep jungle village, Belatim (4%).
    Matched MeSH terms: Amebiasis/immunology*
  9. O'Holohan DR, Hugoe-Matthews J
    Ann Trop Med Parasitol, 1972 Jun;66(2):181-6.
    PMID: 4338870
    Matched MeSH terms: Amebiasis/drug therapy*
  10. Siddiqui R, Saleem S, Khan NA
    Exp Parasitol, 2016 Jun 18;168:16-24.
    PMID: 27327524 DOI: 10.1016/j.exppara.2016.06.006
    The treatment of Acanthamoeba infections remains problematic, suggesting that new targets and/or chemotherapeutic agents are needed. Bioassay-guided screening of drugs that are clinically-approved for non-communicable diseases against opportunistic eukaryotic pathogens is a viable strategy. With known targets and mode of action, such drugs can advance to clinical trials at a faster pace. Recently Bortezomib (proteasome inhibitor) has been approved by FDA in the treatment of multiple myeloma. As proteasomal pathways are well known regulators of a variety of eukaryotic cellular functions, the overall aim of the present study was to study the effects of peptidic and non-peptidic proteasome inhibitors on the biology and pathogenesis of Acanthamoeba castellanii of the T4 genotype, in vitro. Zymographic assays revealed that inhibition of proteasome had detrimental effects on the extracellular proteolytic activities of A. castellanii. Proteasome inhibition affected A. castellanii growth (using amoebistatic assays), but not viability of A. castellanii. Importantly, proteasome inhibitors affected encystation as determined by trophozoite transformation into the cyst form, as well as excystation, as determined by cyst transformation into the trophozoite form. The ability of proteasome inhibitor to block Acanthamoeba differentiation is significant, as it presents a major challenge in the successful treatment of Acanthamoeba infection. As these drugs are used clinically against non-communicable diseases, the findings reported here have the potential to be tested in a clinical setting against amoebic infections.
    Matched MeSH terms: Amebiasis
  11. Anwar A, Ting ELS, Anwar A, Ain NU, Faizi S, Shah MR, et al.
    AMB Express, 2020 Feb 03;10(1):24.
    PMID: 32016777 DOI: 10.1186/s13568-020-0960-9
    Acanthamoeba spp. are the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis (GAE). The current options to treat Acanthamoeba infections have limited success. Silver nanoparticles show antimicrobial effects and enhance the efficacy of their payload at the specific biological targets. Natural folk plants have been widely used for treating diseases as the phytochemicals from several plants have been shown to exhibit amoebicidal effects. Herein, we used natural products of plant or commercial sources including quercetin (QT), kolavenic acid (PGEA) isolated from plant extracts of Polyalthia longifolia var pendula and crude plant methanolic extract of Caesalpinia pulcherrima (CPFLM) as antiacanthamoebic agents. Furthermore, these plant-based materials were conjugated with silver nanoparticles (AgNPs) to determine the effects of the natural compounds and their nanoconjugates against a clinical isolate of A. castellanii from a keratitis patient (ATCC 50492) belonging to the T4 genotype. The compounds were conjugated with AgNPs and characterized by using ultraviolet visible spectrophotometry and atomic force microscopy. Quercetin coated silver nanoparticles (QT-AgNPs) showed characteristic surface plasmon resonance band at 443 nm and the average size distribution was found to be around 45 nm. The natural compounds alone and their nanoconjugates were tested for the viability of amoebae, encystation and excystation activity against A. castellanii. The natural compounds showed significant growth inhibition of A. castellanii while QT-AgNPs specifically exhibited enhanced antiamoebic effects as well as interrupted the encystation and excystation activity of the amoebae. Interestingly, these compounds and nanoconjugates did not exhibit in vitro cytotoxic effects against human cells. Plant-based compounds and extracts could be an interesting strategy in development of alternative therapeutics against Acanthamoeba infections.
    Matched MeSH terms: Amebiasis
  12. Abdelnasir S, Anwar A, Kawish M, Anwar A, Shah MR, Siddiqui R, et al.
    AMB Express, 2020 Jul 17;10(1):127.
    PMID: 32681358 DOI: 10.1186/s13568-020-01061-z
    Acanthamoeba castellanii can cause granulomatous amoebic encephalitis and Acanthamoeba keratitis. Currently, no single drug has been developed to effectively treat infections caused by Acanthamoeba. Recent studies have shown that drugs conjugated with nanoparticles exhibit potent in vitro antiamoebic activity against pathogenic free-living amoebae. In this study, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with metronidazole which were further loaded with amphotericin B to produce enhanced antiamoebic effects against Acanthamoeba castellanii. The results showed that metronidazole-nanoparticles-amphotericin B (Met-MNPs-Amp) significantly inhibited the viability of these amoebae as compared to the respective controls including drugs and nanoparticles alone. Met-MNPs-Amp exhibited IC50 at 50 μg/mL against both A. castellanii trophozoites and cysts. Furthermore, these nanoparticles did not affect the viability of rat and human cells and showed safe hemolytic activity. Hence, the results obtained in this study have potential utility in drug development against infections caused by Acanthamoeba castellanii. A combination of drugs can lead to successful prognosis against these largely neglected infections. Future studies will determine the value of conjugating molecules with diagnostic and therapeutic potential to provide theranostic approaches against these serious infections.
    Matched MeSH terms: Amebiasis
  13. Nurul Farhana Jufri, Anisah Nordin, Mohamed Kamel Abd Ghani, Yusof Suboh, Noraina Abd Rahim
    MyJurnal
    Acanthamoeba is a free living protozoa that can cause keratitis and granulomatous amoebic encephalitis. Physiological characteristics of this amoeba are found to have a medical importance in which it can be related to the pathogenicity potential of the organism. This study was carried out to investigate the physiological characteristics of survivability during axenization. Six Acanthamoeba strains from three clinical isolates (HSB 1, HKL 48 and HKL 95) and three environmental isolates (PHS 2, PHS 11 and PHS 15) were used in this study. Axenization test was done by treating cysts with hydrochloric acid (3%) and Page saline containing Gentamicin (100 µg/ml). Cysts were then cultured into PYG enrich media, incubated at 30oC and the presence and proliferation of trophozoites of Acanthamoeba were observed. This study showed that PHS 15, HSB 1, HKL 48 and HKL 95 could be axenized but they have poor proliferation rate in PYG enrich media. The result showed that the difference between both clinical and environmental isolates was observed in two strains; PHS 2 and PHS 11. This indicates that there is a possibility that the physiological traits of strains from both isolates are the same and strains from the environment are able to show the pathogenic potential and capable of causing infection to human.
    Matched MeSH terms: Amebiasis
  14. Tan LP, Foong KK, Yvonne Ai LL
    Med J Malaysia, 2018 10;73(5):334-335.
    PMID: 30350818 MyJurnal
    Amebiasis is one of the major causes of diarrhea in the developing countries and it can present with a wide range of gastrointestinal symptoms depending on the phase of infection. We described a case of 50 year-old male patient who presented with abdominal pain, diarrhea and vomiting. After right hemicolectomy for appendicular abscess with tumour over the ileum, histopathological examinations revealed numerous trophozoites of Entamoeba histolytica in a background of inflammations (Figure 1). Following resection of the ameboma, he received intravenous metronidazole treatment for total of two weeks duration.
    Matched MeSH terms: Amebiasis
  15. Zurainee MN, Khairul Anuar A, Khatijah O, Sri Suriati A, Noraishah S
    JUMMEC, 1998;3:63-63.
    We describe the results of serology for parasitic infection of 250 foreign workers who were seen at the University of Malaya Medical Centre, UMMC during 7-months period. The 250 foreign workers participated included 114 from Indonesia, 142 from Bangladesh, two from Myanmar and two from Pakistan. Blood samples were taken from these workers and eight tests (amoebiasis, echinococcosis, filariasis, leishmaniasis, malaria, schistosomiasis, toxoplasmosis, and trypanosomiasis) were performed on serum. Among the 250 sera tested, 92 (36.8%) were found to be positive for at least one parasitic infection. There was one case where the serum was found positive for 5 tests. The most common antibody detected in those positive sera was antibody for toxoplasma (80.%), followed by filaria (32.8%) and amoeba (30%). Other tests showed low percentage of infection with schistosomiasias, 10%; echinococcosis, 6% and malaria, 3.6%. None of the foreign workers were found positive for leishmaniasis or trypanosomiasias.
    Matched MeSH terms: Amebiasis
  16. Mungroo MR, Anwar A, Khan NA, Siddiqui R
    ACS Omega, 2020 Jun 02;5(21):12467-12475.
    PMID: 32548431 DOI: 10.1021/acsomega.0c01305
    Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that cause infection of the central nervous system, granulomatous amoebic encephalitis (GAE) and primary amoebic meningoencephalitis (PAM), respectively. The fact that mortality rates for cases of GAE and PAM are more than 95% indicates the need for new therapeutic agents against those amoebae. Considering that curcumin exhibits a wide range of biological properties and has shown efficacy against Acanthamoeba castellanii, we evaluated the amoebicidal properties of curcumin against N. fowleri and B. mandrillaris. Curcumin showed significant amoebicidal activities with an AC50 of 172 and 74 μM against B. mandrillaris and N. fowleri, respectively. Moreover, these compounds were also conjugated with gold nanoparticles to further increase their amoebicidal activities. After conjugation with gold nanoparticles, amoebicidal activities of the drugs were increased by up to 56 and 37% against B. mandrillaris and N. fowleri, respectively. These findings are remarkable and suggest that clinically available curcumin and our gold-conjugated curcumin nanoparticles hold promise in the improved treatment of fatal infections caused by brain-eating amoebae and should serve as a model in the rationale development of therapeutic interventions against other infections.
    Matched MeSH terms: Amebiasis
  17. Basher MHA, Ithoi I, Mahmud R, Abdulsalam AM, Foead AI, Dawaki S, et al.
    Acta Trop, 2018 Feb;178:219-228.
    PMID: 29203378 DOI: 10.1016/j.actatropica.2017.11.015
    Acanthamoeba species are ubiquitous free-living protozoa that can be found worldwide. Occasionally, it can become parasitic and the causative agent of acanthamoebic keratitis (AK) and Granulomatous Amoebic Encephalitis (GAE) in man. A total of 160 environmental samples and 225 naturally-infected animal corneal swabs were collected for Acanthamoeba cultivation. Acanthamoeba was found to be high in samples collected from environments (85%, 136/160) compared to infected animal corneas (24.89%, 56/225) by microscopic examination. Analysis of nucleotide sequence of 18S rRNA gene of all the 192 cultivable Acanthamoeba isolates revealed 4 genotypes (T3, T4. T5 and T15) with T4 as the most prevalent (69.27%, 133/192) followed by T5 (20.31%), T15 (9.90%) and T3 (0.52%). Genotype T4 was from the strain of A. castellanii U07401 (44.27%), A. castellanii U07409 (20.83%) and A. polyphagaAY026243 (4.17%), but interestingly, only A. castellanii U07401 was detected in naturally infected corneal samples. In environmental samples, T4 was commonly detected in all samples including dry soil, dust, wet debris, wet soil and water. Among the T4, A. castellanii (U07409) strains were detected high occurrence in dry (45%) followed by aquatic (32.50%) and moist (22.50%) samples but however A. castellanii (U07401) strains were dominant in dry samples of soil and dust (93.10%). Subsequently, genotype T5 of A. lenticulata (U94741) strains were dominant in samples collected from aquatic environments (58.97%). In summary, A. castellanii (U07401) strains were found dominant in both environmental and corneal swab samples. Therefore, these strains are possibly the most virulent and dry soil or dusts are the most possible source of Acanthamoeba infection in cats and dogs corneas.
    Matched MeSH terms: Amebiasis
  18. Pirehma M, Suresh K, Sivanandam S, Anuar AK, Ramakrishnan K, Kumar GS
    Parasitol Res, 1999 Oct;85(10):791-3.
    PMID: 10494803
    Acanthamoeba sp. is a free-living amoeba known to cause chronic central nervous system infection or eye infection in humans. Many cases remain undetected for want of a good detection system. We report for the first time a rapid staining method to facilitate the identification of Acanthamoeba sp. using the modified Field's staining technique. A. castellanii, which was used in the present experiment, is maintained in our laboratory in mycological peptone medium (Gibco). The cultures were pooled together and smears were made on glass slides for staining purposes. Different types of stains such as Field's stain, modified Field's stain, Wright's stain, Giemsa stain, Ziehl-Neelsen stain, and trichrome stain were used to determine the best stain for the identification of this amoeba. The concentration of various stains and the duration of staining were varied to provide the best color and contrast for each stain. Acanthamoeba was also obtained from the brain of experimentally infected mice and was stained with various stains as mentioned above to determine the best stain for use in identifying the presence of this parasite in experimentally infected animals. The modified Field's stain gives a very good color contrast as compared with other stains. Furthermore, it takes only 20 s to be carried out using the least number of reagents, making it suitable for both laboratory and field use.
    Matched MeSH terms: Amebiasis/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links