Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Mollataghi A, Hadi AH, Cheah SC
    Molecules, 2012 Apr 05;17(4):4197-208.
    PMID: 22481540 DOI: 10.3390/molecules17044197
    A new dienamide, (2E,4E)-7-(3',4'-dimethoxyphenyl)-N-ethyl-6-(R)-hydroxyhepta- 2,4-dienamide, named (-)-kunstleramide (1), were isolated from the bark of Beilschmiedia kunstleri Gamble together with one neolignan: (+)-kunstlerone (2) and seven known alkaloids: (+)-nornuciferine (3), (-)-isocaryachine (4), (+)-cassythicine (5), (+)-laurotetanine (6), (+)-boldine (7), noratherosperminine (8), (+)-N-demethylphyllocaryptine (9). Their structures were established from spectroscopic techniques, most notably 1D- and 2D-NMR, UV, IR, OR, circular dichroism (CD) spectra and LCMS-IT-TOF. (-)-Kunstleramide (1) exhibited very poor dose-dependent inhibition of DPPH activity, with an IC₅₀ value of 179.5 ± 4.4 μg/mL, but showed a moderate cytotoxic effect on MTT assays of A375, A549, HT-29, PC-3 and WRL-68 with EC₅₀ values of 64.65, 44.74, 55.94, 73.87 and 70.95 µg/mL, respectively.
    Matched MeSH terms: Amides/pharmacology*; Amides/chemistry
  2. Shanmuga Sundara Raj S, Yamin BM, Boshaala AM, Tarafder MT, Crouse KA, Fun HK
    Acta Crystallogr C, 2000 Aug;56 (Pt 8):1011-2.
    PMID: 10944308
    In the crystal structure of the title compound, C(14)H(12)N(2)O(2), the molecule lies about a twofold axis; two carbonyl groups and the H atoms of the N-N bond are in a trans orientation with respect to each other. In the crystal, each molecule is linked to the other and vice versa by intermolecular N-H.O hydrogen bonds between the amide hydrogen and the O atoms of neighbouring molecules to form two ten-membered rings, each of which has the graph-set motif C4R(2)(2)(10). This extends as a polymeric chain along the c axis.
    Matched MeSH terms: Amides
  3. Tan SL, Azizan AHS, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Oct 01;75(Pt 10):1472-1478.
    PMID: 31636978 DOI: 10.1107/S2056989019012581
    In the title tri-substituted thio-urea derivative, C13H18N2O3S, the thione-S and carbonyl-O atoms lie, to a first approximation, to the same side of the mol-ecule [the S-C-N-C torsion angle is -49.3 (2)°]. The CN2S plane is almost planar (r.m.s. deviation = 0.018 Å) with the hy-droxy-ethyl groups lying to either side of this plane. One hy-droxy-ethyl group is orientated towards the thio-amide functionality enabling the formation of an intra-molecular N-H⋯O hydrogen bond leading to an S(7) loop. The dihedral angle [72.12 (9)°] between the planes through the CN2S atoms and the 4-tolyl ring indicates the mol-ecule is twisted. The experimental mol-ecular structure is close to the gas-phase, geometry-optimized structure calculated by DFT methods. In the mol-ecular packing, hydroxyl-O-H⋯O(hydrox-yl) and hydroxyl-O-H⋯S(thione) hydrogen bonds lead to the formation of a supra-molecular layer in the ab plane; no directional inter-actions are found between layers. The influence of the specified supra-molecular inter-actions is apparent in the calculated Hirshfeld surfaces and these are shown to be attractive in non-covalent inter-action plots; the inter-action energies point to the important stabilization provided by directional O-H⋯O hydrogen bonds.
    Matched MeSH terms: Amides
  4. Syed S, Jotani MM, Halim SN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Mar 1;72(Pt 3):391-8.
    PMID: 27006815 DOI: 10.1107/S2056989016002735
    The asymmetric unit of the title 2:1 co-crystal, 2C8H8O2·C14H14N4O2, comprises an acid mol-ecule in a general position and half a di-amide mol-ecule, the latter being located about a centre of inversion. In the acid, the carb-oxy-lic acid group is twisted out of the plane of the benzene ring to which it is attached [dihedral angle = 28.51 (8)°] and the carbonyl O atom and methyl group lie approximately to the same side of the mol-ecule [hy-droxy-O-C-C-C(H) torsion angle = -27.92 (17)°]. In the di-amide, the central C4N2O2 core is almost planar (r.m.s. deviation = 0.031 Å), and the pyridyl rings are perpendicular, lying to either side of the central plane [central residue/pyridyl dihedral angle = 88.60 (5)°]. In the mol-ecular packing, three-mol-ecule aggregates are formed via hy-droxy-O-H⋯N(pyrid-yl) hydrogen bonds. These are connected into a supra-molecular layer parallel to (12[Formula: see text]) via amide-N-H⋯O(carbon-yl) hydrogen bonds, as well as methyl-ene-C-H⋯O(amide) inter-actions. Significant π-π inter-actions occur between benzene/benzene, pyrid-yl/benzene and pyrid-yl/pyridyl rings within and between layers to consolidate the three-dimensional packing.
    Matched MeSH terms: Amides
  5. Yusof ENM, Tahir MIM, Ravoof TBSA, Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):543-549.
    PMID: 28435717 DOI: 10.1107/S2056989017003991
    The title di-thio-carbazate ester (I), C18H18N2S2 [systematic name: (E)-4-methyl-benzyl 2-[(E)-3-phenyl-allyl-idene]hydrazinecarbodi-thio-ate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methyl-ene(tolyl-4) group forms a dihedral angle of 72.25 (4)° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the mol-ecule approximates mirror symmetry with the 4-tolyl group bis-ected by the plane. The configuration about both double bonds in the N-N=C-C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thio-amide synthons, {⋯HNCS}2, are formed via N-H⋯S(thione) hydrogen bonds. Connections between the dimers via C-H⋯π inter-actions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I) possesses an inter-action profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II). Computational chemistry indicates the dimeric species of (II) connected via N-H⋯S hydrogen bonds is about 0.94 kcal mol(-1) more stable than that in (I).
    Matched MeSH terms: Amides
  6. Sim KM, Mak CN, Ho LP
    J Asian Nat Prod Res, 2009 Aug;11(8):757-60.
    PMID: 20183320 DOI: 10.1080/10286020903058933
    A new amide alkaloid, N-(3',4',5'-trimethoxy-cis-cinnamoyl)pyrrolidine (1), named sarmentomicine was isolated from the ethanol extract of the leaves of Malayan Piper sarmentosum, together with two known phenylpropanoids. Their structures were elucidated on the basis of spectroscopic analysis.
    Matched MeSH terms: Amides/isolation & purification*; Amides/chemistry
  7. Rushdi AI, bin Abas MR, Didyk BM
    Environ Sci Technol, 2003 Jan 1;37(1):16-21.
    PMID: 12542285
    The occurrence of n-alkanoic acids, amides, and nitriles in samples of aerosol particulate matter from Kuala Lumpur and Santiago suggests that emissions from cooking and biomass burning are the primary sources of these organic markers in the atmosphere. It is proposed that fatty acids react with ammonia during biomass burning or combustion to produce amides and nitriles, which can be applied as useful biomarker tracers. To test this hypothesis, nonadecanoic acid and hexadecanamide were used as reactants in hydrous pyrolysis experiments. These experiments produced amides and nitriles and indicated that ammonia is an essential agent in their formation. Thus amides and nitriles are of utility as indicators for input from combustion and biomass burning in the ambient atmosphere.
    Matched MeSH terms: Amides/analysis*
  8. Heo HY, Tee YK, Harston G, Leigh R, Chappell MA
    NMR Biomed, 2023 Jun;36(6):e4734.
    PMID: 35322482 DOI: 10.1002/nbm.4734
    Amide proton transfer (APT) imaging, a variant of chemical exchange saturation transfer MRI, has shown promise in detecting ischemic tissue acidosis following impaired aerobic metabolism in animal models and in human stroke patients due to the sensitivity of the amide proton exchange rate to changes in pH within the physiological range. Recent studies have demonstrated the possibility of using APT-MRI to detect acidosis of the ischemic penumbra, enabling the assessment of stroke severity and risk of progression, monitoring of treatment progress, and prognostication of clinical outcome. This paper reviews current APT imaging methods actively used in ischemic stroke research and explores the clinical aspects of ischemic stroke and future applications for these methods.
    Matched MeSH terms: Amides
  9. Sirat HM, Susanti D, Ahmad F, Takayama H, Kitajima M
    J Nat Med, 2010 Oct;64(4):492-5.
    PMID: 20582481 DOI: 10.1007/s11418-010-0431-8
    Successive extraction of the dried leaves of Melastoma malabathricum, followed by purification using repeated chromatographic techniques, yielded six compounds, including two amides, auranamide and patriscabratine, a triterpene, alpha-amyrin, and three flavonoids, quercitrin, quercetin and kaempferol-3-O-(2'',6''-di-O-p-trans-coumaroyl)-beta-glucoside. Their structures were elucidated by spectroscopic means and also by direct comparison of their spectroscopic data with respective published data. These three phenolic constituents were found to be active as free radical scavengers, with quercetin being the strongest radical scavenger, having an IC(50) value of 0.69 microM in the UV method. Quercitrin and kaempferol-3-O-(2'',6''-di-O-p-trans-coumaroyl)-beta-glucoside showed moderate radical scavenging, with IC(50) values of 74.1 and 108.8 microM, respectively.
    Matched MeSH terms: Amides/isolation & purification; Amides/chemistry
  10. Hakima F, Salfi R, Bhikshapathi D, Khan A
    PMID: 34030622 DOI: 10.2174/1871520621666210524164351
    BACKGROUND: According to the global cancer report of 2019, the burden of cancer will exceed more than 18 million becoming one of the major causes of global mortality rate. There is a pressing need to establish novel drug candidates for cancer treatment, though many anticancer agents are available in the market owing to their adverse effects. In recent years, quinazoline and its derivatives have been considered as a novel class of cancer chemotherapeutic agents that show promising activity against different tumors.

    OBJECTIVE: The objective of this study is to evaluate the anti-cancer potential of the novel class of quinazoline tethered acetamide derivatives against six different cancer cell lines.

    METHOD: A novel series of various substituted quinazolinone acetamides were synthesized through a feasible scheme. The synthetic scheme involves the conversion of benzoxazinone (from anthranilic acid and benzoyl chloride) intermediate to 3-amino quinazoline-4-one which is further converted to the final amide by tethering with the propionyl chloride employing Schotten-Baumann Reaction conditions. All the synthesized derivatives characterized by IR, 1HNMR and MASS spectral methods and anti-cancer activity evaluated by employing MTT assay for six cancer cell lines and one normal human cell line.

    RESULTS: All the synthesized compounds were screened for anti-cancer activity against six cancer cell lines, including A 549 (lung), DU 145 (prostate), HT 29 (colon), MCF-7 (breast), SiHA (cervical), B16F10 (mouse skin melanoma) and one normal human fibroblast cell lines. All the compounds displayed a decent cytotoxicity profile when compared with the standard drug, doxorubicin. Among the synthesized compounds (5a to 5n) tested, two compounds, 5f and 5g have demonstrated excellent cytotoxicity against SiHA and MCF-7 cancer cell lines.

    CONCLUSION: Comparatively, most of the compounds displayed decent cytotoxicity potential relative to the standard drug, doxorubicin. Further investigations are needed to establish the detailed mechanism of action of the developed novel quinazolinone acetamides.

    Matched MeSH terms: Acetamides; Amides
  11. Hussain K, Ismail Z, Sadikun A, Ibrahim P
    Nat Prod Res, 2009;23(3):238-49.
    PMID: 19235024 DOI: 10.1080/14786410801987597
    Ethanol and aqueous extracts of the different parts of Piper sarmentosum were analysed by HPLC for marker compounds to standardise these extracts. The standardised extracts were investigated for antioxidant activity (beta-carotene linoleate model and DPPH model), anti-TB activity (microplate tetrazolium assay), and estimation of total phenolic and amide contents. The extracts of the different parts exhibited different antioxidant activity, phenolic and amide contents (p < 0.01). The ethanol extracts exhibited better antioxidant activity as compared to the aqueous extracts. The leaf ethanol extract was further investigated for dose response relationship and its EC(50) was found to be 38 microg mL(-1). All the extracts have exhibited anti-TB activity with MIC/MBC 12.5 microg mL(-1). The leaf methanol extract was fractionated and the ethyl acetate fraction exhibited anti-TB activity with MIC/MBC 3.12 microg mL(-1) while MIC/MBC of isoniazid (INH) was found to be 0.5 microg mL(-1). A positive correlation was found between antioxidant activity and total polyphenols, flavonoids and amides, in the beta-carotene linoleate model (p = 0.05) and in the DPPH model (p = 0.01). The analytical method was found to have linearity >0.9922, coefficient of variance <5% and accuracy 95.5 +/- 5 to 96.9 +/- 5. This plant possesses promising antioxidant as well as anti-TB properties.
    Matched MeSH terms: Amides/chemistry*
  12. Suk Huei Chan, Azrina Azlan, Amin Ismail, Nurul Husna Shafie
    MyJurnal
    Capsaicin (N-vanillyl-8-methyl-6-(E)-none amide) is a unique and significant compound from group component of capsaicinoids. This component can only be found in the plants from the Capsicum genus. It is the primary source of pungency or spiciness of chilli pepper. Traditionally, capsaicin has been used to alleviate pain. Recently, some studies showed significant therapeutic effects of capsaicin in many diseases such as diabetes, hypertension, cancer and obesity. Determination of the most effective dosage used and underlying working mechanism of capsaicin are still in progress. Currently, capsaicin research, especially in drug interaction and encapsulation technologies, has not been reviewed. We aim to report current experimental evidence of capsaicin research focusing on its pharmacolog- ical properties, interaction with drugs and ways to improve the bioavailability of capsaicin. It is essential to provide a general orientation for further investigation that can discover more potency of capsaicin usage as a medicinal supplement to treat various diseases.
    Matched MeSH terms: Amides
  13. Kee CH, Ariffin A, Awang K, Takeya K, Morita H, Hussain SI, et al.
    Org Biomol Chem, 2010 Dec 21;8(24):5646-60.
    PMID: 20941451 DOI: 10.1039/c0ob00296h
    The syntheses of fourteen unusual o-carboxamido stilbenes by the Heck protocol revealed surprising complexity related to intriguing substituent effects with mechanistic implications. The unexpected cytotoxic and chemopreventive properties also seem to be substituent dependent. For example, although stilbene 15d (with a 4-methoxy substituent) showed cytotoxicity on HT29 colon cancer cells with an IC(50) of 4.9 μM, the 3,4-dimethoxy derivative (15c) is inactive. It is interesting to observe that the 3,5-dimethoxy derivative (15e) showed remarkable chemopreventive activity in WRL-68 fetal hepatocytes, surpassing the gold standard, resveratrol. The resveratrol concentration needed to be 5 times higher than that of 15e to produce comparable elevation of NQO1.
    Matched MeSH terms: Amides/chemistry*
  14. Mat Yusuf SNA, Ng YM, Ayub AD, Ngalim SH, Lim V
    Polymers (Basel), 2017 Jul 27;9(8).
    PMID: 30970988 DOI: 10.3390/polym9080311
    Discovery and use of biocompatible polymers offers great promise in the pharmaceutical field, particularly in drug delivery systems. Disulphide bonds, which commonly occur in peptides and proteins and have been used as drug-glutathione conjugates, are reductively cleaved in the colon. The intrinsic stability of a disulphide relative to thiol groups is determined by the redox potential of the environment. The objective of this study was to synthesise a trimesic acid-based disulphide cross-linked polymer that could potentially be used for targeted delivery to the colon. The monomer was synthesised by an amide coupling reaction between trimesic acid and (triphenylmethyl) thioethylamine using a two-step synthesis method. The s-trityl group was removed using a cocktail of trifluoroacetic acid and triethylsilane to expose the thiols in preparation for further polymerisation. The resulting polymers (P10, P15, P21, P25, and P51, generated using different molar ratios) were reduced after 1.5 h of reduction time. Scanning electron microscopy images of the polymers showed spherical, loose, or tight patterns depending on the molar ratio of polymerisation. These polymers also exhibited efficient dissolution under various gastrointestinal conditions. Of the five polymers tested, P10 and P15 appeared to be promising drug delivery vehicles for poorly soluble drugs, due to the hydrophobic nature of the polymers.
    Matched MeSH terms: Amides
  15. Rashidah, S., Jinap, S., Nazamid, S., Jamilah, B.
    MyJurnal
    This study was carried out to extract and compare the characteristic ability of globulins from cottonseed, alfalfa seed, pea seed, mung bean and French bean with cocoa seeds to produce cocoa-specific aroma precursors. The extracted globulins were compared through SDS PAGE, amino acid and oligopeptide profiles. A very low recovery was obtained during globulin extraction from different seeds ranging from 0.5% to 2.7%. Cottonseed produced the highest total protein (13.90 mg/g), followed by cocoa seed (11.91 mg/g), whereas alfalfa seed, mung bean, pea seed and French bean produced 7.86, 4.77, 4.59 and 3.89 mg/g respectively. Two distinctive bands of 51.1 and 33.0 kDa were observed for cocoa vicilin-class globulin (VCG) from SDS PAGE. More than three bands were shown for other seed globulins. Comparative HPLC analyses of the obtained peptide mixtures revealed different and complex patterns of predominantly hydrophobic peptides. A similar high content of amides (glutamic acids-glutamine, aspartic acid- asparagine and arginine) and low concentrations of lysine were observed in all seeds globulin.
    Matched MeSH terms: Amides
  16. Lopez JAV, Petitbois JG, Vairappan CS, Umezawa T, Matsuda F, Okino T
    Org. Lett., 2017 08 18;19(16):4231-4234.
    PMID: 28783344 DOI: 10.1021/acs.orglett.7b01869
    Two new chlorinated fatty acid amides, columbamides D (1) and E (2), along with apratoxins A and C and wewakazole, were isolated from the organic extract of a Moorea bouillonii sample from Sabah, Malaysia. Structure elucidation was accomplished by a combination of MS and NMR analyses. The total synthesis of all four stereoisomers of 1 was completed, and the absolute configuration was determined by chiral-phase HPLC and Marfey's analysis.
    Matched MeSH terms: Amides/isolation & purification*; Amides/chemistry
  17. Abdul Jalil RM, Yahya N, Sulaiman O, Wan Mat WR, Teo R, Izaham A, et al.
    Acta Anaesthesiol Taiwan, 2014 Jun;52(2):49-53.
    PMID: 25016507 DOI: 10.1016/j.aat.2014.05.007
    The basis for the transversus abdominis plane (TAP) block involves infiltration of a local anesthetic into the neurofascial plane between the internal oblique and the transversus abdominis muscles, causing a regional block that spreads between the L1 and T10 dermatomes. Thus, the TAP block is said to be suitable for lower abdominal surgery. This study was designed to compare the analgesic efficacy of two different concentrations of ropivacaine for TAP block in patients undergoing appendectomy.
    Matched MeSH terms: Amides/administration & dosage*
  18. Mageswaran R, Choy YC
    Med J Malaysia, 2010 Dec;65(4):300-3.
    PMID: 21901950
    A prospective randomized double-blind study was conducted which involved, 60 ASA 1-2, aged 18-65 years patients, who had elective or emergency orthopaedic surgeries of the upper limbs. They were randomly divided into two groups: Group I received 30 mls of 0.5% ropivacaine; and Group II received 0.5% levobupivacaine for infraclavicular brachial plexus block based on the coracoid approach. The onset time required for sensory block of all required dermatomes (C5-T1) and the onset time of motor block were documented. Based on the Visual Analogue Score, pain scores were recorded every 30 minutes during surgery and at the 6th hour. The mean onset time (SD) for sensory block with ropivacaine was 13.5 +/- 2.9 minutes compared to levobupivacaine at 11.1 +/- 2.6 minutes (p = 0.003). The onset time for motor block was 19.0 +/- 2.7 minutes in Group I compared to 17.1 +/- 2.6 minutes (p = 0.013) in Group II. Patients in both groups experienced both mild to moderate pain at the 6th hour. In conclusion, there were statistically significant differences in the onset-time for sensory and motor block. However, there was no statistically significant difference in terms of effectiveness of analgesia at the 6th hour. Although the clinical advantage of levobupivacine is not substantial, its safety profile becomes a major consideration in the choice of local anaesthetic for brachial plexus block where a large volume is required for an effective result.
    Matched MeSH terms: Amides/pharmacology*
  19. Salam MA, Hussein MA, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):58-61.
    PMID: 25705451 DOI: 10.1107/S2056989014026498
    The title compound, C9H11N3O2S, is a second monoclinic (P21/c) polymorph of the previously reported Cc form [Tan et al. (2008b ▶). Acta Cryst. E64, o2224]. The mol-ecule is non-planar, with the dihedral angle between the N3CS residue (r.m.s. deviation = 0.0816 Å) and the benzene ring being 21.36 (4)°. The conformation about the C=N bond [1.292 (2) Å] is E, the two N-bound H atoms are anti, and the inner hy-droxy O-bound and outer amide N-bound H atoms form intra-molecular hydrogen bonds to the imine N atom. Crucially, the H atom of the outer hy-droxy group is approximately syn to the H atom of the benzene C atom connecting the two C atoms bearing the hy-droxy substituents. This arrangement enables the formation of supra-molecular tubes aligned along [010] and sustained by N-H⋯O, O-H⋯S and N-H⋯S hydrogen bonds; the tubes pack with no specific inter-actions between them. While the mol-ecular structure in the Cc form is comparable, the H atom of the outer hy-droxy group is approximately anti, rather than syn. This different orientation leads to the formation a three-dimensional architecture based on N-H⋯O and O-H⋯S hydrogen bonds.
    Matched MeSH terms: Amides
  20. Kee CH, Ariffin A, Awang K, Noorbatcha I, Takeya K, Morita H, et al.
    Molecules, 2011 Aug 25;16(9):7267-87.
    PMID: 21869754 DOI: 10.3390/molecules16097267
    The n-butyramido, isobutyramido, benzamido, and furancarboxamido functions profoundly modulate the electronics of the stilbene olefinic and NH groups and the corresponding radical cations in ways that influence the efficiency of the cyclization due presumably to conformational and stereoelectronic factors. For example, isobutyramido- stilbene undergoes FeCl(3) promoted cyclization to produce only indoline, while n-butyramidostilbene, under the same conditions, produces both indoline and bisindoline.
    Matched MeSH terms: Amides/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links