Displaying publications 1 - 20 of 523 in total

Abstract:
Sort:
  1. van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, et al.
    Proc Natl Acad Sci U S A, 2018 May 15;115(20):E4700-E4709.
    PMID: 29717040 DOI: 10.1073/pnas.1721395115
    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
    Matched MeSH terms: Amino Acid Sequence
  2. Zhang YZ, Xiong CL, Lin XD, Zhou DJ, Jiang RJ, Xiao QY, et al.
    Infect Genet Evol, 2009 Jan;9(1):87-96.
    PMID: 19041424 DOI: 10.1016/j.meegid.2008.10.014
    There have been three major rabies epidemics in China since the 1950s. To gain more insights into the molecular epidemiology of rabies viruses (RVs) for the third (the current) epidemic, we isolated RV from dogs and humans in major endemic areas, and characterized these isolates genetically by sequencing the entire glycoprotein (G) gene and the G-L non-coding region. These sequences were also compared phylogenetically with RVs isolated in China during previous epidemics and those around the world. Comparison of the entire G genes among the Chinese isolates revealed up to 21.8% divergence at the nucleotide level and 17.8% at the amino acid level. The available Chinese isolates could be divided into two distinct clades, each of which could be further divided into six lineages. Viruses in clade I include most of the Chinese viruses as well as viruses from southeast Asian countries including Indonesia, Malaysia, the Philippines, Thailand, and Vietnam. The viruses in the other clade were found infrequently in China, but are closely related to viruses distributed worldwide among terrestrial animals. Interestingly, most of the viruses isolated during the past 10 years belong to lineage A viruses within clade I whereas most of the viruses isolated before 1996 belong to other lineages within clades I and II. Our results indicated that lineages A viruses have been predominant during the past 10 years and thus are largely responsible for the third and the current epidemic in China. Our results also suggested that the Chinese RV isolates in clade I share a common recent ancestor with those circulating in southeast Asia.
    Matched MeSH terms: Amino Acid Sequence
  3. Zhang T, Wu Q, Zhang Z
    Curr Biol, 2020 04 06;30(7):1346-1351.e2.
    PMID: 32197085 DOI: 10.1016/j.cub.2020.03.022
    An outbreak of coronavirus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) began in the city of Wuhan in China and has widely spread worldwide. Currently, it is vital to explore potential intermediate hosts of SARS-CoV-2 to control COVID-19 spread. Therefore, we reinvestigated published data from pangolin lung samples from which SARS-CoV-like CoVs were detected by Liu et al. [1]. We found genomic and evolutionary evidence of the occurrence of a SARS-CoV-2-like CoV (named Pangolin-CoV) in dead Malayan pangolins. Pangolin-CoV is 91.02% and 90.55% identical to SARS-CoV-2 and BatCoV RaTG13, respectively, at the whole-genome level. Aside from RaTG13, Pangolin-CoV is the most closely related CoV to SARS-CoV-2. The S1 protein of Pangolin-CoV is much more closely related to SARS-CoV-2 than to RaTG13. Five key amino acid residues involved in the interaction with human ACE2 are completely consistent between Pangolin-CoV and SARS-CoV-2, but four amino acid mutations are present in RaTG13. Both Pangolin-CoV and RaTG13 lost the putative furin recognition sequence motif at S1/S2 cleavage site that can be observed in the SARS-CoV-2. Conclusively, this study suggests that pangolin species are a natural reservoir of SARS-CoV-2-like CoVs.
    Matched MeSH terms: Amino Acid Sequence
  4. Zhang S, Lee G, Davies JW, Hull R
    Arch Virol, 1997;142(9):1873-9.
    PMID: 9672645
    The variation in the sequence of the coat protein genes of four isolates of rice tungro spherical virus from different countries, Malaysia, Thailand, India and Bangladesh, was compared with an isolate from the Philippines. The evidence from RT-PCR, Southern blot hybridization and sequences of the coat protein genes indicated that the isolates appeared to fall into two groups. One comprised the Philippine and Malaysian isolates (about 95% sequence similarity) and the other the Bangladeshi and Indian isolates, the sequences of which differed by about 15% from that of the Philippine isolate. The Thai isolate seemed to be a mixture of these two subgroups.
    Matched MeSH terms: Amino Acid Sequence
  5. Zhang S, Davies JW, Hull R
    Virus Genes, 1997;15(1):61-4.
    PMID: 9354271
    Coat protein genes CP1, CP2 and CP3 of an isolate (MaP1) of rice tungro spherical virus (RTSV) from Malaysia were isolated, cloned and sequenced. Comparative analysis indicated that MaP1 isolate is closely related to the Philippine isolate.
    Matched MeSH terms: Amino Acid Sequence
  6. Zemla A, Kostova T, Gorchakov R, Volkova E, Beasley DW, Cardosa J, et al.
    Bioinform Biol Insights, 2014 Jan 8;8:1-16.
    PMID: 24453480 DOI: 10.4137/BBI.S13076
    A computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs. non-functional) of 37 amino acid substitutions on the NS5 polymerase (RdRp) of dengue virus type 2 (DENV-2), 36 of which are not observed in any publicly available DENV-2 sequence. 32 novel mutants with single amino acid substitutions in the RdRp were generated using a DENV-2 reverse genetics system. In 81% (26 of 32) of predictions tested, GeneSV correctly predicted viability of introduced mutations. In 4 of 5 (80%) mutants with double amino acid substitutions proximal in structure to one another GeneSV was also correct in its predictions. Predictive capabilities of the developed system were illustrated on dengue RNA virus, but described in the manuscript a general approach to characterize real or theoretically possible variations in genomic and protein sequences can be applied to any organism.
    Matched MeSH terms: Amino Acid Sequence
  7. Zangeneh FZ, Shoushtari MS, Shojaee S, Aboutorabi E
    Int J Reprod Biomed, 2020 Mar;18(3):165-174.
    PMID: 32309765 DOI: 10.18502/ijrm.v18i3.6712
    Background: Polycystic ovary syndrome (PCOS) is a multifactorial and heterogeneous disease that has a potent inheritable component based on familial clustering. Despite many studies in the genetic field of PCOS, the genes that are involved in the causes of this syndrome have not been thoroughly investigated.

    Objective: The purpose of this study was to establish the occurrence of the Trp64Arg polymorphism of beta3 adrenergic receptor in non-obese women with PCOS.

    Materials and Methods: This cross-sectional study was performed on 100 women with PCOS and normal women as the control group in Imam Khomeini Hospital of Tehran in 2016-2017. Peripheral blood sample (2 cc) was obtained from two groups for genomic DNA based on the gene bank. Polymorphisms were genotyped by of using ADRB3 Trp64Arg. Then the DNA was extracted by genomic kiagen kit. The primer was analyzed for PCR based on gene bank by using Primer3 software and then confirmed by primer Blast tool at NCBI site to conformity to the beta-3 adrenergic receptor gene. The protein changes were assessment by the Clastal W software.

    Results: The sequence analysis presented in NCBI, transcript variant 1, with the code NM_000025.2, shows changes in the amino acid sequence of exon 1 in women with PCOS. Polymorphism in the codon 64 encoding the amino acid tryptophan (W) occurred in the nucleotide c.T190C, which changed the nucleotide T to C and then the amino acid sequence of the tryptophan was altered to arginine pW64R.

    Conclusion: T-C polymorphism is evident in the codon 64 of the adrenergic β3 receptor in patients with PCOS. Therefore, Beta3 adrenergic receptor gene polymorphism (Thr164Ile) associates with this syndrome in nonobese women.

    Matched MeSH terms: Amino Acid Sequence
  8. Zainal Z, Sajari R, Ismail I
    J. Biochem. Mol. Biol. Biophys., 2002 Dec;6(6):415-9.
    PMID: 14972797
    Ornithine decarboxylase (ODC) is an enzyme of one of the two pathways of putrescine biosynthesis in plants. The genes encoding ODC have previously been cloned from Datura stramonium and human. Using differential screening, we isolated ODC cDNA clone from a cDNA library of ripening Capsicum annuum fruit. The cDNA clone designated CUKM10 contains an insert of 1523 bp. The longest open reading frame potentially encodes a peptide of 345 amino acids with an estimated molecular mass of 47 kDa and exhibit striking similarity to other ODCs. Expression analysis showed that the capODC hybridised to a single transcript with a size of 1.7 kb. The capODC transcript was first observed in early ripening and increased steadily until it reached fully ripening stage. From the observation it is suggested that capODC is developmentally regulated especially during later stage of ripening.
    Matched MeSH terms: Amino Acid Sequence
  9. Zainal Abidin MH, Abd Halim KB, Huyop F, Tengku Abdul Hamid TH, Abdul Wahab R, Abdul Hamid AA
    J Mol Graph Model, 2019 07;90:219-225.
    PMID: 31103914 DOI: 10.1016/j.jmgm.2019.05.003
    Dehalogenase E (DehE) is a non-stereospecific enzyme produced by the soil bacterium, Rhizobium sp. RC1. Till now, the catalytic mechanism of DehE remains unclear although several literature concerning its structure and function are available. Since DehE is non-stereospecific, the enzyme was hypothesized to follow a 'direct attack mechanism' for the catalytic breakdown of a haloacid. For a molecular insight, the DehE modelled structure was docked in silico with the substrate 2-chloropropionic acid (2CP) in the active site. The ideal position of DehE residues that allowed a direct attack mechanism was then assessed via molecular dynamics (MD) simulation. It was revealed that the essential catalytic water was hydrogen bonded to the 'water-bearer', Asn114, at a relatively constant distance of ∼2.0 Å after 50 ns. The same water molecule was also closely sited to the catalytic Asp189 at an average distance of ∼2.0 Å, signifying the imperative role of the latter to initiate proton abstraction for water activation. This reaction was crucial to promote a direct attack on the α-carbon of 2CP to eject the halide ion. The water molecule was oriented favourably towards the α-carbon of 2CP at an angle of ∼75°, mirrored by the formation of stable enzyme-substrate orientations throughout the simulation. The data therefore substantiated that the degradation of a haloacid by DehE followed a 'direct attack mechanism'. Hence, this study offers valuable information into future advancements in the engineering of haloacid dehalogenases with improved activity and selectivity, as well as functionality in solvents other than water.
    Matched MeSH terms: Amino Acid Sequence
  10. Yusuf M, Konc J, Sy Bing C, Trykowska Konc J, Ahmad Khairudin NB, Janezic D, et al.
    J Chem Inf Model, 2013 Sep 23;53(9):2423-36.
    PMID: 23980878 DOI: 10.1021/ci400421e
    ProBiS is a new method to identify the binding site of protein through local structural alignment against the nonredundant Protein Data Bank (PDB), which may result in unique findings compared to the energy-based, geometry-based, and sequence-based predictors. In this work, binding sites of Hemagglutinin (HA), which is an important target for drugs and vaccines in influenza treatment, have been revisited by ProBiS. For the first time, the identification of conserved binding sites by local structural alignment across all subtypes and strains of HA available in PDB is presented. ProBiS finds three distinctive conserved sites on HA's structure (named Site 1, Site 2, and Site 3). Compared to other predictors, ProBiS is the only one that accurately defines the receptor binding site (Site 1). Apart from that, Site 2, which is located slightly above the TBHQ binding site, is proposed as a potential novel conserved target for membrane fusion inhibitor. Lastly, Site 3, located around Helix A at the stem domain and recently targeted by cross-reactive antibodies, is predicted to be conserved in the latest H7N9 China 2013 strain as well. The further exploration of these three sites provides valuable insight in optimizing the influenza drug and vaccine development.
    Matched MeSH terms: Amino Acid Sequence
  11. Yusoff K, Tan WS, Lau CH, Ng BK, Ibrahim AL
    Avian Pathol, 1996 Dec;25(4):837-44.
    PMID: 18645902
    The nucleotide sequence of the haemagglutinin-neuraminidase (HN) glycoprotein gene of Newcastle disease virus (NDV) variant strain V4(UPM) was determined by direct genomic RNA sequencing and confirmed by cycle sequencing. The gene comprises 1996 nucleotides encoding a 615 amino acid protein of size 67.4 kDa. The nucleotide and amino acid sequences of this strain were compared with those of the parent strain V4(QUE). There are 16 nucleotide substitutions on V4(UPM), eight of which are silent mutations and another eliminated a potential Asn-linked glycosylation site in V4(UPM). In addition, an Arg (403) residue was shown to be absent in the variant strain. This deletion is thought to be significant because of its location in a highly conserved region of the HN protein.
    Matched MeSH terms: Amino Acid Sequence
  12. Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM
    Cell Stress Chaperones, 2019 Mar;24(2):351-368.
    PMID: 30649671 DOI: 10.1007/s12192-019-00969-1
    Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.
    Matched MeSH terms: Amino Acid Sequence
  13. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: Amino Acid Sequence
  14. Yunus NM, Johan MF, Ali Nagi Al-Jamal H, Husin A, Hussein AR, Hassan R
    Asian Pac J Cancer Prev, 2015;16(12):4869-72.
    PMID: 26163606
    BACKGROUND: Mutations of the FMS-like tyrosine kinase-3 (FLT3) receptor gene may promote proliferation via activation of multiple signaling pathways. FLT3-internal tandem duplication (FLT3-ITD) is the most common gene alteration found in patients diagnosed with acute myeloid leukaemia (AML) and has been associated with poor prognosis.

    MATERIALS AND METHODS: We performed mutational analysis of exons 14-15 and 20 of the FLT3 gene in 54 AML patients using PCR-CSGE (conformational sensitive gel electrophoresis) followed by sequencing analysis to characterise FLT3 mutations in adult patients diagnosed with AML at Hospital USM, Kelantan, Northeast Peninsular Malaysia.

    RESULTS: FLT3 exon 14-15 mutations were identified in 7 of 54 patients (13%) whereas no mutation was found in FLT3 exon 20. Six ITDs and one non-ITD mutation were found in exon 14 of the juxtamembrane (JM) domain of FLT3. FLT3-ITD mutations were associated with a significantly higher blast percentage (p-value=0.008) and white blood cell count (p-value=0.023) but there was no significant difference in median overall survival time for FLT3-ITD+/FLT3-ITD- within 2 years (p-value=0.374).

    CONCLUSIONS: The incidence of FLT3-ITD in AML patients in this particular region of Malaysia is low compared to the Western world and has a significant association with WBC and blast percentage.

    Matched MeSH terms: Amino Acid Sequence
  15. Yung-Hung RL, Ismail A, Lim TS, Choong YS
    Biochem Biophys Res Commun, 2011 Nov 18;415(2):229-34.
    PMID: 21982766 DOI: 10.1016/j.bbrc.2011.09.116
    Shigella flexneri serotype 2a is a major public health concern in the developing and under-developed countries which contributes to shigellosis endemic and mortality. Thus, there is an urgent need for a rapid diagnostic test for effective therapy and disease management. Previous study showed that a ∼35 kDa antigenic protein from S. flexneri is a potential biomarker. We therefore modelled the three-dimensional structure of the antigen to probe its functionality which could aid in the development of an antigen-based diagnostic. Results showed that the antigen is a transmembrane protein consists of OmpA and OmpA-like domains. The OmpA domain is a beta-barrel embedded in the outer membrane with four surface-exposed extracellular loops. The OmpA-like domain is linked to the OmpA domain with a 17 amino acids linker and located in the periplasmic. Docking of peptidoglycan into the groove of OmpA-like domain might help in catalyzing the bacterial cell wall formation. Both domains are expected to be involved in the virulence, structural stability, pathogenesis and survival of Shigella thus made the 35 kDa protein a suitable shigellosis diagnostic biomarker. This structural elucidation will also enable a better identification of the epitope regions for the development of specific binders to the 35 kDa antigen.
    Matched MeSH terms: Amino Acid Sequence
  16. Yotmanee P, Rungrotmongkol T, Wichapong K, Choi SB, Wahab HA, Kungwan N, et al.
    J Mol Graph Model, 2015 Jul;60:24-33.
    PMID: 26086900 DOI: 10.1016/j.jmgm.2015.05.008
    The pathogenic dengue virus (DV) is a growing global threat, particularly in South East Asia, for which there is no specific treatment available. The virus possesses a two-component (NS2B/NS3) serine protease that cleaves the viral precursor proteins. Here, we performed molecular dynamics simulations of the NS2B/NS3 protease complexes with six peptide substrates (capsid, intNS3, 2A/2B, 4B/5, 3/4A and 2B/3 containing the proteolytic site between P(1) and P(1)' subsites) of DV type 2 to compare the specificity of the protein-substrate binding recognition. Although all substrates were in the active conformation for cleavage reaction by NS2B/NS3 protease, their binding strength was somewhat different. The simulated results of intermolecular hydrogen bonds and decomposition energies suggested that among the ten substrate residues (P(5)-P(5)') the P(1) and P(2) subsites play a major role in the binding with the focused protease. The arginine residue at these two subsites was found to be specific preferential binding at the active site with a stabilization energy of intNS3>2A/2B>4B/5>3/4A>2B/3 in a relative correspondence with previous experimentally derived values.
    Matched MeSH terms: Amino Acid Sequence
  17. Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL
    Mol Biol Rep, 2013 Jan;40(1):147-58.
    PMID: 23065213 DOI: 10.1007/s11033-012-2043-8
    Chitinases are glycosyl hydrolases that cleave the β-1,4-glycosidic linkages between N-acetylglucosamine residues in chitin which is a major component of fungal cell wall. Plant chitinases hydrolyze fungal chitin to chitin oligosaccharides that serve as elicitors of plant defense system against fungal pathogens. However, plants synthesize many chitinase isozymes and some of them are not pathogenesis-related. In this study, three full-length cDNA sequences encoding a putative chitinase (EgChit3-1) and two chitinase-like proteins (EgChit1-1 and EgChit5-1) have been cloned from oil palm (Elaeis guineensis) by polymerase chain reaction (PCR). The abundance of these transcripts in the roots and leaves of oil palm seedlings treated with Ganoderma boninense (a fungal pathogen) or Trichoderma harzianum (an avirulent symbiont), and a combination of both fungi at 3, 6 and 12 weeks post infection were profiled by real time quantitative reverse-transcription (qRT)-PCR. Our findings showed that the gene expression of EgChit3-1 increased significantly in the roots of oil palm seedlings treated with either G. boninense or T. harzianum and a combination of both; whereas the gene expression of EgChit1-1 in the treated roots of oil palm seedlings was not significantly higher compared to those of the untreated oil palm roots. The gene expression of EgChit5-1 was only higher in the roots of oil palm seedlings treated with T. harzianum compared to those of the untreated oil palm roots. In addition, the gene expression of EgChit1-1 and EgChit3-1 showed a significantly higher gene expression in the leaf samples of oil palm seedlings treated with either G. boninense or T. harzianum.
    Matched MeSH terms: Amino Acid Sequence
  18. Yee LN, Chuah JA, Chong ML, Phang LY, Raha AR, Sudesh K, et al.
    Microbiol Res, 2012 Oct 12;167(9):550-7.
    PMID: 22281521 DOI: 10.1016/j.micres.2011.12.006
    In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.
    Matched MeSH terms: Amino Acid Sequence
  19. Yeang HY, Ward MA, Zamri AS, Dennis MS, Light DR
    Allergy, 1998 May;53(5):513-9.
    PMID: 9636811
    Separate studies have reported spina bifida patients to be especially allergic to proteins of 27 and 23 kDa found in the serum of centrifuged natural rubber latex. An insoluble latex protein located on the surface of small rubber particles, Hev b 3, has similarly been found to be allergenic to spina bifida patients. In this study, internal amino acid sequences of Hev b 3 showed similarity to the published sequences for the 27- and 23-kDa latex proteins. The latter allergens are hence identified as Hev b 3. Determination of the molecular weight of Hev b 3 revealed various species of 22-23 kDa. The consistent gaps of about 266 Da observed between various forms of the intact protein suggest that the protein undergoes post-translational modification. To determine whether Hev b 3 also occurs in a soluble form in the latex serum, its presence in molecular-filtered serum was checked by ELISA and Western blot. The results showed Hev b 3 to be largely absent in the C-serum from fresh latex. The protein is therefore insoluble in its native state. However, a small amount of the solubilized protein was detected in ammonia-stabilized latex (commonly used in the manufacture of latex products).
    Matched MeSH terms: Amino Acid Sequence
  20. Yap NJ, Vythilingam I, Hoh BP, Goh XT, Muslim A, Ngui R, et al.
    Parasit Vectors, 2018 Dec 05;11(1):626.
    PMID: 30518419 DOI: 10.1186/s13071-018-3234-5
    BACKGROUND: The merozoite surface protein-1 (MSP-1) gene encodes for a leading malaria vaccine candidate antigen. However, its extensive polymorphic nature represents a major obstacle to the development of a protective vaccine. Previously, a pilot study was carried out to explore the sequence variation of the C-terminal 42 kDa fragment within P. knowlesi MSP-1 gene (PkMSP-142) based on 12 clinical samples; however, further study on an adequate sample size is vital in estimating the genetic diversity of the parasite population.

    METHODS: In the present study, we included a larger sample size of P. knowlesi (83 samples) covering eight states of Malaysia to determine the genetic polymorphism, natural selection and haplotype groups of the gene fragment coding PkMSP-142. The region flanking PkMSP-142 was amplified by PCR and directly sequenced. Genetic diversity, haplotype diversity, population genetic differentiation and natural selection were determined in order to study the polymorphic characteristic of PkMSP-142.

    RESULTS: A high level of genetic diversity (Hd = 0.970 ± 0.007; л = 0.01079 ± 0.00033) was observed among the 83 P. knowlesi samples, confirming the extensive genetic polymorphism exhibited among the P. knowlesi population found in Malaysia. A total of 18 distinct haplotypes with 17 amino acid changes were identified, whereby 15 were new haplotypes. High population differentiation values were observed within samples from Peninsular Malaysia and Malaysian Borneo. The 42 kDa fragments of P. knowlesi from Malaysian Borneo were found to be acting on balancing selection whilst purifying selection was suggested to act on isolates from Peninsular Malaysia. The separation of PkMSP-142 haplotypes into two main groups based on geographical separation has further supported the existence of two distinct P. knowlesi lineages.

    CONCLUSIONS: A high level of genetic diversity was observed among PkMSP-142 in Malaysia, whereby most of the polymorphisms were found within the 33 kDa region. Taken together, these data will be useful in order to understand the nature of P. knowlesi population in Malaysia as well as the design and development of a MSP-142 based knowlesi malaria vaccine.

    Matched MeSH terms: Amino Acid Sequence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links