Displaying publications 1 - 20 of 330 in total

Abstract:
Sort:
  1. Soleimani AF, Kasim A, Alimon AR, Meimandipour A, Zulkifli I
    J Anim Physiol Anim Nutr (Berl), 2010 Oct;94(5):641-7.
    PMID: 20050954 DOI: 10.1111/j.1439-0396.2009.00951.x
    High environmental temperature has detrimental effects on the gastrointestinal tract of poultry. An experiment was conducted to determine the effect of acute heat stress on endogenous amino acid (EAA) flow in broiler chickens. A total of 90, day-old broiler chicks were housed in battery cages in an environmentally controlled chamber. Chicks were fed a nitrogen-free diet on day 42 following either no heat exposure (no-heat) or 2 weeks exposure to 35 ± 1 °C for 3 h from days 28 to 42 (2-week heat) or 1 week exposure to 35 ± 1 °C for 3 h from days 35 to 42 (1 week heat). The most abundant amino acid in the ileal flow was glutamic acid, followed by aspartic acid, serine and threonine in non-heat stressed group. The EAA flow in 1-week heat and 2-week heat birds were significantly (p < 0.05) higher than those under no heat exposure (14682, 11161 and 9597 mg/kg of dry matter intake respectively). Moreover, the EAA flow of 2-week heat group was less than 1-week heat group by approximately 36%. These observations suggest that the effect of heat stress on EAA flow is mostly quantitative; however, heat stress may also alter the content of EAA flow qualitatively.
    Matched MeSH terms: Amino Acids/metabolism*
  2. Huang Z, Aweya JJ, Zhu C, Tran NT, Hong Y, Li S, et al.
    Front Immunol, 2020;11:574721.
    PMID: 33224140 DOI: 10.3389/fimmu.2020.574721
    Aquaculture production of crustaceans (mainly shrimp and crabs) has expanded globally, but disease outbreaks and pathogenic infections have hampered production in the last two decades. As invertebrates, crustaceans lack an adaptive immune system and mainly defend and protect themselves using their innate immune system. The immune system derives energy and metabolites from nutrients, with amino acids constituting one such source. A growing number of studies have shown that amino acids and their metabolites are involved in the activation, synthesis, proliferation, and differentiation of immune cells, as well as in the activation of immune related signaling pathways, reduction of inflammatory response and regulation of oxidative stress. Key enzymes in amino acid metabolism have also been implicated in the regulation of the immune system. Here, we reviewed the role played by amino acids and their metabolites in immune-modulation in crustaceans. Information is inferred from mammals and fish where none exists for crustaceans. Research themes are identified and the relevant research gaps highlighted for further studies.
    Matched MeSH terms: Amino Acids/immunology*; Amino Acids/metabolism
  3. Chen BC, Ngu LH, Zabedah MY
    Malays J Pathol, 2010 Dec;32(2):87-95.
    PMID: 21329179 MyJurnal
    Argininosuccinic aciduria is an inborn error of the urea cycle caused by deficiency of argininosuccinate lyase (ASL). ASL-deficient patients present with progressive intoxication due to accumulation of ammonia in the body. Early diagnosis and treatment of hyperammonemia are necessary to improve survival and prevent long-term handicap. Two clinical phenotypes have been recognized--neonatal acute and milder late-onset form. We investigated patients with hyperammonemia by a stepwise approach in which quantitative amino acids analysis was the core diagnostic procedure. Here, we describe the clinical phenotypes and biochemical characteristics in diagnosing this group of patients. We have identified 13 patients with argininosuccinic aciduria from 2003 till 2009. Ten patients who presented with acute neonatal hyperammonemic encephalopathy had markedly elevated blood ammonia (> 430 micromol/L) within the first few days of life. Three patients with late-onset disease had more subtle clinical presentations and they developed hyperammonemia only during the acute catabolic state at two to twelve months of age. Their blood ammonia was mild to moderately elevated (> 75-265 micromol/L). The diagnosis was confirmed by detection of excessive levels of argininosuccinate in the urine and/or plasma. They also have moderately increased levels of citrulline and, low levels of arginine and ornithine in their plasma. Two patients succumbed to the disease. To date, eleven patients remained well on a dietary protein restriction, oral ammonia scavenging drugs and arginine supplementation. The majority of them have a reasonable good neurological outcome.
    Matched MeSH terms: Amino Acids/analysis
  4. Batool T, Makky EA, Jalal M, Yusoff MM
    Appl Biochem Biotechnol, 2016 Mar;178(5):900-23.
    PMID: 26547852 DOI: 10.1007/s12010-015-1917-3
    L-asparaginase (LA) catalyzes the degradation of asparagine, an essential amino acid for leukemic cells, into ammonia and aspartate. Owing to its ability to inhibit protein biosynthesis in lymphoblasts, LA is used to treat acute lymphoblastic leukemia (ALL). Different isozymes of this enzyme have been isolated from a wide range of organisms, including plants and terrestrial and marine microorganisms. Pieces of information about the three-dimensional structure of L-asparaginase from Escherichia coli and Erwinia sp. have identified residues that are essential for catalytic activity. This review catalogues the major sources of L-asparaginase, the methods of its production through the solid state (SSF) and submerged (SmF) fermentation, purification, and characterization as well as its biological roles. In the same breath, this article explores both the past and present applications of this important enzyme and discusses its future prospects.
    Matched MeSH terms: Amino Acids, Essential
  5. Ab Aziz NA, Salim N, Zarei M, Saari N, Yusoff FM
    Prep Biochem Biotechnol, 2021;51(1):44-53.
    PMID: 32701046 DOI: 10.1080/10826068.2020.1789991
    The study was conducted to determine anti-tyrosinase and antioxidant activities of the extracted collagen hydrolysate (CH) derived from Malaysian jellyfish, Rhopilema hispidum. Collagen was extracted using 1:1 (w:v) 0.1 M NaOH solution at temperature 25 °C for 48 hr followed by treatment of 1:2 (w:v) distilled water for another 24 hr and freeze-dried. The extracted collagen was hydrolyzed using papain at optimum temperature, pH and enzyme/substrate ratio [E/S] of 60 °C, 7.0 and 1:50, respectively. CH was found to exhibit tyrosinase inhibitory activity, DPPH radical scavenging and metal ion-chelating assays up to 64, 28, and 83%, respectively, after 8 hr of hydrolysis process. The molecular weight of CH was found <10 kDa consisting of mainly Gly (19.219%), Glu (10.428%), and Arg (8.848%). The UV-visible spectrum analysis showed a major and minor peak at 218 and 276 nm, accordingly. The FTIR spectroscopy confirmed the amide groups in CH. The SEM images demonstrated spongy and porous structure of CH. In the cytotoxicity study, CH has no cytotoxicity against mouse embryonic 3T3 fibroblast cell line with IC50 value >500 µg/ml. Results revealed that the CH generated from this study has a potential to be developed as active ingredient in cosmeceutical application.
    Matched MeSH terms: Amino Acids
  6. Idris ZHC, Abidin AAZ, Subki A, Yusof ZNB
    Trop Life Sci Res, 2018 Mar;29(1):71-85.
    PMID: 29644016 MyJurnal DOI: 10.21315/tlsr2018.29.1.5
    Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.
    Matched MeSH terms: Amino Acids
  7. Alasil SM, Omar R, Ismail S, Yusof MY
    Int J Microbiol, 2014;2014:649420.
    PMID: 24790603 DOI: 10.1155/2014/649420
    The effectiveness of many antimicrobial agents is currently decreasing; therefore, it is important to search for alternative therapeutics. Our study was carried out to assess the in vitro antibiofilm activity using microtiter plate assay, to characterize the bioactive compounds using Ultra Performance Liquid Chromatography-Diode Array Detection and Liquid Chromatography-Mass Spectrometry and to test the oral acute toxicity on Sprague Dawley rats of extract derived from a novel bacterial species of Paenibacillus strain 139SI. Our results indicate that the crude extract and its three identified compounds exhibit strong antibiofilm activity against a broad range of clinically important pathogens. Three potential compounds were identified including an amino acid antibiotic C8H20N3O4P (MW 253.237), phospholipase A2 inhibitor C21H36O5 (MW 368.512), and an antibacterial agent C14H11N3O2 (MW 253.260). The acute toxicity test indicates that the mortality rate among all rats was low and that the biochemical parameters, hematological profile, and histopathology examination of liver and kidneys showed no significant differences between experimental groups (P > 0.05). Overall, our findings suggest that the extract and its purified compounds derived from novel Paenibacillus sp. are nontoxic exhibiting strong antibiofilm activity against Gram-positive and Gram-negative pathogens that can be useful towards new therapeutic management of biofilm-associated infections.
    Matched MeSH terms: Amino Acids
  8. Suhaimi FW, Yusoff NH, Dewa A, Yusof AP
    Acta Neurol Belg, 2010 Mar;110(1):57-64.
    PMID: 20514927
    Obesity is intimately associated with hypertension; increases in blood pressure are closely related to the magnitude of weight gain. The present study aims to determine whether the excitatory amino acid input to rostral ventrolateral medulla (RVLM) contributes to elevated blood pressure in rats with diet-induced obesity. Male Sprague-Dawley rats weighing 280 to 300 grams were fed with a low-fat diet (10% kcal from fat) or moderately high-fat diet (32% kcal from fat) for 16 weeks. At week 16, rats on the moderate high-fat diet were segregated into obesity-prone and obesity-resistant rats based on body weight distribution. Baseline mean arterial pressure (MAP) was significantly higher in obesity-prone rats as compared to obesity-resistant and rats on a low-fat diet. Bilateral injection of kynurenic acid (KYN) (40 nM) into the RVLM of the obesity-prone rats reduced MAP to levels significantly different from those observed in rats on a low-fat diet and obesity-resistant rats (no change in MAP). At a lower concentration (4 nM), KYN injection did not produce any change in MAP in any group. The results obtained suggest that excitatory amino acid input to the RVLM does contribute to the development of hypertension in rats with diet-induced obesity.
    Matched MeSH terms: Excitatory Amino Acids/metabolism*
  9. Pirian K, Jeliani ZZ, Arman M, Sohrabipour J, Yousefzadi M
    Trop Life Sci Res, 2020 Apr;31(1):1-17.
    PMID: 32963708 DOI: 10.21315/tlsr2020.31.1.1
    Nowadays the exploration and utilisation of food and feed from marine origin is becoming more important with the increase of human population. Macroalgae are rich in nutritious compounds, which can directly be used in human and animal feed industries. The current study presents the screening of chemical components of eight macroalgae species, Sargassum boveanum, Sirophysalis trinodis, Hypnea caroides, Palisda perforata, Galaxaura rugosa, Caulerpa racemose, Caulerpa sertularioides and Bryopsis corticolans from the Persian Gulf. The results revealed that the eight studied algal species possess high protein (14.46% to 38.20%), lipid (1.27% to 9.13%) and ash (15.50% to 49.14%) contents. The fatty acids and amino acids profile showed the presence of essential fatty acids and amino acids with high nutritional value. Phaeophyta species, S. boveanum and S. trinodis, showed the highest value of ash content and polyunsaturated fatty acids while Chlorophyta species, C. racemose, C. sertularioides and B. corticolans, showed the highest level of lipid and protein contents. Rhodophyta species, G. rugosa and P. perforata, showed the highest essential amino acid content. In conclusion, this study demonstrates the potential of the studied marine species as a nutritional source for human and animal uses.
    Matched MeSH terms: Amino Acids; Amino Acids, Essential
  10. Seyedi SS, Tan SG, Namasivayam P, Yong CSY
    Sains Malaysiana, 2016;45:717-727.
    The Hibiscus sabdariffa var. UMKL (Roselle) investigated here may potentially be used as an alternative fibre source. To
    the best of our knowledge, there was no study focusing on the genetics underlying the cellulose biosynthesis machinery
    in Roselle thus far. This paper presents the results of the first isolation of the cellulose synthase gene, HsCesA1 from this
    plant, which is fundamental for working towards understanding the functions of CesA genes in the cellulose biosynthesis
    of Roselle. A full-length HsCesA1 cDNA of 3528 bp in length (accession no: KJ608192) encoding a polypeptide of 974
    amino acid was isolated. The full-length HsCesA1 gene of 5489 bp length (accession no: KJ661223) with 11-introns
    and a promoter region of 737 bp was further isolated. Important and conserved characteristics of a CesA protein were
    identified in the HsCesA1 deduced amino acid sequence, which strengthened the prediction that the isolated gene being
    a cellulose synthase belonging to the processive class of the 2-glycosyltransferase family 2A. Relative gene expression
    analysis by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) on young leaf and stem tissues
    found that HsCesA1 had similar levels of gene expression in both tissues. Phylogenetic and Blast analyses also supported
    the prediction that the isolated HsCesA1 may play roles in the cell wall depositions in both leaf and stem tissues.
    Matched MeSH terms: Amino Acids
  11. Chua KWJ, Liew JH, Wilkinson CL, Ahmad AB, Tan HH, Yeo DCJ
    J Anim Ecol, 2021 06;90(6):1433-1443.
    PMID: 33666230 DOI: 10.1111/1365-2656.13462
    Studies have shown that food chain length is governed by interactions between species richness, ecosystem size and resource availability. While redundant trophic links may buffer impacts of species loss on food chain length, higher extinction risks associated with predators may result in bottom-heavy food webs with shorter food chains. The lack of consensus in earlier empirical studies relating species richness and food chain length reflects the need to account robustly for the factors described above. In response to this, we conducted an empirical study to elucidate impacts of land-use change on food chain length in tropical forest streams of Southeast Asia. Despite species losses associated with forest loss at our study areas, results from amino acid isotope analyses showed that food chain length was not linked to land use, ecosystem size or resource availability. Correspondingly, species losses did not have a significant effect on occurrence likelihoods of all trophic guilds except herbivores. Impacts of species losses were likely buffered by initial high levels of trophic redundancy, which declined with canopy cover. Declines in trophic redundancy were most drastic amongst invertivorous fishes. Declines in redundancy across trophic guilds were also more pronounced in wider and more resource-rich streams. While our study found limited evidence for immediate land-use impacts on stream food chains, the potential loss of trophic redundancy in the longer term implies increasing vulnerability of streams to future perturbations, as long as land conversion continues unabated.
    Matched MeSH terms: Amino Acids*
  12. Satharasinghe DA, Parakatawella PMSDK, Premarathne JMKJK, Jayasooriya LJPAP, Prathapasinghe GA, Yeap SK
    Epidemiol Infect, 2021 03 16;149:e78.
    PMID: 33722321 DOI: 10.1017/S0950268821000583
    The molecular epidemiology of the virus and mapping helps understand the epidemics' evolution and apply quick control measures. This study provides genomic evidence of multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) introductions into Sri Lanka and virus evolution during circulation. Whole-genome sequences of four SARS-CoV-2 strains obtained from coronavirus disease 2019 (COVID-19) positive patients reported in Sri Lanka during March 2020 were compared with sequences from Europe, Asia, Africa, Australia and North America. The phylogenetic analysis revealed that the sequence of the sample of the first local patient collected on 10 March, who contacted tourists from Italy, was clustered with SARS-CoV-2 strains collected from Italy, Germany, France and Mexico. Subsequently, the sequence of the isolate obtained on 19 March also clustered in the same group with the samples collected in March and April from Belgium, France, India and South Africa. The other two strains of SARS-CoV-2 were segregated from the main cluster, and the sample collected from 16 March clustered with England and the sample collected on 30 March showed the highest genetic divergence to the isolate of Wuhan, China. Here we report the first molecular epidemiological study conducted on circulating SARS-CoV-2 in Sri Lanka. The finding provides the robustness of molecular epidemiological tools and their application in tracing possible exposure in disease transmission during the pandemic.
    Matched MeSH terms: Amino Acids/analysis
  13. Lioe HN, Selamat J, Yasuda M
    J Food Sci, 2010 Apr;75(3):R71-6.
    PMID: 20492309 DOI: 10.1111/j.1750-3841.2010.01529.x
    Soy sauce taste has become a focus of umami taste research. Umami taste is a 5th basic taste, which is associated to a palatable and pleasurable taste of food. Soy sauce has been used as an umami seasoning since the ancient time in Asia. The complex fermentation process occurred to soy beans, as the raw material in the soy sauce production, gives a distinct delicious taste. The recent investigation on Japanese and Indonesian soy sauces revealed that this taste is primarily due to umami components which have molecular weights lower than 500 Da. Free amino acids are the low molecular compounds that have an important role to the taste, in the presence of sodium salt. The intense umami taste found in the soy sauces may also be a result from the interaction between umami components and other tastants. Small peptides are also present, but have very low, almost undetected umami taste intensities investigated in their fractions.
    Matched MeSH terms: Amino Acids/analysis
  14. Watanabe H, Ng CH, Limviphuvadh V, Suzuki S, Yamada T
    PeerJ, 2020;8:e9579.
    PMID: 32821539 DOI: 10.7717/peerj.9579
    Coffee beans derived from feces of the civet cat are used to brew coffee known as kopi luwak (the Indonesian words for coffee and palm civet, respectively), which is one of the most expensive coffees in the world owing to its limited supply and strong market demand. Recent metabolomics studies have revealed that kopi luwak metabolites differ from metabolites found in other coffee beans. To produce kopi luwak, coffee beans are first eaten by civet cats. It has been proposed that fermentation inside the civet cat digestive tract may contribute to the distinctively smooth flavor of kopi luwak, but the biological basis has not been determined. Therefore, we characterized the microbiome of civet cat feces using 16S rRNA gene sequences to determine the bacterial taxa that may influence fermentation processes related to kopi luwak. Moreover, we compared this fecal microbiome with that of 14 other animals, revealing that Gluconobacter is a genus that is, uniquely found in feces of the civet cat. We also found that Gluconobacter species have a large number of cell motility genes, which may encode flagellar proteins allowing colonization of the civet gut. In addition, genes encoding enzymes involved in the metabolism of hydrogen sulfide and sulfur-containing amino acids were over-represented in Gluconobacter. These genes may contribute to the fermentation of coffee beans in the digestive tract of civet cats.
    Matched MeSH terms: Amino Acids
  15. Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, et al.
    Mol Biosyst, 2015 Jul;11(7):1742-74.
    PMID: 25919044 DOI: 10.1039/c5mb00158g
    Metabolomic studies on obesity and type 2 diabetes mellitus have led to a number of mechanistic insights into biomarker discovery and comprehension of disease progression at metabolic levels. This article reviews a series of metabolomic studies carried out in previous and recent years on obesity and type 2 diabetes, which have shown potential metabolic biomarkers for further evaluation of the diseases. Literature including journals and books from Web of Science, Pubmed and related databases reporting on the metabolomics in these particular disorders are reviewed. We herein discuss the potential of reported metabolic biomarkers for a novel understanding of disease processes. These biomarkers include fatty acids, TCA cycle intermediates, carbohydrates, amino acids, choline and bile acids. The biological activities and aetiological pathways of metabolites of interest in driving these intricate processes are explained. The data from various publications supported metabolomics as an effective strategy in the identification of novel biomarkers for obesity and type 2 diabetes. Accelerating interest in the perspective of metabolomics to complement other fields in systems biology towards the in-depth understanding of the molecular mechanisms underlying the diseases is also well appreciated. In conclusion, metabolomics can be used as one of the alternative approaches in biomarker discovery and the novel understanding of pathophysiological mechanisms in obesity and type 2 diabetes. It can be foreseen that there will be an increasing research interest to combine metabolomics with other omics platforms towards the establishment of detailed mechanistic evidence associated with the disease processes.
    Matched MeSH terms: Amino Acids/metabolism
  16. Do TD, Thi Mai N, Duy Khoa TN, Abol-Munafi AB, Liew HJ, Kim CB, et al.
    Evol Bioinform Online, 2019;15:1176934319853580.
    PMID: 31236006 DOI: 10.1177/1176934319853580
    Temperature is an abiotic factor that affects various biological and physiological processes in fish. Temperature stress is known to increase the production of reactive oxygen species (ROS) that subsequently cause oxidative stress. Fish is known to evolve a system of antioxidant enzymes to reduce ROS toxicology. Glutathione peroxidase (GPx) family consists of key enzymes that protect fish from oxidative stress. In this study, full-length GPx1 cDNA (GenBank accession no. KY984468) of Tor tambroides was cloned and characterized by rapid amplification of cDNA ends (RACE). The 899-base-pair (bp) GPx1 cDNA includes a 576-bp open reading frame encoding for 191 amino acids, plus 28 bp of 5'-untranslated region (UTR) and 295 bp of 3'-UTR. Homology analysis revealed that GPx1 of T tambroides (Tor-GPx1) shared high similarity with GPx1 sequences of other fish species. The phylogenetic construction based on the amino acid sequence showed that Tor-GPx1 formed a clade with GPx1 sequences of various fish species. Real-time polymerase chain reaction (PCR) was performed to assess the levels of GPx1 gene expression in the liver and muscle of T tambroides under thermal stress. The results indicated that GPx1 gene expression was down-regulated under decreased temperature. However, there was no significant difference between GPx1 gene expression in fish exposed to high temperature and control. Our study provides the first data regarding GPx gene expression in T tambroides under thermal stress.
    Matched MeSH terms: Amino Acids
  17. Chai TT, Tan YN, Ee KY, Xiao J, Wong FC
    Crit Rev Food Sci Nutr, 2019;59(sup1):S162-S177.
    PMID: 30663883 DOI: 10.1080/10408398.2018.1561418
    The emergence of bacterial resistance against conventional antibiotics and the growing interest in developing alternative, natural antibacterial agents have prompted the search for plant-derived antibacterial peptides in recent decades. Different classes of endogenous antibacterial peptides have been identified from various plant species. Moreover, protein hydrolysates and hydrolysate-derived peptides with potent antibacterial effects have also been identified from numerous plant sources. Antibacterial peptides are often cationic and amphipathic, consisting of fewer than 100 amino acids. They are able to disrupt bacterial membrane integrity via pore formation and/or compromise bacterial metabolic processes. In this review, we summarize current knowledge on the characteristics and modes of action of antibacterial peptides, as well as salient points concerning the production of antibacterial protein hydrolysates from plant proteins. Examples of plant-derived antibacterial hydrolysates and peptides will be highlighted, with particular attention to less explored seeds, fermented plant foods and agricultural by-products. Promising future research directions with regards to the application of plant-derived antibacterial hydrolysates and peptides in food preservation, farm animal disease management, and nutraceutical/functional food development will be proposed.
    Matched MeSH terms: Amino Acids
  18. Tang LW, Alias Y, Zakaria R, Woi PM
    Crit Rev Anal Chem, 2023;53(4):869-886.
    PMID: 34672838 DOI: 10.1080/10408347.2021.1989657
    A detailed overview toward the advancement of amino acid-based electrochemical sensors on the detection of heavy metals is presented. Discussion is focused on the unique properties of various amino acids (AAs) and its composites which allow them being employed in a diverse range of sensing platforms. Formation of metal-ligand complexes in between metal ions and different AAs has been discussed. The essential insights on the interaction between amino acid-based sensors and target heavy metal ions (HMIs) are provided, along with the discussion on their pros and cons. Voltammetry analysis of metal ions based on various interfaces of electrochemical sensors has been highlighted, together with the incorporation of AAs with organic, inorganic and bio-materials. In all these cases, the amino acid modified electrodes have demonstrated large active surface area with abundant adsorption sites for HMIs. The developed sensors are promising for environmental applications, as evidenced by the high selectivity, high sensitivity, high catalytic activity, and low detection limits. The materials involved, fabrication techniques and its sensing mechanism were comprehensively discussed, and the future outlooks of electrochemical sensing platforms are emphasized in this review.
    Matched MeSH terms: Amino Acids*
  19. Nurul Farhana Ramlan, Noraini Abu Bakar, Albert, Emmellie Laura, Syaizwan Zahmir Zulkifli, Syahida Ahmad, Mohammad Noor Amal Azmai, et al.
    MyJurnal
    An ideal model organism for neurotoxicology research should meet several characteristics, such as low cost and amenable for high throughput testing. Javanese medaka (JM) has been widely used in the ecotoxicological studies related to the marine and freshwater environment, but rarely utilized for biomedical research. Therefore, in this study, the applicability of using JM in the neurotoxicology research was assessed using biochemical comparison with an established model organism, the zebrafish. Identification of biochemical changes due to the neurotoxic effects of ethanol and endosulfan was assessed using Fourier Transform Infrared (FTIR) analysis. Treatment with ethanol affected the level of lipids, proteins, glycogens and nucleic acids in the brain of JM. Meanwhile, treatment with endosulfan showed alteration in the level of lipids and nucleic acids. For the zebrafish, exposure to ethanol affected the level of protein, fatty acid and amino acid, and exposure to endosulfan induced alteration in the fatty acids, amino acids, nucleic acids and protein in the brain of zebrafish. The sensitive response of the JM toward chemicals exposure proved that it was a valuable model for neurotoxicology research. More studies need to be conducted to further develop JM as an ideal model organism for neurotoxicology research.
    Matched MeSH terms: Amino Acids
  20. Kwong PJ, Abdullah RB, Wan Khadijah WE
    Theriogenology, 2012 Sep 1;78(4):921-9.
    PMID: 22704387 DOI: 10.1016/j.theriogenology.2012.04.009
    This study was conducted to evaluate the efficiency of potassium simplex optimization medium with amino acids (KSOMaa) as a basal culture medium for caprine intraspecies somatic cell nuclear transfer (SCNT) and caprine-bovine interspecies somatic cell nuclear transfer (iSCNT) embryos. The effect of increased glucose as an energy substrate for late stage development of cloned caprine embryos in vitro was also evaluated. Enucleated caprine and bovine in vitro matured oocytes at metaphase II were reconstructed with caprine ear skin fibroblast cells for the SCNT and iSCNT studies. The cloned caprine and parthenogenetic embryos were cultured in either KSOMaa with 0.2 mM glucose for 8 days (Treatment 1) or KSOMaa for 2 days followed by KSOMaa with additional glucose at a final concentration of 2.78 mM for the last 6 days (Treatment 2). There were no significant differences in the cleavage rates of SCNT (80.7%) and iSCNT (78.0%) embryos cultured in KSOMaa medium. Both Treatment 1 and Treatment 2 could support in vitro development of SCNT and iSCNT embryos to the blastocyst stage. However, the blastocyst development rate of SCNT embryos was significantly higher (P < 0.05) in Treatment 2 compared to Treatment 1. Increasing glucose for later stage embryo development (8-cell stage onwards) during in vitro culture (IVC) in Treatment 2 also improved both caprine SCNT and iSCNT embryo development to the hatched blastocyst stage. In conclusion, this study shows that cloned caprine embryos derived from SCNT and iSCNT could develop to the blastocyst stage in KSOMaa medium supplemented with additional glucose (2.78 mM, final concentration) and this medium also supported hatching of caprine cloned blastocysts.
    Matched MeSH terms: Amino Acids/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links