Displaying publications 1 - 20 of 122 in total

Abstract:
Sort:
  1. Graham LE, Knack JJ, Graham ME, Graham JM, Zulkifly S
    J Phycol, 2015 Jun;51(3):408-18.
    PMID: 26986658 DOI: 10.1111/jpy.12296
    Periphyton dominated by the cellulose-rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N-fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C-cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry.
    Matched MeSH terms: Anaerobiosis
  2. Heng GC, Isa MH, Lim JW, Ho YC, Zinatizadeh AAL
    Environ Sci Pollut Res Int, 2017 Dec;24(35):27113-27124.
    PMID: 28963706 DOI: 10.1007/s11356-017-0287-5
    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H2O2 dosage, H2O2/Fe2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H2O2/kg TS, H2O2/Fe2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m3/kg VSfed·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m3/kg VSfed·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.
    Matched MeSH terms: Anaerobiosis
  3. Yan W, Vadivelu V, Maspolim Y, Zhou Y
    Waste Manag, 2021 Feb 01;120:221-229.
    PMID: 33310598 DOI: 10.1016/j.wasman.2020.11.047
    Anaerobic digestion is a promising way for resource recovery from waste cooking oil (WCO) due to its high bio-methanation potential. In-situ mild alkaline (pH 8) enhanced two-stage continuous stirred tank reactors (ALK-2-CSTRs) were implemented to explore its efficiency in co-digesting WCO and sewage sludge with stepwise increase of WCO in the co-substrates. Results demonstrate that the ALK-2-CSTRs effectively promoted methane yield from the co-substrates via promoting hydrolysis, long chain fatty acids (LCFAs) degradation and protecting methanogens from exposure to high concentration of LCFAs directly. The maximum methane yield of the ALK-2-CSTRs is 39.2% higher than that of a single stage CSTR system at the optimal feed mixture of 45:55 (WCO:SS [VS]). The thermophilic operation applied to the stage-1 of the ALK-2-CSTRs failed to improve the methane yield when the methanogenic performance was stable; while upon WCO overloaded, the elevated temperature mitigated the deterioration of methanogenesis by stimulating the bioconversion of the toxic LCFAs, especially the unsaturated oleic acid. Microbial community analysis reveals the ALK-2-CSTRs stimulated the growth of lipolytic bacteria and hydrogenotrophic methanogens, which suggests the hydrogenotrophic methanogenic pathway was promoted. Cost evaluation demonstrates the economical superiority of the ALK-2-CSTR over the prevailing strategies developed for enhancing methane yield from the co-substrates.
    Matched MeSH terms: Anaerobiosis
  4. Chelliapan S, Wilby T, Sallis PJ, Yuzir A
    Water Sci Technol, 2011;63(8):1599-606.
    PMID: 21866757
    Tylosin has been considered inhibiting COD removal in anaerobic digestion. In this study it is proven that this is not always the case. Accordingly, elevated concentrations of Tylosin (100-800mgL-1) could be tolerated by the anaerobic system. The influence of Tylosin concentrations on an up-flow anaerobic stage reactor (UASR) was assessed using additions of Tylosin phosphate concentrate. Results showed high efficiency for COD removal (average 93%) when Tylosin was present at concentrations ranging from 0 to 400 mg L-1. However, at Tylosin concentrations of 600 and 800 mg L-1 treatment efficiency declined to 85% and 75% removal respectively. The impact of Tylosin concentrations on archaeal activity were investigated and the analysis revealed that archaeal cells dominated the reactor, confirming that there was no detectable inhibition of the methanogens at Tylosin levels between 100 and 400mg L-1. Nevertheless, the investigation showed a slight reduction in the number of methanogens at Tylosin levels of 600 and 800 mg L-1. These results demonstrated that the methanogens were well adapted to Tylosin. It would not be expected that the process performance of the UASR would be affected, not even at a level well in excess of those appearing in real wastewater from a Tylosin production site.
    Matched MeSH terms: Anaerobiosis
  5. Choong YY, Norli I, Abdullah AZ, Yhaya MF
    Bioresour Technol, 2016 Jun;209:369-79.
    PMID: 27005788 DOI: 10.1016/j.biortech.2016.03.028
    This paper critically reviews the impacts of supplementing trace elements on the anaerobic digestion performance. The in-depth knowledge of trace elements as micronutrients and metalloenzyme components justifies trace element supplementation into the anaerobic digestion system. Most of the earlier studies reported that trace elements addition at (sub)optimum dosages had positive impacts mainly longer term on digester stability with greater organic matter degradation, low volatile fatty acids (VFA) concentration and higher biogas production. However, these positive impacts and element requirements are not fully understood, they are explained on a case to case basis because of the great variance of the anaerobic digestion operation. Iron (Fe), nickel (Ni) and cobalt (Co) are the most studied and desirable elements. The right combination of multi-elements supplementation can have greater positive impact. This measure is highly recommended, especially for the mono-digestion of micronutrient-deficient substrates. The future research should consider the aspect of trace element bioavailability.
    Matched MeSH terms: Anaerobiosis
  6. How, Y. H., Ewe, J. A., Song, K. P., Kuan, C. H., Kuan, C. S., Yeo, S. K.
    MyJurnal
    The present work aimed to determine the antagonistic effect of probiotic-fermented soy against oral pathogens. Indigenous oral probiotics (Streptococcus salivarius Taylor’s Univer- sity Collection Centre (TUCC) 1251, S. salivarius TUCC 1253, S. salivarius TUCC 1254, S. salivarius TUCC 1255, and S. orisratti TUCC 1253) were incorporated into soy fermentation at 37°C for 24 h. Growth characteristics, β-glucosidase activity, and total isoflavones content of Streptococcus strains following soy fermentation were analysed. Antimicrobial test of Streptococcus-fermented soy was carried out against oral pathogens Enterococcus faecalis American Type Culture Collection (ATCC) 700802, Streptococcus pyogenes ATCC 19615, and Staphylococcus aureus ATCC 25923. Streptococcus strains showed a significant increase in growth following soy fermentation. S. salivarius TUCC 1253-fermented soy showed signif- icantly higher extracellular β-glucosidase activity and amount of aglycones. S. salivarius TUCC 1253-fermented soy showed antimicrobial effect against all oral tested pathogens in both aerobic and anaerobic conditions. These results showed that S. salivarius TUCC 1253-fermented soy could potentially be used as a preventive action or alternative treatment for oral infections.

    Matched MeSH terms: Anaerobiosis
  7. Aida AA, Hatamoto M, Yamamoto M, Ono S, Nakamura A, Takahashi M, et al.
    J Biosci Bioeng, 2014 Nov;118(5):540-5.
    PMID: 24930844 DOI: 10.1016/j.jbiosc.2014.04.011
    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors.
    Matched MeSH terms: Anaerobiosis
  8. Khalid NA, Rajandas H, Parimannan S, Croft LJ, Loke S, Chong CS, et al.
    3 Biotech, 2019 Oct;9(10):364.
    PMID: 31588388 DOI: 10.1007/s13205-019-1892-4
    Empty fruit bunch (EFB) and palm oil mill effluent (POME) are the major wastes generated by the oil palm industry in Malaysia. The practice of EFB and POME digester sludge co-composting has shown positive results, both in mitigating otherwise environmentally damaging waste streams and producing a useful product (compost) from these streams. In this study, the bacterial ecosystems of 12-week-old EFB-POME co-compost and POME biogas sludge from Felda Maokil, Johor were analysed using 16S metagenome sequencing. Over ten phyla were detected, with Chloroflexi being the predominant phylum, representing approximately 53% of compost and 23% of the POME microbiome reads. The main bacterial lineage found in the compost and POME was Anaerolinaceae (Chloroflexi) with 30% and 18% of the total gene fragments, respectively. The significant differences between compost and POME communities were abundances of Syntrophobacter, Sulfuricurvum and Coprococcus. No methanogens were identified due to the bias in general 16S primers to eubacteria. The preponderance of anaerobic species in the compost and high abundance of secondary metabolite fermenting bacteria is due to an extended composting time, with anaerobic collapse of the pile due to the tropical heat. Predictive functional profiles of the metagenomes using 16S rRNA marker genes suggest that the presence of enzymes involved in degradation of polysaccharides such as glucoamylase, endoglucanase and arabinofuranosidase, all of which were strongly active in POME. Eubacterial species associated with cellulytic methanogenesis were present in both samples.
    Matched MeSH terms: Anaerobiosis
  9. Huang L, Wen X, Wang Y, Zou Y, Ma B, Liao X, et al.
    J Environ Sci (China), 2014 Oct 1;26(10):2001-6.
    PMID: 25288543 DOI: 10.1016/j.jes.2014.07.012
    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester.
    Matched MeSH terms: Anaerobiosis
  10. Show KY, Ng CA, Faiza AR, Wong LP, Wong LY
    Water Sci Technol, 2011;64(12):2439-44.
    PMID: 22170839 DOI: 10.2166/wst.2011.824
    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined.
    Matched MeSH terms: Anaerobiosis
  11. Isa MH, Bashir MJK, Wong LP
    Environ Sci Pollut Res Int, 2022 Jun;29(29):44779-44793.
    PMID: 35138542 DOI: 10.1007/s11356-022-19022-3
    In this study, palm oil mill effluent (POME) treated by ultrasonication at optimum conditions (sonication power: 0.88 W/mL, sonication duration: 16.2 min and total solids: 6% w/v) obtained from a previous study was anaerobically digested at different hydraulic retention times (HRTs). The reactor biomass was subjected to metagenomic study to investigate the impact on the anaerobic community dynamics. Experiments were conducted in two 5 L continuously stirred fill-and-draw reactors R1 and R2 operated at 30 ± 2 °C. Reactor R1 serving as control reactor was fed with unsonicated POME with HRT of 15 and 20 days (R1-15 and R1-20), whereas reactor R2 was fed with sonicated POME with the same HRTs (R2-15 and R2-20). The most distinct archaea community shift was observed among Methanosaeta (R1-15: 26.6%, R2-15: 34.4%) and Methanobacterium (R1-15: 7.4%, R2-15: 3.2%). The genus Methanosaeta was identified from all reactors with the highest abundance from the reactors R2. Mean daily biogas production was 6.79 L from R2-15 and 4.5 L from R1-15, with relative methane gas abundance of 85% and 73%, respectively. Knowledge of anaerobic community dynamics allows process optimization for maximum biogas production.
    Matched MeSH terms: Anaerobiosis
  12. Xiao SS, Mi JD, Mei L, Liang J, Feng KX, Wu YB, et al.
    Animals (Basel), 2021 Mar 16;11(3).
    PMID: 33809729 DOI: 10.3390/ani11030840
    The intestinal microbiota is increasingly recognized as an important component of host health, metabolism and immunity. Early gut colonizers are pivotal in the establishment of microbial community structures affecting the health and growth performance of chickens. White Lohmann layer is a common commercial breed. Therefore, this breed was selected to study the pattern of changes of microbiota with age. In this study, the duodenum, caecum and colorectum contents of white Lohmann layer chickens from same environment control farm were collected and analyzed using 16S rRNA sequencing to explore the spatial and temporal variations in intestinal microbiota. The results showed that the diversity of the microbial community structure in the duodenum, caecum and colorectum increased with age and tended to be stable when the layer chickens reached 50 days of age and the distinct succession patterns of the intestinal microbiota between the duodenum and large intestine (caecum and colorectum). On day 0, the diversity of microbes in the duodenum was higher than that in the caecum and colorectum, but the compositions of intestinal microbes were relatively similar, with facultative anaerobic Proteobacteria as the main microbes. However, the relative abundance of facultative anaerobic bacteria (Escherichia) gradually decreased and was replaced by anaerobic bacteria (Bacteroides and Ruminococcaceae). By day 50, the structure of intestinal microbes had gradually become stable, and Lactobacillus was the dominant bacteria in the duodenum (41.1%). The compositions of dominant microbes in the caecum and colorectum were more complex, but there were certain similarities. Bacteroides, Odoribacter and Clostridiales vadin BB60 group were dominant. The results of this study provide evidence that time and spatial factors are important factors affecting the intestinal microbiota composition. This study provides new knowledge of the intestinal microbiota colonization pattern of layer chickens in early life to improve the intestinal health of layer chickens.
    Matched MeSH terms: Anaerobiosis
  13. Chen H, Zeng X, Zhou Y, Yang X, Lam SS, Wang D
    J Hazard Mater, 2020 07 15;394:122570.
    PMID: 32244145 DOI: 10.1016/j.jhazmat.2020.122570
    The removal of antibiotics and resistance genes in wastewater treatment plants has attracted widespread attention, but the potential role of residual antibiotics in the disposal of waste activated sludge (WAS) has not been clearly understood. In this study, the effect of roxithromycin (ROX) on volatile fatty acid (VFA) recovery from WAS anaerobic fermentation was investigated. The experimental results showed that ROX made a positive contribution to the production of VFAs. With the increase of ROX dosages from 0 to 100 mg/kg TSS, the maximum accumulation of VFAs increased from 295 to 610 mg COD/L. Mechanism studies revealed that ROX promoted the solubilization of WAS by facilitating the disruption of extracellular polymeric substances. In addition, ROX enhanced the activity of acetate kinase and inhibited the activities of α-glucosidase and coenzyme F420, and showed a stronger inhibitory effect on methane production than the hydrolysis process, thus resulting in an increase in VFA accumulation. These findings provide a new insight for the role of antibiotics in anaerobic fermentation of WAS.
    Matched MeSH terms: Anaerobiosis
  14. Alshiyab H, Kalil MS, Hamid AA, Wan Yusoff WM
    Pak J Biol Sci, 2008 Sep 15;11(18):2193-200.
    PMID: 19137827
    The objective of this study is to investigate the effect of salts addition to fermentation medium on hydrogen production, under anaerobic batch culture system. In this study, batch experiments were conducted to investigate the inhibitory effect of both NaCl and sodium acetate on hydrogen production. The optimum pH and temperature for hydrogen production were at initial pH of 7.0 and 30 degrees C. Enhanced production of hydrogen, using glucose as substrate was achieved. In the absence of Sodium Chloride and Sodium Acetate enhanced hydrogen yield (Y(P/S)) from 350 mL g(-1) glucose utilized to 391 mL g(-1) glucose utilized with maximum hydrogen productivity of 77.5 ml/L/h. Results also show that sodium chloride and sodium acetate in the medium adversely affect growth. Hydrogen yield per biomass (Y(P/X)) of 254 ml/L/g, biomass per substrate utilized (Y(X/S)) of 0.268 and (Y(H2/S) of 0.0349. The results suggested that Sodium at any concentration resulted to inhibit the bacterial productivity of hydrogen.
    Matched MeSH terms: Anaerobiosis
  15. El Enshasy H, Malik K, Malek RA, Othman NZ, Elsayed EA, Wadaan M
    PMID: 26907552
    Human gastrointestinal microbiota (HGIM) incorporate a large number of microbes from different species. Anaerobic bacteria are the dominant organisms in this microbial consortium and play a crucial role in human health. In addition to their functional role as the main source of many essential metabolites for human health, they are considered as biotherapeutic agents in the regulation of different human metabolites. They are also important in the prevention and in the treatment of different physical and mental diseases. Bifidobacteria are the dominant anaerobic bacteria in HGIM and are widely used in the development of probiotic products for infants, children and adults. To develop bifidobacteria-based bioproducts, therefore, it is necessary to develop a large-scale biomass production platform based on a good understanding of the ideal medium and bioprocessing parameters for their growth and viability. In addition, high cell viability should be maintained during downstream processing and storage of probiotic cell powder or the final formulated product. In this work we review the latest information about the biology, therapeutic activities, cultivation and industrial production of bifidobacteria.
    Matched MeSH terms: Anaerobiosis/physiology
  16. Gagliano MC, Ismail SB, Stams AJM, Plugge CM, Temmink H, Van Lier JB
    Water Res, 2017 09 15;121:61-71.
    PMID: 28511041 DOI: 10.1016/j.watres.2017.05.016
    For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules.
    Matched MeSH terms: Anaerobiosis
  17. Ganesan S, Vadivelu VM
    Bioresour Technol, 2020 Jan;296:122341.
    PMID: 31711905 DOI: 10.1016/j.biortech.2019.122341
    Anammox bacteria can easily undergo starvation due to fluctuations in feed flowrate and concentration in wastewater treatment plants. In this study, we analyzed the effects of different types of storage conditions (presence of ammonium (Ra), nitrite (Rn), hydrazine (Rh), and no substrate (Rc)) in aiding the viability of anammox bacteria during starvation and recovery. After starvation, the bacteria were subjected to a 15-week recovery period. Anammox bacteria showed better results during starvation and recovery in Rh as compared to other conditions. Decay rate values obtained after starvation in Ra, Rn, Rh, and Rc were 0.032/day, 0.042/day, 0.019/day, and 0.037/day, respectively. Meanwhile, µmax values obtained in Rh, Ra, Rn, and Rc on the 15th week of recovery were 0.092, 0.075, 0.011, and 0.067 d-1, respectively. This indicated that the availability of hydrazine helps to reduce the mortality rate of anammox bacteria during starvation and enhances the recovery of anammox process.
    Matched MeSH terms: Anaerobiosis
  18. Ganesan S, Vadivelu VM
    Chemosphere, 2019 May;223:668-674.
    PMID: 30802832 DOI: 10.1016/j.chemosphere.2019.02.104
    Hydrazine is an intermediate product of the anaerobic ammonium oxidation (Anammox) process where both ammonium and nitrite in wastewater are converted to nitrogen gas by bacteria. In this study the effect of external hydrazine addition (5, 10, 15, and 20 mg/L) on the start-up period of the Anammox process was studied using sequencing batch reactors (SBRs). The SBR with an addition of 10 mg/L hydrazine took only 7 weeks to stabilize and achieve the maximum removal of ammonium and nitrite, whereas the SBR without the addition of hydrazine took 12 weeks. The amount of Heme C extracted from the biomass indicated that externally added hydrazine accelerated the growth of Anammox bacteria and reduced the release of nitrous oxide gas from the reactors.
    Matched MeSH terms: Anaerobiosis
  19. Aziz SQ, Aziz HA, Yusoff MS, Bashir MJ, Umar M
    J Environ Manage, 2010 Dec;91(12):2608-14.
    PMID: 20739117 DOI: 10.1016/j.jenvman.2010.07.042
    This study analyzes and compares the results of leachate composition at the semi-aerobic Pulau Burung Landfill Site (PBLS) (unaerated pond and intermittently aerated pond) and the anaerobic Kulim Sanitary Landfill in the northern region of Malaysia. The raw samples were collected and analyzed for twenty parameters. The average values of the parameters such as phenols (1.2, 6.7, and 2.6 mg/L), total nitrogen (448, 1200, and 300 mg/L N-TN), ammonia-N (542, 1568, and 538 mg/L NH(3)-N), nitrite (91, 49, and 52 mg/L NO(2)(-)-N), total phosphorus (21, 17, and 19 mg/L), BOD(5) (83, 243, and 326 mg/L), COD (935, 2345, and 1892 mg/L), BOD(5)/COD (0.096,0.1124,0.205%), pH (8.20, 8.28, and 7.76), turbidity (1546, 180, and 1936 Formazin attenuation units (FAU)), and color (3334, 3347, and 4041 Pt Co) for leachate at the semi-aerobic PBLS (unaerated and intermittently aerated) and the anaerobic Kulim Sanitary Landfill were recorded, respectively. The obtained results were compared with previously published data and data from the Malaysia Environmental Quality Act 1974. The results indicated that Pulau Burung leachate was more stabilized compared with Kulim leachate. Furthermore, the aeration process in PBLS has a considerable effect on reducing the concentration of several pollutants. The studied leachate requires treatment to minimize the pollutants to an acceptable level prior to discharge into water courses.
    Matched MeSH terms: Anaerobiosis
  20. Kawai M, Nagao N, Tajima N, Niwa C, Matsuyama T, Toda T
    Bioresour Technol, 2014 Apr;157:174-80.
    PMID: 24556370 DOI: 10.1016/j.biortech.2014.01.018
    Influence of the labile organic fraction (LOF) on anaerobic digestion of food waste was investigated in different S/I ratio of 0.33, 0.5, 1.0, 2.0 and 4.0g-VSsubstrate/g-VSinoculum. Two types of substrate, standard food waste (Substrate 1) and standard food waste with the supernatant (containing LOF) removed (Substrate 2) were used. Highest methane yield of 435ml-CH4g-VS(-1) in Substrate 1 was observed in the lowest S/I ratio, while the methane yield of the other S/I ratios were 38-73% lower than the highest yield due to acidification. The methane yields in Substrate 2 were relatively stable in all S/I conditions, although the maximum methane yield was low compared with Substrate 1. These results showed that LOF in food waste causes acidification, but also contributes to high methane yields, suggesting that low S/I ratio (<0.33) is required to obtain a reliable methane yield from food waste compared to other organic substrates.
    Matched MeSH terms: Anaerobiosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links