Displaying publications 1 - 20 of 16743 in total

Abstract:
Sort:
  1. Su W, Yu Q, Yang J, Han Q, Wang S, Heděnec P, et al.
    J Environ Sci (China), 2024 Aug;142:236-247.
    PMID: 38527889 DOI: 10.1016/j.jes.2023.06.016
    The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences. However, the response mechanisms and pathways of the functional genes associated with the carbon (C) and nitrogen (N) cycling to cadaveric substances such as cadaverine and putrescine remain unclear. This study explored the variation of functional genes associated with C fixation, C degradation and N cycling and their influencing factors under cadaverine, putrescine and mixed treatments. Our results showed only putrescine significantly increased the alpha diversity of C fixation genes, while reducing the alpha diversity of N cycling genes in sediment. For the C cycling, the mixed treatment significantly decreased the total abundance of reductive acetyl-CoA pathway genes (i.e., acsB and acsE) and lig gene linked to lignin degradation in water, while only significantly increasing the hydroxypropionate-hydroxybutylate cycle (i.e., accA) gene abundance in sediment. For the N cycling, mixed treatment significantly decreased the abundance of the nitrification (i.e., amoB), denitrification (i.e., nirS3) genes in water and the assimilation pathway gene (i.e., gdhA) in sediment. Environmental factors (i.e., total carbon and total nitrogen) were all negatively associated with the genes of C and N cycling. Therefore, cadaverine and putrescine exposure may inhibit the pathway in C fixation and N cycling, while promoting C degradation. These findings can offer some new insight for the management of amine pollution caused by animal cadavers.
    Matched MeSH terms: Animals
  2. Abdo Qaid EY, Abdullah Z, Zakaria R, Long I
    Int J Neurosci, 2024 Jun;134(1):56-65.
    PMID: 35638219 DOI: 10.1080/00207454.2022.2084092
    PURPOSE/AIM: Neuroinflammation and oxidative stress have been encountered in neurodegenerative diseases such as Alzheimer's disease (AD). However, the neuroprotective effects of minocycline against lipopolysaccharide (LPS)-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of rats are still elusive. The purpose of this study is to investigate the effects of minocycline and memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, on the microglia and astrocytes expression, as well as oxidative stress levels in the mPFC of LPS injected rats.

    MATERIALS AND METHODS: Fifty adult Male Sprague Dawley rats were divided into five groups: control, LPS (5 mg/kg), LPS treated with minocycline (25 mg/kg), LPS treated with minocycline (50 mg/kg) and LPS treated with memantine (10 mg/kg). The immunohistochemistry and western blotting were used to analyse the expressions and densities of microglia marker (Iba-1) and astrocyte marker, (GFAP) while enzyme-linked immunosorbent assay (ELISA) was used to measure the protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels.

    RESULTS: In comparison to the control group, the expression and density of Iba-1 and GFAP were significantly enhanced in the LPS group (p 

    Matched MeSH terms: Animals
  3. Wang S, Yang J, Kuang X, Li H, Du H, Wu Y, et al.
    J Ethnopharmacol, 2024 May 23;326:117913.
    PMID: 38360380 DOI: 10.1016/j.jep.2024.117913
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated.

    AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis.

    MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model.

    RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor.

    CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.

    Matched MeSH terms: Animals
  4. Fauzi A, Kifli N, Noor MHM, Hamzah H, Azlan A
    J Ethnopharmacol, 2024 May 10;325:117914.
    PMID: 38360381 DOI: 10.1016/j.jep.2024.117914
    ETHNOPHARMACOLOGICAL RELEVANCE: Traditional uses of Morus alba L. leaf extracts (MLE) have been reported for treating hyperglycaemia and diabetes. Phytochemical compounds in the leaves demonstrated the ability to enhance insulin sensitivity and β-cell secretory function, suggesting their potential value in reducing blood glucose and treating diabetes. However, the phytochemical constituents and safety of the herbal medicines need to be verified in each experimental field from different growing areas. Studies on the phytochemistry and toxicity of Morus alba leaves in Southeast Asia, especially in Brunei, have never been investigated.

    AIM OF THE STUDY: This study aimed to investigate the bioactivity and phytochemistry of Morus alba ethanolic leaf extract from Brunei Darussalam and its subacute toxic effects in the Institute of Cancer Research (ICR) female mice.

    MATERIALS AND METHODS: The phenolic yield and antioxidant of the extract were analysed. Meanwhile, liquid chromatography-mass spectrometry and high-performance liquid chromatography were utilised to determine the phenolic compound of the MLE. In the subacute toxicity study, twenty-five female mice were randomly divided into five groups: the control group, which received oral gavage of 5% dimethyl sulfoxide solvent (DMSO), and the MLE treatment group, which received the extract at a dose of 125, 250, 500 and 1000 mg/kg. Physiology, haematology, biochemistry, and histology were evaluated during the study.

    RESULTS: Morus alba leaf depicted total phenolic 10.93 mg gallic acid equivalents (GAE)/g dry weight (DW), flavonoid 256.67 mg quercetin equivalents (QE)/g DW, and antioxidant bioactivity content of 602.03 IC50 μg/mL and 13.21 mg Fe2+/g DW. Twenty compounds in the Morus alba ethanolic leaf extract were identified, with chlorogenic acid (305.60 mg/100 g DW) as the primary compound. As for subacute toxicity in this study, neither mortality nor haematological changes were observed. On the other hand, administration of 500 and 1000 mg/kg MLE resulted in mild hepatocellular injury, as indicated by a significant (p 

    Matched MeSH terms: Animals
  5. Leong N, Yaacob MH, Md Zain AR, Tengku Abdul Aziz TH, Christianus A, Chong CM, et al.
    PMID: 38377639 DOI: 10.1016/j.saa.2024.123974
    Fish epidermal mucus is an important reservoir of antipathogenic compounds which serves as the first line of the immune defence. Despite its significant role in the physiology and health of fish, detailed profiling of fish epidermal mucus has yet to be explored. Therefore, this study investigates a label-free colloidal surface-enhanced Raman spectroscopic (SERS) method for profiling grouper mucus. Gold nanoparticles were first synthesised using the standard citrate reduction and characterised using ultraviolet-visible spectroscopy, transmission electron microscopy and dynamic light scattering. The influence of acidified sodium sulphate (Na2SO4) at pH 3 as the aggregating agent on the enhancement of the SERS spectrum of different analyte samples including rhodamine 6G (R6G) dye, lysozyme solution and hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) mucus was observed. Based on the results, an optimal Na2SO4 concentration of 1 M was recorded to achieve the highest enhancement of the SERS signal for R6G and grouper mucus, while the optimal concentration for lysozyme was 0.1 M. The results indicated a higher degree of aggregation induced by lysozyme than R6G and grouper mucus. A few overlapping peaks of the SERS spectra of lysozyme and grouper mucus made it possible to confirm the presence of lysozyme as potential biomarkers.
    Matched MeSH terms: Animals
  6. Huang M, Ma Y, Qian J, Sokolova IM, Zhang C, Waiho K, et al.
    J Hazard Mater, 2024 Apr 15;468:133801.
    PMID: 38377908 DOI: 10.1016/j.jhazmat.2024.133801
    Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 μg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.
    Matched MeSH terms: Animals
  7. Li Y, Ye Y, Yuan H, Rihan N, Han M, Liu X, et al.
    Sci Total Environ, 2024 Apr 01;919:170924.
    PMID: 38360329 DOI: 10.1016/j.scitotenv.2024.170924
    Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.
    Matched MeSH terms: Animals
  8. Almalki ASA, Alhadhrami A, Alsanie WF, Kamarudin SK, Pugazhendhi A
    Environ Res, 2024 Apr 01;246:118060.
    PMID: 38157966 DOI: 10.1016/j.envres.2023.118060
    In this study, Sulphated/AlMCM-41 (S/AlMCM-41) catalysts were synthesized and used to produce biodiesel from CFMO. Different percentages of S/AlMCM-41 catalysts were prepared and characterized by X-ray diffraction, BET studies, TPD, and SEM-EDS analysis. Sulphur incorporation to the MCM framework though reduced the surface area, and pore volume of the catalyst, sufficient acidity were produced in the catalyst surface. The existence of functional groups and the composition of the biodiesel obtained was analysed by FTIR and GC-MS. S/AlMCM-41 (80%) catalyst presented a high catalytic activity with maximum biodiesel conversion % when compared to other variants. The bio-ester produced from CFMO with S/AlMCM-41 (80%) catalyst possessed the higher calorific value of 50 MJ/kg and flashpoint of 153 °C and other properties analogous to the standard biodiesel. The engine performance was examined for biodiesel blends with neat diesel, where biodiesel blends performed better than neat diesel. The exhaust gas emission studies also highlighted that the obtained biodiesel showed emission characteristics similar to the standard biodiesel, whereas marginally higher emission for CO and CO2 of about 2.2 and 7.9% was reported.
    Matched MeSH terms: Animals
  9. Paudel KR, Clarence DD, Panth N, Manandhar B, De Rubis G, Devkota HP, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2024 Apr;397(4):2465-2483.
    PMID: 37851060 DOI: 10.1007/s00210-023-02760-7
    The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1β and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.
    Matched MeSH terms: Animals
  10. Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, et al.
    Chemosphere, 2024 Apr;353:141540.
    PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540
    The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
    Matched MeSH terms: Animals
  11. Alqahtani YS, Chidrawar VR, Shiromwar S, Singh S, Maheshwari R, Chitme H, et al.
    Biomed Pharmacother, 2024 Apr;173:116358.
    PMID: 38430634 DOI: 10.1016/j.biopha.2024.116358
    Physical and psychological stress has an inverse relation with male libido and sperm quality. The present study investigates the potential fertility-enhancing properties of Desmodium gangeticum (DG) root extracts in male Wister rats subjected to immobilization-induced stress (SIMB). DG roots were extracted using n-hexane (HEDG), chloroform (CEDG), and water (AEDG). In the pilot study, aphrodisiac protentional was investigated at two doses (125 and 250 mg kg-1) of each extract. In the main study, the HEDG and AEDG at 125 and 250 mg kg-1 were challenged for the stress by immobilization (SIMB), for 6 h daily over 28 days. Parameters assessed included aphrodisiac effects, gonadosomatic index (GSI), semen quality, sperm quantity, fructose content, serum hormonal levels, testicular oxidative stress, and testicular histopathology. Additional in silico studies, including the lipid solubility index, molecular docking, molecular dynamics, and SymMap studies were conducted for validation. HEDG demonstrated significant aphrodisiac activity, improved - GSI, sperm quality and quantity, and fructose content, serum testosterone levels, histological changes induced by SIMB in the testes. Swiss ADME studies indicated Gangetin (a pterocarpan) had a high brain permeation index (4.81), a superior docking score (-8.22), and higher glide energy (-42.60), compared with tadalafil (-7.17). The 'Lig fit Prot' plot in molecular dynamics simulations revealed a strong alignment between Gangetin and phosphodiesterase type 5 (PDE5). HEDG exerts aphrodisiac effects by increasing blood testosterone levels and affecting PDE5 activity. The protective effects on spermatozoa-related parameters and testicular histological changes are attributed to the antioxidant and anti-inflammatory properties, of pterocarpan (gangetin).
    Matched MeSH terms: Animals
  12. Khairat JE, Hatta MNA, Abdullah N, Azman AS, Calvin SYM, Syed Hassan S
    Biosci Rep, 2024 Mar 29;44(3).
    PMID: 38372298 DOI: 10.1042/BSR20231827
    Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.
    Matched MeSH terms: Animals
  13. Xiong C, Zou X, Phan CW, Huang W, Zhu Y
    Biosci Rep, 2024 Mar 29;44(3).
    PMID: 38391133 DOI: 10.1042/BSR20231807
    Rapeseed cake serves as a by-product in the oil extraction industry, characterized by its elevated protein content. However, the presence of antinutritional factors limits the utilization of rapeseed cake as a viable protein source. In this study, different doses of γ-irradiation were used to irradiate rapeseed cake and rapeseed protein isolate was extracted through a modified alkaline solution and acid precipitation method from rapeseed cake. The chemical composition and in vivo acute toxicity of rapeseed protein isolate were determined. The protein recovery rate of rapeseed protein isolate was 39.08 ± 3.01% after irradiation, while the content of antinutritional factors was significantly reduced. Moreover, γ-irradiation did not have any experimentally related effects on clinical observations or clinicopathology in mice. Overall, the reduced antinutrients and increased functional properties suggest that the irradiation of rapeseed cake (<9 kGy) could be utilized as a pre-treatment in the development of rapeseed cake-based value-added protein products.
    Matched MeSH terms: Animals
  14. Bapat RA, Mak KK, Pichika MR, Pang JC, Lin SL, Khoo SP, et al.
    BMC Oral Health, 2024 Mar 25;24(1):382.
    PMID: 38528501 DOI: 10.1186/s12903-024-04069-0
    AIMS AND OBJECTIVES: To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation.

    MATERIALS AND METHODS: In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)).

    RESULTS: Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test.

    CONCLUSION: K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.

    Matched MeSH terms: Animals
  15. Wong LP, Alias H, Lee HY, AbuBakar S, Lin Y, Hu Z
    BMC Womens Health, 2024 Mar 21;24(1):190.
    PMID: 38515067 DOI: 10.1186/s12905-024-02999-z
    BACKGROUND: Although Zika virus infection is rarely reported now, continuous prevention is needed to achieve sustained eradication. This study aimed to explore the knowledge gaps, risk perception and preventive measures against Zika virus infection (ZIKV) in pregnant women in Malaysia.

    METHODS: We conducted in-depth virtual interviews with pregnant women between February and April 2022. The interviews were recorded and transcribed, and data were analyzed by content analysis.

    RESULTS: The majority of the participants demonstrated a commendable level of awareness regarding the signs and symptoms associated with ZIKV infection. They also exhibited a clear understanding of preventive measures, particularly emphasizing the importance of avoiding mosquito bites to minimize the risk of ZIKV transmission. However, a noteworthy gap in knowledge surfaced as a subset of participants remained uninformed about the potential for sexual transmission of ZIKV, which could lead to congenital ZIKV in pregnant women. Even among women who were cognizant of ZIKV and its potential negative health outcomes, associated with the infection, many of them did not perceive themselves to be at risk, mainly because ZIKV infection is infrequently discussed or heard of, leading to a sense of infections' rarity. While the adoption of preventive measures such as mosquito bite prevention during pregnancy was a common practice, however, prevention of sexually transmitted infections (STIs) including mosquito-borne diseases such as Zika is low. A minority of women express concerns about the sensitivity surrounding discussions and prevention of STIs within the context of marriage. Most of the participants were supportive of the provision of awareness of ZIKV infection in women during pregnancy and the involvement of men, especially in initiatives aimed at preventing transmission through sexual contact.

    CONCLUSION: This study uncovered gaps in both knowledge and practices pertaining ZIKV infection among pregnant women in the aftermath of the ZIKV pandemic. The insights gleaned from our research are valuable for shaping future interventions geared towards preventing the resurgence or facilitating the sustainable eradication of ZIKV.

    Matched MeSH terms: Animals
  16. Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, et al.
    Sci Total Environ, 2024 Mar 20;917:170535.
    PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535
    Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p 
    Matched MeSH terms: Animals
  17. Tek PPY, Ng CC
    Environ Monit Assess, 2024 Mar 19;196(4):382.
    PMID: 38502262 DOI: 10.1007/s10661-024-12508-2
    The accumulation of potentially toxic elements (PTEs) has raised public awareness due to harmful contamination to both human and marine creatures. This study was designed to determine the concentration of copper (Cu), zinc (Zn), cadmium (Cd), and nickel (Ni) in the intestine, kidney, muscle, gill, and liver tissues of local commercial edible fish, fourfinger threadfin (Eleutheronema tetradactylum), and black pomfret (Parastromateus niger) collected from Morib (M) and Kuala Selangor (KS). Among the studied PTEs, Cu and Zn were essential elements to regulate body metabolism with certain dosages required while Cd and Ni were considered as non-essential elements that posed chronic and carcinogenic risk. The concentration of PTEs in fish tissue samples was analyzed using flame atomic absorption spectrometry (F-AAS). By comparing the concentration of PTEs in fish tissues as a bioindicator, the environmental risk of Morib was more serious than Kuala Selangor because both fish species collected from Morib resulted in a higher PTEs concentration. For an average 62 kg adult with a fish ingestion rate (FIR) of 0.16 kg/person/day in Malaysia, the estimated weekly intake (EWI) of Cd from the consumption of E. tetradactylum (M: 0.0135 mg/kg; KS: 0.0134 mg/kg) and P. niger (M: 0.0140 mg/kg; KS: 0.0132 mg/kg) had exceeded the provisional tolerable weekly intake (Cd: 0.007 mg/kg) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and oral reference dose (ORD) values of Cd (0.001 mg/kg/day) as provided by the United States Environmental Protection Agency (USEPA) regional screening level, thus it posed chronic risks for daily basis consumption. Besides, the value of the carcinogenic risk of Cd (0.7-3 to 0.8-3) and Ni (0.5-3 to 0.6-3) were in between the acceptable range (10-6 to 10-4) of the health index that indicates a relatively low possibility cancer occurrence to the consumers in both Morib and Kuala Selangor. This study recommended FIR to be 0.80 kg/person/day to reduce the possibility of posing chronic and carcinogenic risks while at the same time obtaining the essential nutrients from the fish.
    Matched MeSH terms: Animals
  18. Twining JP, Sutherland C, Zalewski A, Cove MV, Birks J, Wearn OR, et al.
    Proc Natl Acad Sci U S A, 2024 Mar 19;121(12):e2312252121.
    PMID: 38466845 DOI: 10.1073/pnas.2312252121
    The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of "social" and "solitary" inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species' context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.
    Matched MeSH terms: Animals
  19. Zhao XF, Huang J, Li W, Wang SY, Liang LQ, Zhang LM, et al.
    Ecotoxicol Environ Saf, 2024 Mar 15;273:116160.
    PMID: 38432157 DOI: 10.1016/j.ecoenv.2024.116160
    High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.
    Matched MeSH terms: Animals
  20. Qin T, Ortega-Perez P, Wibbelt G, Lakim MB, Ginting S, Khoprasert Y, et al.
    Parasit Vectors, 2024 Mar 15;17(1):135.
    PMID: 38491403 DOI: 10.1186/s13071-024-06230-8
    BACKGROUND: The geographic distribution and host-parasite interaction networks of Sarcocystis spp. in small mammals in eastern Asia remain incompletely known.

    METHODS: Experimental infections, morphological and molecular characterizations were used for discrimination of a new Sarcocystis species isolated from colubrid snakes and small mammals collected in Thailand, Borneo and China.

    RESULTS: We identified a new species, Sarcocystis muricoelognathis sp. nov., that features a relatively wide geographic distribution and infects both commensal and forest-inhabiting intermediate hosts. Sarcocystis sporocysts collected from rat snakes (Coelognathus radiatus, C. flavolineatus) in Thailand induced development of sarcocysts in experimental SD rats showing a type 10a cyst wall ultrastructure that was identical with those found in Rattus norvegicus from China and the forest rat Maxomys whiteheadi in Borneo. Its cystozoites had equal sizes in all intermediate hosts and locations, while sporocysts and cystozoites were distinct from other Sarcocystis species. Partial 28S rRNA sequences of S. muricoelognathis from M. whiteheadi were largely identical to those from R. norvegicus in China but distinct from newly sequenced Sarcocystis zuoi. The phylogeny of the nuclear 18S rRNA gene placed S. muricoelognathis within the so-called S. zuoi complex, including Sarcocystis attenuati, S. kani, S. scandentiborneensis and S. zuoi, while the latter clustered with the new species. However, the phylogeny of the ITS1-region confirmed the distinction between S. muricoelognathis and S. zuoi. Moreover, all three gene trees suggested that an isolate previously addressed as S. zuoi from Thailand (KU341120) is conspecific with S. muricoelognathis. Partial mitochondrial cox1 sequences of S. muricoelognathis were almost identical with those from other members of the group suggesting a shared, recent ancestry. Additionally, we isolated two partial 28S rRNA Sarcocystis sequences from Low's squirrel Sundasciurus lowii that clustered with those of S. scandentiborneensis from treeshews.

    CONCLUSIONS: Our results provide strong evidence of broad geographic distributions of rodent-associated Sarcocystis and host shifts between commensal and forest small mammal species, even if the known host associations remain likely only snapshots of the true associations.

    Matched MeSH terms: Animals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links