Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Musa MI, Shohaimi S, Hashim NR, Krishnarajah I
    Geospat Health, 2012 Nov;7(1):27-36.
    PMID: 23242678
    Malaria remains a major health problem in Sudan. With a population exceeding 39 million, there are around 7.5 million cases and 35,000 deaths every year. The predicted distribution of malaria derived from climate factors such as maximum and minimum temperatures, rainfall and relative humidity was compared with the actual number of malaria cases in Sudan for the period 2004 to 2010. The predictive calculations were done by fuzzy logic suitability (FLS) applied to the numerical distribution of malaria transmission based on the life cycle characteristics of the Anopheles mosquito accounting for the impact of climate factors on malaria transmission. This information is visualized as a series of maps (presented in video format) using a geographical information systems (GIS) approach. The climate factors were found to be suitable for malaria transmission in the period of May to October, whereas the actual case rates of malaria were high from June to November indicating a positive correlation. While comparisons between the prediction model for June and the case rate model for July did not show a high degree of association (18%), the results later in the year were better, reaching the highest level (55%) for October prediction and November case rate.
    Matched MeSH terms: Anopheles/parasitology*
  2. Vythilingam I, Nitiavathy K, Yi P, Bakotee B, Hugo B, Singh B, et al.
    PMID: 10928352
    Dried Anopheles farauti mosquitos caught in Solomon Islands in 1990 were examined for malaria sporozoites by ELISA and nested polymerase chain reaction (PCR). Only heads and thoraces were used. Plasmodium genus-specific nested PCR amplifications were carried out on all samples. Of the 402 pools of mosquitos that were processed, 30 were positive for malaria. Nest 1 products of positive samples were subjected to further PCR amplifications with species-specific primers for P. falciparum and P. vivax. Twenty pools were positive for P. vivax by PCR while only 7 were positive by ELISA. For P. falciparum 2 pools were positive by both ELISA and PCR, and one of these was a pool which was positive for P. vivax by PCR and ELISA. Thus the sensitivity of PCR for P. vivax was 100% while the specificity was 96.7%. For P. falciparum the sensitivity and specificity were 100%. The PCR technique is highly sensitive and can be used on dried mosquitos which makes it a valuable tool for determining sporozoite rates of mosquitos, even in remote areas.
    Matched MeSH terms: Anopheles/parasitology*
  3. Cheong WH, Mahadevan S, Loong KP
    PMID: 373133
    Matched MeSH terms: Anopheles/parasitology
  4. Lee M, Harrison BA, Lewis GE
    Am J Trop Med Hyg, 1990 Apr;42(4):314-9.
    PMID: 2184690 DOI: 10.4269/ajtmh.1990.42.314
    A modified version of the standard 2-site sporozoite enzyme-linked immunosorbent assay (ELISA) using 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate chromogen solution was adapted for rapid detection and identification of Plasmodium falciparum and P. vivax circumsporozoite (CS) proteins. The TMB-ELISA was evaluated using sporozoites from experimentally infected mosquitoes and laboratory colonized uninfected mosquitoes. Our data indicate comparable sensitivity levels between the TMB-ELISA and the standard ELISA, i.e., 50 P. falciparum or P. vivax sporozoites/50 microliters of test solution. Reactions inherent to the method were specific and background reactivity was minimal. The TMB-ELISA is rapid (1 hr), simple, uses a minimal amount of monoclonal antibodies, and is suitable for use in a wide range of laboratories.
    Matched MeSH terms: Anopheles/parasitology
  5. Bamou R, Mayi MPA, Djiappi-Tchamen B, Nana-Ndjangwo SM, Nchoutpouen E, Cornel AJ, et al.
    Parasit Vectors, 2021 Oct 11;14(1):527.
    PMID: 34635176 DOI: 10.1186/s13071-021-04950-9
    The expansion of mosquito-borne diseases such as dengue, yellow fever, and chikungunya in the past 15 years has ignited the need for active surveillance of common and neglected mosquito-borne infectious diseases. The surveillance should be designed to detect diseases and to provide relevant field-based data for developing and implementing effective control measures to prevent outbreaks before significant public health consequences can occur. Mosquitoes are important vectors of human and animal pathogens, and knowledge on their biodiversity and distribution in the Afrotropical region is needed for the development of evidence-based vector control strategies. Following a comprehensive literature search, an inventory of the diversity and distribution of mosquitoes as well as the different mosquito-borne diseases found in Cameroon was made. A total of 290 publications/reports and the mosquito catalogue website were consulted for the review. To date, about 307 species, four subspecies and one putative new species of Culicidae, comprising 60 species and one putative new species of Anopheles, 67 species and two subspecies of Culex, 77 species and one subspecies of Aedes, 31 species and one subspecies of Eretmapodites, two Mansonia, eight Coquillettidia, and 62 species with unknown medical and veterinary importance (Toxorhynchites, Uranotaenia, Mimomyia, Malaya, Hodgesia, Ficalbia, Orthopodomyia, Aedeomyia, and Culiseta and Lutzia) have been collected in Cameroon. Multiple mosquito species implicated in the transmission of pathogens within Anopheles, Culex, Aedes, Eretmapodites, Mansonia, and Coquillettidia have been reported in Cameroon. Furthermore, the presence of 26 human and zoonotic arboviral diseases, one helminthic disease, and two protozoal diseases has been reported. Information on the bionomics, taxonomy, and distribution of mosquito species will be useful for the development of integrated vector management programmes for the surveillance and elimination of mosquito-borne diseases in Cameroon.
    Matched MeSH terms: Anopheles/parasitology
  6. Hii JL, Kan S, Foh CK, Chan MK
    Trans R Soc Trop Med Hyg, 1984;78(2):281-2.
    PMID: 6380019
    Matched MeSH terms: Anopheles/parasitology*
  7. Singh RK, Haq S, Kumar G, Dhiman RC
    J Commun Dis, 2013 Mar-Jun;45(1-2):1-16.
    PMID: 25141549
    Anopheles annularis is widely distributed mosquito species all over the country. An. annularis has been incriminated as a malaria vector in India, Sri Lanka, Bangladesh, Myanmar, Indonesia, Malaysia and China. In India, it has been reported to play an important role in malaria transmission as a secondary vector in certain parts of Assam, West Bengal and U.P. In Odisha and some neighbouring countries such as Sri Lanka, Nepal and Myanmar it has been recognised as a primary vector of malaria. This is a species complex of two sibling species A and B but the role of these sibling species in malaria transmission is not clearly known. An. annularis is resistant to DDT and dieldrin/HCH and susceptible to malathion and synthetic pyrethorides in most of the parts of India. In view of rapid change in ecological conditions, further studies are required on the bionomics of An. annularis and its role in malaria transmission in other parts of the country. Considering the importance of An. annularis as a malaria vector, the bionomics and its role in malaria transmission has been reviewed in this paper. In this communication, an attempt has been made to review its bionomics and its role as malaria vector. An. annularis is a competent vector of malaria, thus, due attention should be paid for its control under the vector control programmes specially in border states where it is playing a primary role in malaria transmission.
    Matched MeSH terms: Anopheles/parasitology*
  8. Tan CH, Vythilingam I, Matusop A, Chan ST, Singh B
    Malar J, 2008;7:52.
    PMID: 18377652 DOI: 10.1186/1475-2875-7-52
    A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit.
    Matched MeSH terms: Anopheles/parasitology*
  9. Marin-Mogollon C, van Pul FJA, Miyazaki S, Imai T, Ramesar J, Salman AM, et al.
    Malar J, 2018 Aug 09;17(1):288.
    PMID: 30092798 DOI: 10.1186/s12936-018-2431-1
    BACKGROUND: Rodent malaria parasites where the gene encoding circumsporozoite protein (CSP) has been replaced with csp genes from the human malaria parasites, Plasmodium falciparum or Plasmodium vivax, are used as pre-clinical tools to evaluate CSP vaccines in vivo. These chimeric rodent parasites produce sporozoites in Anopheles stephensi mosquitoes that are capable of infecting rodent and human hepatocytes. The availability of chimeric P. falciparum parasites where the pfcsp gene has been replaced by the pvcsp would open up possibilities to test P. vivax CSP vaccines in small scale clinical trials using controlled human malaria infection studies.

    METHODS: Using CRISPR/Cas9 gene editing two chimeric P. falciparum parasites, were generated, where the pfcsp gene has been replaced by either one of the two major pvcsp alleles, VK210 or VK247. In addition, a P. falciparum parasite line that lacks CSP expression was also generated. These parasite lines have been analysed for sporozoite production in An. stephensi mosquitoes.

    RESULTS: The two chimeric Pf-PvCSP lines exhibit normal asexual and sexual blood stage development in vitro and produce sporozoite-containing oocysts in An. stephensi mosquitoes. Expression of the corresponding PvCSP was confirmed in oocyst-derived Pf-PvCSP sporozoites. However, most oocysts degenerate before sporozoite formation and sporozoites were not found in either the mosquito haemocoel or salivary glands. Unlike the chimeric Pf-PvCSP parasites, oocysts of P. falciparum parasites lacking CSP expression do not produce sporozoites.

    CONCLUSIONS: Chimeric P. falciparum parasites expressing P. vivax circumsporozoite protein fail to produce salivary gland sporozoites. Combined, these studies show that while PvCSP can partially complement the function of PfCSP, species-specific features of CSP govern full sporozoite maturation and development in the two human malaria parasites.

    Matched MeSH terms: Anopheles/parasitology*
  10. Vythilingam I, Wong ML, Wan-Yussof WS
    Parasitology, 2018 01;145(1):32-40.
    PMID: 27222102 DOI: 10.1017/S0031182016000901
    Plasmodium knowlesi a simian malaria parasite is currently affecting humans in Southeast Asia. Malaysia has reported the most number of cases and P. knowlesi is the predominant species occurring in humans. The vectors of P. knowlesi belong to the Leucosphyrus group of Anopheles mosquitoes. These are generally described as forest-dwelling mosquitoes. With deforestation and changes in land-use, some species have become predominant in farms and villages. However, knowledge on the distribution of these vectors in the country is sparse. From a public health point of view it is important to know the vectors, so that risk factors towards knowlesi malaria can be identified and control measures instituted where possible. Here, we review what is known about the knowlesi malaria vectors and ascertain the gaps in knowledge, so that future studies could concentrate on this paucity of data in-order to address this zoonotic problem.
    Matched MeSH terms: Anopheles/parasitology
  11. Marzhuki MI, Tham AS, Poovaneswari S
    PMID: 7973937
    The Filariasis Control Program was established more than 30 years ago in the country and the disease is still a public health problem in some states. Since 1983, a total of 17 filariasis control teams were formed throughout the country to carry out filariasis control work. The teams conduct house and population censuses, nocturnal mass blood surveys and treatment of microscopically confirmed cases. Individual case follow-up is being carried out after 3-5 months while the locality is resurveyed after about 2-3 years. During the years 1988 to 1990, there appeared to be a decreasing trend in the number of filariasis cases detected countrywide. In 1991, brugian filariasis accounted for 92% of the cases detected. The microfilaria rate (MFR) also showed a decreasing trend countrywide for the years 1988 (0.57%) to 1990 (0.35%) but there was an increase in 1991 although it remained well below the 5% MFR targeted in the program objective, In 1991, the filariasis control teams and the district multi-purpose teams collected a total of 167, 151 blood slides out of which 871 were found to be positive for microfilaria. To determine the true endemicity of filariasis in the country, the malaria district multi-purpose teams are also utilized to assist in probe surveys in new areas of the district. Two species of filarial worms, namely Brugia malayi and Wuchereria bancrofti, and the mosquito vectors belonging to the Anopheles and Mansonia genera are involved in the transmission of filariasis in Malaysia. Monkeys and domestic cats are the reservoir hosts for the subperiodic strain of B. malayi.
    Matched MeSH terms: Anopheles/parasitology
  12. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Anopheles/parasitology
  13. Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ
    Parasit Vectors, 2019 Jul 25;12(1):364.
    PMID: 31345256 DOI: 10.1186/s13071-019-3627-0
    BACKGROUND: We investigated the effect of five common habitat types on the diversity and abundance of Anopheles spp. and on the biting rate and time of Anopheles balabacensis (currently the only known vector for Plasmodium knowlesi in Sabah) at Paradason village, Kudat, Sabah. The habitats were forest edge, playground area, longhouse, oil palm plantation and shrub-bushes area. Sampling of Anopheles was done monthly using the human landing catch method in all habitat types for 14 months (October 2013 to December 2014, excluding June 2014). The Anopheles species were morphologically identified and subjected to PCR assay for the detection of Plasmodium parasites. Generalised linear mixed models (GLMM) were applied to test the variation in abundance and biting rates of An. balabacensis in different habitat types.

    RESULTS: A total of 1599 Anopheles specimens were collected in the village, of which about 90% were An. balabacensis. Anopheles balabacensis was present throughout the year and was the dominant Anopheles species in all habitat types. The shrub bushes habitat had the highest Anopheles species diversity while forest edge had the greatest number of Anopheles individuals caught. GLMM analysis indicated that An. balabacensis abundance was not affected by the type of habitats, and it was more active during the early and late night compared to predawn and dawn. PCR assay showed that 1.61% of the tested An. balabacensis were positive for malaria parasites, most of which were caught in oil palm estates and infected with one to two Plasmodium species.

    CONCLUSIONS: The identification of infected vectors in a range of habitats, including agricultural and farming areas, illustrates the potential for humans to be exposed to P. knowlesi outside forested areas. This finding contributes to a growing body of evidence implicating environmental changes due to deforestation, expansion of agricultural and farming areas, and development of human settlements near to forest fringes in the emergence of P. knowlesi in Sabah.

    Matched MeSH terms: Anopheles/parasitology
  14. Yiallouros M, Storch V, Thiery I, Becker N
    J Am Mosq Control Assoc, 1994 Mar;10(1):51-5.
    PMID: 7912261
    Clostridium bifermentans serovar malaysia (C.b.m.) is highly toxic to mosquito larvae. In this study, the following aquatic nontarget invertebrates were treated with high C.b.m. concentrations (up to 1,600-fold the toxic concentration for Anopheles stephensi) to study their susceptibility towards the bacterial toxin: Planorbis planorbis (Pulmonata); Asellus aquaticus (Isopoda); Daphnia pulex (Cladocera); Cloeon dipterum (Ephemeroptera); Plea leachi (Heteroptera); and Eristalis sp., Chaoborus crystallinus, Chironomus thummi, and Psychoda alternata (Diptera). In addition, bioassays were performed with mosquito larvae (Aedes aegypti, Anopheles stephensi, and Culex pipiens). Psychoda alternata larvae were very susceptible, with LC50/LC90 values comparable to those of mosquito larvae (about 10(3)-10(5) spores/ml). The tests with Chaoborus crystallinus larvae showed significant mortality rates at high concentrations, but generally not before 4 or 5 days after treatment. The remaining nontarget organisms did not show any susceptibility. The investigation confirms the specificity of C.b.m. to nematocerous Diptera.
    Matched MeSH terms: Anopheles/parasitology
  15. Konradsen F, van der Hoek W, Amerasinghe FP, Mutero C, Boelee E
    Acta Trop, 2004 Jan;89(2):99-108.
    PMID: 14732233
    Traditionally, engineering and environment-based interventions have contributed to the prevention of malaria in Asia. However, with the introduction of DDT and other potent insecticides, chemical control became the dominating strategy. The renewed interest in environmental-management-based approaches for the control of malaria vectors follows the rapid development of resistance by mosquitoes to the widely used insecticides, the increasing cost of developing new chemicals, logistical constraints involved in the implementation of residual-spraying programs and the environmental concerns linked to the use of persistent organic pollutants. To guide future research and operational agendas focusing on environmental-control interventions, it is necessary to learn from the successes and failures from the time before the introduction of insecticides. The objective of this paper is to describe the experiences gained in Asia with early vector control interventions focusing on cases from the former Indian Punjab, Malaysia and Sri Lanka. The paper deals primarily with the agricultural engineering and land and water management vector control interventions implemented in the period 1900-1950. The selected cases are discussed in the wider context of environment-based approaches for the control of malaria vectors, including current relevance. Clearly, some of the interventions piloted and implemented early in the last century still have relevance today but generally in a very site-specific manner and in combination with other preventive and curative activities. Some of the approaches followed earlier on to support implementation would not be acceptable or feasible today, from a social or environmental point of view.
    Matched MeSH terms: Anopheles/parasitology
  16. Jiram AI, Vythilingam I, NoorAzian YM, Yusof YM, Azahari AH, Fong MY
    Malar J, 2012;11:213.
    PMID: 22727041
    The first natural infection of Plasmodium knowlesi in humans was recorded in 1965 in peninsular Malaysia. Extensive research was then conducted and it was postulated that it was a rare incident and that simian malaria will not be easily transmitted to humans. However, at the turn of the 21st century, knowlesi malaria was prevalent throughout Southeast Asia and is life threatening. Thus, a longitudinal study was initiated to determine the vectors, their seasonal variation and preference to humans and macaques.
    Matched MeSH terms: Anopheles/parasitology*
  17. Vythilingam I, Sidavong B, Chan ST, Phonemixay T, Vanisaveth V, Sisoulad P, et al.
    Trans R Soc Trop Med Hyg, 2005 Nov;99(11):833-9.
    PMID: 16112154
    Surveys were conducted in malaria-endemic villages in the southern province of Attapeu, Lao PDR during various seasons over a 3-year period. All-night mosquito landing collections, blood surveys and a case-control study were conducted. Plasmodium falciparum was the predominant species, and slide positivity rates were higher during the transition/dry season compared with the wet season. Anopheles dirus A was found to be the primary vector, and sporozoite rates were highest during the transition/dry season. Anopheles dirus was found to be endophagic and endophilic. Not using insecticide-treated bed nets, houses close to breeding sites and sleeping away from home were risk factors associated with malaria.
    Matched MeSH terms: Anopheles/parasitology
  18. Jeyaprakasam NK, Pramasivan S, Liew JWK, Van Low L, Wan-Sulaiman WY, Ngui R, et al.
    Parasit Vectors, 2021 Apr 01;14(1):184.
    PMID: 33794965 DOI: 10.1186/s13071-021-04689-3
    BACKGROUND: Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods.

    METHODS: A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the "gold standard" HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria.

    RESULTS: The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P 

    Matched MeSH terms: Anopheles/parasitology*
  19. Southgate BA, Bryan JH
    Trans R Soc Trop Med Hyg, 1992 9 1;86(5):523-30.
    PMID: 1475823
    Quantitative understanding of the transmission dynamics of lymphatic filarial parasites is essential for the rational planning of control strategies. One of the most important determinants of transmission dynamics is the relationship between parasite yield, the success rate of ingested microfilariae (mf) becoming infective larvae in a mosquito vector, and mf density in the source of the human blood meal. Three types of relationship have been recognized in human filaria/mosquito couples--limitation, facilitation and proportionality; facilitation has hitherto been observed only in the couple Wuchereria bancrofti/Anopheles gambiae in Burkina Faso, in experimental studies on a high density mf carrier. The present paper demonstrates facilitation in W. bancrofti/An. gambiae and W. bancrofti/An. arabiensis in lower mf density carriers in The Gambia and Tanzania, and in W. bancrofti/An. funestus in Tanzania. Facilitation was not found in An. melas in The Gambia nor in An. merus in Tanzania. Analysis of published data shows limitation at low level mf densities in W. bancrofti/Culex quinquefasciatus in Sri Lanka, and in the same couple in India. Limitation also occurs in Brugia malayi/Aedes togoi in experimental cats; proportionality occurs in B. malayi/Mansonia bonneae in Malaysia. The epidemiological significance of these host/parasite relationships is discussed, and supporting evidence for its validity is presented from the published results of large-scale control programmes.
    Matched MeSH terms: Anopheles/parasitology*
  20. Chua CLL, Ng IMJ, Yap BJM, Teo A
    Malar J, 2021 Jul 16;20(1):319.
    PMID: 34271941 DOI: 10.1186/s12936-021-03849-1
    There are seven known species of Plasmodium spp. that can infect humans. The human host can mount a complex network of immunological responses to fight infection and one of these immune functions is phagocytosis. Effective and timely phagocytosis of parasites, accompanied by the activation of a regulated inflammatory response, is beneficial for parasite clearance. Functional studies have identified specific opsonins, particularly antibodies and distinct phagocyte sub-populations that are associated with clinical protection against malaria. In addition, cellular and molecular studies have enhanced the understanding of the immunological pathways and outcomes following phagocytosis of malaria parasites. In this review, an integrated view of the factors that can affect phagocytosis of infected erythrocytes and parasite components, the immunological consequences and their association with clinical protection against Plasmodium spp. infection is provided. Several red blood cell disorders and co-infections, and drugs that can influence phagocytic capability during malaria are also discussed. It is hoped that an enhanced understanding of this immunological process can benefit the design of new therapeutics and vaccines to combat this infectious disease.
    Matched MeSH terms: Anopheles/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links