Displaying publications 1 - 20 of 88 in total

Abstract:
Sort:
  1. Farooq AV, Gibbons AG, Council MD, Harocopos GJ, Holland S, Judelson J, et al.
    Am J Ophthalmol, 2017 Feb;174:119-125.
    PMID: 27793603 DOI: 10.1016/j.ajo.2016.10.007
    PURPOSE: To report a series of patients who developed corneal toxicity after exposure to aquarium coral palytoxin.

    DESIGN: Multicenter retrospective case series.

    METHODS: Retrospective review.

    RESULTS: Seven patients presented with corneal findings ranging from superficial punctate epitheliopathy to bilateral corneal melt with subsequent perforation. Among those with mild corneal findings, resolution was achieved with topical steroids and lubrication, whereas some patients who developed progressive corneal melt required therapeutic penetrating keratoplasty. The history in all patients revealed exposure to aquarium zoanthid corals shortly before disease onset. A review of the literature revealed that there are few prior reports of coral-associated corneal toxicity and that some species of coral secrete a substance known as palytoxin, a potent vasoconstrictor that inhibits the membranous sodium-potassium ATPase pump across cell types and can cause rapid death if inhaled or ingested.

    CONCLUSIONS: This is the largest case series to date demonstrating patients with aquarium coral palytoxin-associated corneal toxicity, and is the first to provide details of related histopathologic findings. Similar to other forms of toxic keratoconjunctivitis, a detailed history and careful clinical assessment are required, as well as timely removal of the offending agent from the patients' ocular milieu and environment. Mild ocular surface and corneal disease may be treated effectively with aggressive topical steroid therapy and lubrication. Given the potential severity of ocular as well as systemic adverse effects, there should be increased awareness of this entity among eye care professionals, aquarium enthusiasts, and the general public.

    Matched MeSH terms: Anthozoa/chemistry*
  2. Poli A, Romano I, Mastascusa V, Buono L, Orlando P, Nicolaus B, et al.
    Antonie Van Leeuwenhoek, 2018 Jul;111(7):1105-1115.
    PMID: 29299771 DOI: 10.1007/s10482-017-1013-5
    Strain Corallo1T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, β-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1T. A draft genome sequence of strain Corallo1T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1T are C16:1, n-C16:0 and C18:1, and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1T (= DSM 27495T = CIP 110630T).
    Matched MeSH terms: Anthozoa/microbiology*
  3. Flot JF, Blanchot J, Charpy L, Cruaud C, Licuanan WY, Nakano Y, et al.
    BMC Ecol, 2011 Oct 04;11:22.
    PMID: 21970706 DOI: 10.1186/1472-6785-11-22
    BACKGROUND: Morphological data suggest that, unlike most other groups of marine organisms, scleractinian corals of the genus Stylophora are more diverse in the western Indian Ocean and in the Red Sea than in the central Indo-Pacific. However, the morphology of corals is often a poor predictor of their actual biodiversity: hence, we conducted a genetic survey of Stylophora corals collected in Madagascar, Okinawa, the Philippines and New Caledonia in an attempt to find out the true number of species in these various locations.

    RESULTS: A molecular phylogenetic analysis of the mitochondrial ORF and putative control region concurs with a haploweb analysis of nuclear ITS2 sequences in delimiting three species among our dataset: species A and B are found in Madagascar whereas species C occurs in Okinawa, the Philippines and New Caledonia. Comparison of ITS1 sequences from these three species with data available online suggests that species C is also found on the Great Barrier Reef, in Malaysia, in the South China Sea and in Taiwan, and that a distinct species D occurs in the Red Sea. Shallow-water morphs of species A correspond to the morphological description of Stylophora madagascarensis, species B presents the morphology of Stylophora mordax, whereas species C comprises various morphotypes including Stylophora pistillata and Stylophora mordax.

    CONCLUSIONS: Genetic analysis of the coral genus Stylophora reveals species boundaries that are not congruent with morphological traits. Of the four hypotheses that may explain such discrepancy (phenotypic plasticity, morphological stasis, morphological convergence, and interspecific hybridization), the first two appear likely to play a role but the fourth one is rejected since mitochondrial and nuclear markers yield congruent species delimitations. The position of the root in our molecular phylogenies suggests that the center of origin of Stylophora is located in the western Indian Ocean, which probably explains why this genus presents a higher biodiversity in the westernmost part of its area of distribution than in the "Coral Triangle".

    Matched MeSH terms: Anthozoa/anatomy & histology; Anthozoa/genetics*; Anthozoa/growth & development
  4. Qiu S, Chen B, Du J, Loh KH, Liao J, Liu X, et al.
    Biodivers Data J, 2021;9:e63945.
    PMID: 33732033 DOI: 10.3897/BDJ.9.e63945
    Background: The Xisha Islands are composed of the Yongle Islands and the Xuande Islands in Hainan Province, China. It has one of the highest species diversity in the world and is also a typical oceanic distribution area of coral reefs globally. The ichthyofauna of the Xisha Islands were recorded by underwater visual census in May 2019 and July 2020. The survey data were combined with previous records of species into the checklist of the Xisha Islands presented herein. A total of 691 species, belonging to 24 orders and 97 families, was recorded. The major families were Labridae, Pomacentridae, Serranidae, Chaetodontidae, Hexanchidae, Lutjanidae, Scaridae, Gobiidae, Scorpaenidae and Carangidae. In this study, the Coral Fish iversity Index (CFDI) of six families (Chaetodontidae, Pomacanthidae, Pomacentridae, Labridae, Scaridae and Acanthuridae) was 229, indicating 756 coral fishes. In terms of the IUCN Red List, one species is Critically Endangered (Glyphis gangeticus), six species are Endangered (Stegostoma fasciatum, Aetomylaeus maculatus, Aetomylaeus vespertilio, Epinephelus akaara, Cheilinusundulatus sp. and Xiphias gladius), 16 species are Vulnerable, and 13 species are Near Threatened in the Xisha Archipelago, so conservation should be strengthened in this area in the future.

    New information: One species is a new record for China (Dischistodus pseudochrysopoecilus) and 23 species are newly found in the Xisha Islands.

    Matched MeSH terms: Anthozoa
  5. B. Mabel Manjaji Matsumoto, Muhammad Ali Syed Hussein, Yee, Jean-Chai
    MyJurnal
    The central and north west coast of Sabah lies along the western extremity of the Coral Triangle, within which are situated several marine protected areas (MPAs). In the present study we determined in situ coral reef fish populations in several localities along the west coast of Sabah, by exploring species abundance, richness and diversity of ten economically important fish species. The underwater surveys were conducted from May to December 2015. During this eight- month period, surveys at each site were undertaken once every two months. Dives were conducted during the daylight hours. A total of 171 individuals from the targeted fish species were enumerated from the 349 still images and 220 minutes of video footage. Abundance was observed mainly in the semi-protected MPA (n=110) with only one fish species recorded with more than 2 individuals at protected MPA and unprotected sites. We observed a correlation between fish species richness and coral topographic complexity, with study sites at the semi-protected MPA having the most complex topography landscape, and accordingly recording the highest Shannon-Wiener index (H= 2.85). Higher abundance recorded at study sites in the unprotected sites and semi-protected MPA indicate that such areas could potentially become de facto MPAs. A long-term monitoring, assessment and evaluation of the multiple degrees of variables involved such as length-weight relationship, type of habitat, variation in depth, and species behaviour are recommended in order to understand better the relationship and dynamics between these variables.
    Matched MeSH terms: Anthozoa
  6. Chen, Nuo-Geng, Ejria Saleh, Yap, Tzuen-Kiat, Irwan Isnain
    MyJurnal
    Selingan Island off Sandakan, Sabah is a famous turtle nesting ground and a part of the Turtle Islands Park (TIP) within the Coral Triangle region of Malaysia. This small island faces the serious problem of beach erosion that is reducing the turtle nesting area. Sabah Parks deployed stone revetments in 2005, followed by placement of reef balls at the southern part of the Selingan Island in 2007 for protecting the shoreline. The objective of this study was to determine the effectiveness of these measures for shoreline protection. Shoreline changes were determined from satellite images, beach profiling and field observations. Satellite images from 2010 to 2016 were obtained from Google Earth Pro analyzed to examine the changes in the shape and size of the island with QGIS software. Beach profiling was performed in December 2017 at three sites and compared with the condition in 2011. The findings indicated that the shape of the island was squeezed towards the east where the reef balls were located. The size of the island has not changed much in 9 years after the deployment of the reef balls, but a high volume of sediments accumulated at the south due to the presence of shoreline protection. Generally, the man-made structures in Selingan Island are effective in trapping the sediment and providing more nesting area for turtles. It is recommended that the shoreline dynamics of the island should be regularly monitored for better understanding of the changes and taking appropriate actions.
    Matched MeSH terms: Anthozoa
  7. Shahbudin Saad, Fikri Ahmad Khodzori
    MyJurnal
    The number of endangered coral species is increasing over the past decades due to multiple stresses and threats. Euphylliidae corals are among the species heavily targeted for the marine aquarium trade due to their colourful appearance and aesthetic importance. However, their distribution in Peninsular Malaysia has not been thoroughly investigated. Present study aims to investigate the diversity and abundance patterns of euphylliid species at 36 reef sites in Marine Protected Areas of Tioman, Redang and Payar Islands. Video transect surveyed a total of 671 euphylliids individuals belonging to six species from three genera. The diversity and evenness indices of euphylliids were significantly higher (P
    Matched MeSH terms: Anthozoa
  8. Rahman I, Al-Bar AA, Richard FS, Müller M, Mujahid A
    Can J Microbiol, 2021 Jul;67(7):548-552.
    PMID: 33417515 DOI: 10.1139/cjm-2020-0287
    Vibrio coralliilyticus, a prominent pathogenic bacteria, is known to cause tissue damage in the coral Pocillopora damicornis and is attracted towards the coral via chemotaxis. However, the potential of V. coralliilyticus to infect most of the other coral hosts via chemotaxis is unknown. In this study, we used capillary assays to quantify the chemotactic response of V. coralliilyticus to the mucus of four tank-cultivated coral species (Cataphyllia jardine, Mussidae sp., Nemenzophyllia turbida, and Euphyllia ancora), and mucus from three wild coral species (Acropora sp., Porites sp., and Montipora sp.). The bacteria showed a positive chemotactic response to each coral mucus tested, with the highest response recorded to the mucus of Acropora sp. and the lowest response to the mucus of Montipora sp. A microfluidic chip was then used to assess the chemotactic preference of V. coralliilyticus to the mucus of the tank cultivated corals. Here too, the bacterium showed positive response, but with a slightly different ranking order. The strong chemotactic response of V. coralliilyticus towards the mucus tested could indicate a broader host range of V. coralliilyticus, and by extension, indicate a threat to weakened coral reefs worldwide.
    Matched MeSH terms: Anthozoa/classification; Anthozoa/metabolism; Anthozoa/microbiology*
  9. Abraham Gabriel A, Yee-Nin ST, Adamu L, Hassan HMD, Wahid AH
    Case Rep Vet Med, 2018;2018:5048948.
    PMID: 29955436 DOI: 10.1155/2018/5048948
    Trauma is a common problem in Cownose Ray during mating season in both wild and captive rays. Enucleation is indicated when there is an ocular trauma. A 5-year-old female Cownose Ray (Rhinoptera bonasus) from Aquaria of Kuala Lumpur Convention Centre (KLCC) was presented to University Veterinary Hospital (UVH), Universiti Putra Malaysia, with a complaint of protruding left eye, which resulted from crushing into artificial coral during mating season. There were a hyphema in the traumatic left eye, periorbital tissue tear, exposed left eye socket, and multiple abrasions on both pectoral fins. The Cownose was anaesthetized and maintained with isoeugenol and on-field emergency enucleation of the left eye was performed. It was managed medically with postoperative enrofloxacin, tobramycin ointment, and povidone iodine. No suture breakdown and secondary infection were observed at day 7 after enucleation during revisit. At day 24 after enucleation, the Cownose responded well to treatment with excellent healing progression and no surgical complication was observed.
    Matched MeSH terms: Anthozoa
  10. Chan YKS, Affendi YA, Ang PO, Baria-Rodriguez MV, Chen CA, Chui APY, et al.
    Commun Biol, 2023 Jun 10;6(1):630.
    PMID: 37301948 DOI: 10.1038/s42003-023-05000-z
    Coral reefs in the Central Indo-Pacific region comprise some of the most diverse and yet threatened marine habitats. While reef monitoring has grown throughout the region in recent years, studies of coral reef benthic cover remain limited in spatial and temporal scales. Here, we analysed 24,365 reef surveys performed over 37 years at 1972 sites throughout East Asia by the Global Coral Reef Monitoring Network using Bayesian approaches. Our results show that overall coral cover at surveyed reefs has not declined as suggested in previous studies and compared to reef regions like the Caribbean. Concurrently, macroalgal cover has not increased, with no indications of phase shifts from coral to macroalgal dominance on reefs. Yet, models incorporating socio-economic and environmental variables reveal negative associations of coral cover with coastal urbanisation and sea surface temperature. The diversity of reef assemblages may have mitigated cover declines thus far, but climate change could threaten reef resilience. We recommend prioritisation of regionally coordinated, locally collaborative long-term studies for better contextualisation of monitoring data and analyses, which are essential for achieving reef conservation goals.
    Matched MeSH terms: Anthozoa*
  11. Bachok Z, Safuan CDM, Roseli NH, Akhir MF
    Data Brief, 2020 Oct;32:106182.
    PMID: 32923531 DOI: 10.1016/j.dib.2020.106182
    This article provides raw datasets of the coral reefs status in Pulau Bidong, southern of South China Sea before and after being strike by the tropical storm Pabuk on January 2019. Data were collected using a rapid coral survey method called Coral Video Transect (CVT) technique. The data were collected along a 100 m transect line set up parallel to the shoreline and at a constant depth. In total, eight transects were surveyed during both periods (pre - August 2016, post - March 2019). Back in laboratory, the footage was then extracted into non-overlapping frames or still images prior to image analysis using Coral Point Count with Excel Extension (CPCe) software. The benthic coral reefs relative percentage cover was automatically generated after the image analysis and represented by five major categories; live coral (C), algae (ALG), other invertebrates (OT), dead coral (DC), and sand silt and rock (SR). Live coral cover was identified up to the genus level. This raw dataset was used in this article. The data provided in this article could be of significant use for future studies especially on coral recovery after the natural disturbances. It can provide a baseline assessment especially for coral reefs management as well as to comprehend changes in coral health status in the face of natural and anthropogenic disturbances. The data presented here support the information in the article Safuan et al. (2020).
    Matched MeSH terms: Anthozoa
  12. Rahman MNIA, Jeofry H, Basarian MS
    Data Brief, 2020 Oct;32:106194.
    PMID: 32904202 DOI: 10.1016/j.dib.2020.106194
    The survey data on potential aquifer was collected at two sites located in Banggi Island (i.e. Laksian Primary School [LPS] and Padang Primary School [PPS]), Malaysia on 25 and 26 April 2013. Both locations are geologically surrounded by various types of lithologies, namely, sandstone, mudstone, siltstone, shale, chert, conglomerate, lignite, tuff, limestone, terrace sand, gravel and coral. The resistivity data consisted of six-line pole-dipole short arrays and were recorded in-situ using SAS 4000 ABEM Lund Imaging System, together with a relay switching unit (Electrode Selector ES 464), six multiconductor cables, steel rod electrodes and jumpers. The data, namely electrode spacing, depth of investigation, subsurface resistivity, type of material and horizontal data coverage were used to assess the characteristics of the potential aquifer. The recorded data were then processed using RES2DINV software to obtain 2-D inversion model of the subsurface. The data were also equipped with six models of inverse resistivity section for both areas. The data obtained can be used by the government and stakeholders for groundwater exploration and extraction in order to provide water supplies for local communities, especially since access to these resources from the surrounding water treatment plants on the island is limited.
    Matched MeSH terms: Anthozoa
  13. Okomoda VT, Nurul ANA, Danish-Daniel AM, Oladimeji AS, Abol-Munafi AB, Alabi KI, et al.
    Data Brief, 2020 Oct;32:106120.
    PMID: 32817873 DOI: 10.1016/j.dib.2020.106120
    The Labroides dimidiatus is known as the "doctor fish" because of its role in removing parasites and infectious pathogens from the body of other fishes. This important role played both in wild and captive conditions could represent a novel form of parasitic transmission process mediated by the cleaning activity of the fish. Yet, there is a paucity of data on the microflora associated with this fish which is important for tracking disease infection and generally monitoring the health status of the fish. This article, therefore, represents the first dataset for the microbiota composition of wild and captive L. dimidiatus. Wild fish samples and carriage water were gotten in Terengganu Malaysia around the corals of the Karah Island. The captive sample, however, was obtained from well-known ornamental fish suppliers in Terengganu Malaysia. Thereafter, bacteria present on the skin, in the stomach and the aquarium water were enumerated using culture-independent approaches and Next Generation Sequencing (NGS) technology. Data obtained from the three metagenomic libraries using NGS analysis gave 1,426,740 amplicon sequence reads which are composed of 508 operational taxonomic units (OTUs) for wild samples and 3,238,564 valid reads and 828 OTUs for captive samples. All sequence reads were deposited in the GeneBank (Accession numbers SAMN14260247, SAMN14260248, SAMN14260249, SAMN14260250, SAMN14260251, and SAMN14260252). The dataset presented is associated with the research article "16S rDNA-Based Metagenomic Analysis of Microbial Communities Associated with Wild Labroides dimidiatus From Karah Island, Terengganu, Malaysia" [1]. The microbiota data presented in this article can be used to monitor the health and wellbeing of the ornamental fish, especially under captivity, hence preventing possible cross-infection.
    Matched MeSH terms: Anthozoa
  14. Hamid R, Ahmad A, Usup G
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17269-76.
    PMID: 27221587 DOI: 10.1007/s11356-016-6655-8
    A study was carried out to determine the pathogenicity (hemolytic activity) on corals (Turbinaria sp.) and sea bass (Lates calcarifer) of Aeromonas hydrophila from water, sediment, and coral. Samples were collected from coastal water and coral reef areas. One hundred and sixty-two isolates were successfully isolated. Out of 162, 95 were from seawater, 49 from sediment, and 18 from coral. Sixteen isolates were picked and identified. Isolates were identified using a conventional biochemical test, the API 20NE kit, and 16S rRNA nucleotide sequences. Hemolytic activity was determined. Out of 16 isolates, 14 isolates were β-hemolytic and two isolates were non-hemolytic. Corals infected with A. hydrophila suffered bleaching. Similar effect was observed for both hemolytic and non-hemolytic isolates. Intramuscular injection of A. hydrophila into sea bass resulted in muscular bleeding and death. Higher infection rates were obtained from hemolytic compared to non-hemolytic strains of A. hydrophila isolates.
    Matched MeSH terms: Anthozoa/microbiology*
  15. Sharifinia M, Afshari Bahmanbeigloo Z, Smith WO, Yap CK, Keshavarzifard M
    Glob Chang Biol, 2019 Dec;25(12):4022-4033.
    PMID: 31436851 DOI: 10.1111/gcb.14808
    Due to extremely high rates of evaporation and low precipitation in the Persian Gulf, discharges from desalination plants (DPs) can lead to ecological stresses by increasing water temperatures, salinities, and heavy metal concentrations, as well as decreasing dissolved oxygen levels. We discuss the potential ecological impacts of DPs on marine organisms and propose mitigating measures to reduce the problems induced by DPs discharges. The daily capacity of DPs in the Persian Gulf exceeds 11 million m3 per day, which is approximately half of global daily freshwater production; multistage flash distillation (MSF) is the dominant desalination process. Results from field and laboratory studies indicate that there are potentially serious and chronic threats to marine communities following exposure to DP discharges, especially within the zoobenthos, echinodermata, seagrasses, and coral reefs. DP discharges can lead to decreases in sensitive species, plankton abundance, hard substrate epifauna, and growth rates of seagrasses. However, the broad applicability of any one of these impacts is currently hard to scale because of the limited number of studies that have been conducted to assess the ecological impacts of DP discharge on Persian Gulf organisms. Even so, available data suggest that appropriately sited, designed, and operated DPs combined with current developments in impingement and entrainment reduction technology can mitigate many of the negative environmental impacts of DPs.
    Matched MeSH terms: Anthozoa*
  16. Herrera M, Klein SG, Schmidt-Roach S, Campana S, Cziesielski MJ, Chen JE, et al.
    Glob Chang Biol, 2020 Jul 06.
    PMID: 32627905 DOI: 10.1111/gcb.15263
    Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co-evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here, we evaluate how interchanging partners affect the short- and long-term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.
    Matched MeSH terms: Anthozoa
  17. Shodipo MO, Sikkel PC, Smit NJ, Hadfield KA
    Int J Parasitol Parasites Wildl, 2021 Apr;14:355-367.
    PMID: 33898237 DOI: 10.1016/j.ijppaw.2021.03.004
    Due to their unusual life cycle that includes parasitic larval and free living adult stages, gnathiid isopods are typically overlooked in biodiversity surveys, even those that focus on parasites. While the Philippines sits within the region of highest marine biodiversity in the world, the coral triangle, no gnathiid species have been identified or described from that region. Here we present the first records of two gnathiid species collected from the Visayas, central Philippines: Gnathia malaysiensis Müller, 1993, previously described from Malaysia, and G. camuripenis Tanaka, 2004, previously described from southern Japan. This paper provides detailed morphological redescriptions, drawings and scanning electron microscope images as well as the first molecular characterisation of both species, Furthermore, a summary of the Central-Indo Pacific Gnathia species is provided.
    Matched MeSH terms: Anthozoa
  18. Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, Murali MR, Merican AM, Kamarul T
    Int J Med Sci, 2013;10(12):1608-14.
    PMID: 24151432 DOI: 10.7150/ijms.6496
    The objective of this study was to compare the morphological and chemical composition of bone graft (BG) and coral graft (CG) as well as their osteogenic differentiation potential using rabbit mesenchymal stem cells (rMSCs) in vitro. SEM analysis of BG and CG revealed that the pores in these grafts were interconnected, and their micro-CT confirmed pore sizes in the range of 107-315 µm and 103-514 µm with a total porosity of 92% and 94%, respectively. EDS analysis indicated that the level of calcium in CG was relatively higher than that in BG. FTIR of BG and CG confirmed the presence of functional groups corresponding to carbonyl, aromatic, alkyl, and alkane groups. XRD results revealed that the phase content of the inorganic layer comprised highly crystalline form of calcium carbonate and carbon. Atomic force microscopy analysis showed CG had better surface roughness compared to BG. In addition, significantly higher levels of osteogenic differentiation markers, namely, alkaline phosphatase (ALP), Osteocalcin (OC) levels, and Osteonectin and Runx2, Integrin gene expression were detected in the CG cultures, when compared with those in the BG cultures. In conclusion, our results demonstrate that the osteogenic differentiation of rMSCs is relatively superior in coral graft than in bone graft culture system.
    Matched MeSH terms: Anthozoa/cytology*; Anthozoa/chemistry
  19. Omar NS, Kannan TP, Ismail AR, Abdullah SF, Samsudin AR, Hamid SS
    Int J Toxicol, 2011 Aug;30(4):443-51.
    PMID: 21540334 DOI: 10.1177/1091581811399474
    This study aimed to evaluate the in vitro cytotoxic effects of locally produced processed natural coral (PNC) using human osteoblasts (HOS). Cytotoxicity was not observed when HOS cells were cultured with PNC, as assessed by (3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyl tetrazolium bromide; MTT) and Neutral Red (NR) assays at concentration up 200 mg/mL for up to 72 hours. Flow cytometry (FCM) analysis showed that PNC (200 mg/mL) did not decrease viability of HOS cells after 48 and 72 hours of treatment. In a cell attachment study, the HOS cells attached to the edge of the PNC disc, and later grew into the pores of the PNC disc. All results from these studies indicate that locally produced PNC material is noncytotoxic and favors the growth of HOS cells.
    Matched MeSH terms: Anthozoa*
  20. Ishii T, Kamada T, Vairappan CS
    J Asian Nat Prod Res, 2016 May;18(5):415-22.
    PMID: 26983053 DOI: 10.1080/10286020.2016.1145670
    Three new cembranoid diterpenes, 10-hydroxy-nephthenol acetate (1), 7,8-epoxy-10-hydroxy-nephthenol acetate (2), and 6-acetoxy-7,8-epoxy-10-hydroxy-nephthenol acetate (3), along with a known compound, 6-acetoxy-7,8-epoxy-nephthenol acetate (4), were isolated from the Bornean soft coral Nephthea sp. Antibacterial and anticancer activities were exhibited by compounds 1 and 2 against Staphylococcus aureus (ATCC 6538)/Escherichia coli (ATCC 13311) and Hela/MCF-7, respectively.
    Matched MeSH terms: Anthozoa/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links