Displaying publications 1 - 20 of 2172 in total

Abstract:
Sort:
  1. Nathan AM, de Bruyne JA
    Indian J Pediatr, 2015 Jul;82(7):660-1.
    PMID: 25514886 DOI: 10.1007/s12098-014-1640-z
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  2. Nathan AM, Teh CSJ, Eg KP, Jabar KA, Zaki R, Hng SY, et al.
    Pediatr Pulmonol, 2020 02;55(2):407-417.
    PMID: 31846223 DOI: 10.1002/ppul.24598
    INTRODUCTION: Respiratory tract infections in children can result in respiratory sequelae. We aimed to determine the prevalence of, and factors associated with persistent respiratory sequelae 1 year after admission for a lower respiratory tract infection (LRTI).

    METHODOLOGY: This prospective cohort study involved children 1 month to 5-years-old admitted with an LRTI. Children with asthma were excluded. Patients were reviewed at 1-, 6-, and 12-months post-hospital discharge. The parent cough-specific quality of life, the depression, anxiety, and stress scale questionnaire and cough diary for 1 month, were administered. Outcomes reviewed were number of unscheduled healthcare visits, respiratory symptoms and final respiratory diagnosis at 6 and/or 12 month-review by pediatric pulmonologists.

    RESULTS: Three hundred patients with a mean ± SD age of 14 ± 15 months old were recruited. After 1 month, 239 (79.7%) returned: 28.5% (n = 68/239) had sought medical advice and 18% (n = 43/239) had cough at clinic review. Children who received antibiotics in hospital had significantly lower total cough scores (P = .005) as per the cough diary. After 1 year, 26% (n = 78/300) had a respiratory problem, predominantly preschool wheezing phenotype (n = 64/78, 82.1%). Three children had bronchiectasis or bronchiolitis obliterans. The parent cough-specific quality of life (PCQOL) was significantly lower in children with respiratory sequelae (P 

    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  3. Abu Taha A, Abu-Zaydeh AH, Ardah RA, Al-Jabi SW, Sweileh WM, Awang R, et al.
    Zoonoses Public Health, 2016 09;63(6):449-57.
    PMID: 26752329 DOI: 10.1111/zph.12249
    Antibiotics are considered to be among the most commonly sold drug classes in Palestine. Resistance to antibiotics has increased for reasons relating to the use and misuse of antibiotics. The aim of this study was to evaluate the knowledge, and attitudes regarding antibiotic use and awareness about resistance among adults visiting the emergency departments at hospitals in North Palestine. A self-administered cross-sectional questionnaire survey involving participants aged 18 or over was conducted from June 2012 to February 2013. Adults who visited the emergency departments at hospitals in North Palestine were included. Demographic characteristics, knowledge and attitudes towards antibiotic use were included in the questionnaire. Poor and good knowledge were defined as a total knowledge score of 0-7 and 8-15 of 15 questions, respectively. Attitude scores of 0-3 and 4-7 of 7 questions were considered poor and good, respectively. A total of 375 questionnaires were included in the study. A response rate of 83.3% was attained. About 55.0% of the participants had a good knowledge and 56.5% had a good attitude towards rational antibiotic use. A significant positive correlation was shown between participants' knowledge scores and participants' attitude scores towards antibiotic use (R = 0.344, P = 0.001. Participants with a high family income were more likely to be aware of appropriate antibiotic use than participants with a low family income (P-value <0.001). Participants with a higher educational level (university) had a good attitude towards rational antibiotic use than those with a lower education level (P-value <0.001). This study has documented important knowledge and attitude gaps in antibiotic use. These findings will help health policymakers in Palestine to implement intervention programmes to rationalize antibiotic use. Continuing medical education, professional development and training workshops for healthcare professionals regarding rational use of antibiotics and health risks associated with the spread of antibiotic resistance are needed. In addition, minimizing non-prescription use of antibiotics and increasing the public awareness about the health and economic hazards of antibiotic resistance are also required.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  4. Tan WL, Siti R, Shahfini I, Zuraidah A
    Med J Malaysia, 2015 Oct;70(5):307-11.
    PMID: 26556121 MyJurnal
    BACKGROUND: Antibiotic resistance is a rising problem in Malaysia. For instance, high antibiotic prescribing rate for upper respiratory tract infection and inappropriate choice of antibiotic is a significant healthcare concern in Malaysia. Our main objective was to study knowledge, attitude and practice of antibiotic prescribing among medical officers in Kedah, Malaysia.
    METHODS: A cross sectional study was conducted in outpatient departments of health clinics and hospitals in Kedah from June 2013 until December 2013. Sample size was 118 and systematic sampling was conducted. Research tool used was a validated questionnaire from studies conducted in Congo and Peru.
    RESULTS: Response rate was 84.8%. Majority of our respondents were female doctors (71.0%), local graduates (63.0%), and practiced for 4 years or less (61.0%). 52.0% of the respondents prescribed antibiotics more than once daily. Mean knowledge score on antibiotics was 5.31 ±1.19 (95% CI: 5.06; 5.54). More than half (62.0%) of our respondents were confident in antibiotic prescribing and there were merely 18.0% of them consulted any colleagues prior to prescription. There was a significant difference in frequency of antibiotic prescribing between junior doctors and senior doctors (P-value: 0.036). In addition, there was also a significant association between frequency of antibiotic prescribing and awareness of antibiotic resistance in their daily practice. (P-value: 0.002).
    CONCLUSION: Knowledge on antibiotic was moderate among our medical officers and antibiotic prescribing was frequent. Training and courses on appropriate antibiotic prescribing should be emphasized to ensure the best practice in antibiotic prescription.
    Study site: Klinik Kesihatan, outpatient clinics, district hospital, general hospital, Kedah, Malaysia
    Matched MeSH terms: Anti-Bacterial Agents
  5. Vinuthinee N, Azreen-Redzal A, Juanarita J, Zunaina E
    Int Med Case Rep J, 2015;8:47-50.
    PMID: 25709507 DOI: 10.2147/IMCRJ.S75198
    We report a rare case of sling shot injury that presented with a gunshot-like wound with preseptal cellulitis, in a toddler. An 11-month-old Malay child presented with a gunshot-like wound over the forehead following sling shot injury. On examination, he had a deep circular laceration wound over the forehead, measuring 2.0 cm in diameter, with minimal bleeding. There was no obvious foreign body seen inside the wound and no palpable foreign body surrounding the wound. The gunshot-like wound was associated with left preseptal cellulitis. A skull X-ray showed a white opaque foreign body in the left frontal bone. Computed tomography (CT) scan of orbit and brain revealed a left comminuted fracture of the left orbital roof, and left frontal brain contusion with prelesional edema. Wound exploration was performed and revealed a 0.5 cm unshattered marble embedded in the left frontal bone. The marble and bone fragments were removed. The left preseptal cellulitis responded well to intravenous antibiotic and topical antibiotic.
    Matched MeSH terms: Anti-Bacterial Agents
  6. Ang WJ, Md Kadir SZ, Fadzillah AJ, Zunaina E
    Cureus, 2017 Feb 17;9(2):e1035.
    PMID: 28357167 DOI: 10.7759/cureus.1035
    We report three patients with corneal bee sting at our tertiary care center in a three-year period starting from 2014 to 2016. All patients sustained a bee sting injury to the cornea. All patients received early preoperative topical antibiotics, topical cycloplegic and intensive topical steroids. However, the timing of the initial presentation, the duration, and the location of the retained stinger differed in each case leading to different postsurgical outcomes.
    Matched MeSH terms: Anti-Bacterial Agents
  7. Aziman N, Abdullah N, Noor ZM, Kamarudin WS, Zulkifli KS
    J Food Sci, 2014 Apr;79(4):M583-92.
    PMID: 24666004 DOI: 10.1111/1750-3841.12419
    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products.
    Matched MeSH terms: Anti-Bacterial Agents/analysis; Anti-Bacterial Agents/pharmacology*
  8. Cheong, C.Y., Lee, C.K., Zuki Z.
    Malays Orthop J, 2010;4(1):-.
    MyJurnal
    Snakebite is very common especially in Asia. We report a rare case of Providencia rettgeri infection following snakebite on the foot. This patient was treated with early and aggressive wound debridement, daily wound dressing during hospitalization and then skin coverage with split skin graft. No anti-venom was given administered. Appropriate intravenous antibiotics were given to the patient while hospitalized and oral antibiotic were prescribed upon discharge. The outcome of this treatment was successful.
    Matched MeSH terms: Anti-Bacterial Agents
  9. Lim SW, Lim HY, Kannaiah T, Zuki Z
    Malays Orthop J, 2017 Nov;11(3):50-52.
    PMID: 29326768 MyJurnal DOI: 10.5704/MOJ.1711.004
    Streptococcus constellatus is an extremely rare cause of pyogenic spondylodiscitis. Literature search yielded only one case report in an elderly 72 years old man with spontaneous T10-T11 S. constellatus spondylodiscitis. It is virtually unheard of in young teenage. We report the case of a 14 years old male teenager who presented with worsening low back pain for one year with no neurological deficit. Imaging studies were consistent with features of L4-L5 spondylodiscitis. CT guided biopsy grew a pure culture of streptococcus constellatus sensitive to penicillin and erythromycin. He showed full recovery with six weeks of intravenous antibiotics. Due to the insidious onset, this case highlight the importance of high clinical suspicion and early diagnosis, with image guided biopsy followed by treatment with appropriate intravenous antibiotics to enable full recovery without further neurological deterioration.
    Matched MeSH terms: Anti-Bacterial Agents
  10. Hung IF, Tantawichien T, Tsai YH, Patil S, Zotomayor R
    Int J Infect Dis, 2013 Jun;17(6):e364-73.
    PMID: 23416209 DOI: 10.1016/j.ijid.2013.01.004
    To summarize published data on the clinical and economic burden, epidemiology, antimicrobial resistance levels, serotype prevalence, and prevention strategies for pneumococcal disease among adults in Asia.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Ng JML, Ngeow YF, Saw SH, Ng HF, Zin T
    J Med Microbiol, 2022 Dec;71(12).
    PMID: 36748567 DOI: 10.1099/jmm.0.001618
    Introduction Listeriosis, a foodborne infection caused by Listeria monocytogenes, could lead to febrile listerial gastroenteritis and a more invasive form which is often associated with a high mortality and hospitalisation rate. Gentamicin, used as an adjunct therapy with ampicillin, remains the treatment of choice for this life-threatening and invasive infection.Gap statement Nevertheless, there is little data on gentamicin resistance determinants in L. monocytogenes.Aim In this study, we selected and characterised B2b, a gentamicin-resistant mutant derived from L. monocytogenes ATCC 19115 to determine the target(s) of resistance in L. monocytogenes after exposure to gentamicin.Methodology Whole-genome sequencing was carried out to identify the mutation site(s) and possible mechanism(s) of resistance. The mutant was characterised using antimicrobial susceptibility testing and PCR. For biological verifications, complementation and allelic exchange mutagenesis were carried out.Results We found that the gentamicin resistance in B2b was caused by a 10 bp deletion in atpG2 which encodes a gamma subunit of the ATP synthase in L. monocytogenes. Using atpG2 PCR, various other mutations were identified in other gentamicin resistant mutants derived from ATCC 19115. In addition, the mutation from B2b, when introduced into L. ivanovii, also caused gentamicin resistance in this Listeria species.Conclusion Hence, atpG2 mutations appear to be important determinants of gentamicin resistance not only in L. monocytogenes but possibly also in other Listeria species.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  12. Mohamad Azranyi M, Aziz ZA, Ishak D, Mohd Nais NF, Elias ZA, Sulaiman NAF, et al.
    J Med Microbiol, 2024 Feb;73(2).
    PMID: 38380521 DOI: 10.1099/jmm.0.001809
    Introduction. Non-tuberculous Mycobacteria (NTM) is a group of mycobacteria distinct from the Mycobacterium tuberculosis complex. They can cause opportunistic infections, especially in immunocompromised individuals.Gap Statement. Over the last few years, there has been a growing concern regarding the distribution and antimicrobial resistance of NTM in Malaysia. however, a comprehensive study to fully grasp the NTM situation has yet to be conducted.Aim. This study aimed to investigate the species distribution and antimicrobial susceptibility patterns of NTM isolated from clinical samples in Malaysia from 2018 to 2022.Methodology. A retrospective analysis was conducted on NTM isolates obtained from various clinical specimens over a span of five years. The isolates were identified using phenotypic and molecular techniques, and antimicrobial susceptibility profiles for clinically significant isolates were determined using minimum inhibitory concentration.Results. The study revealed a diverse distribution of NTM species in Malaysia, with Mycobacteroides abscessus complex and Mycobacterium avium complex emerging as the most predominant. Furthermore, the antimicrobial susceptibility patterns showed varying degrees of resistance to commonly used antibiotics, highlighting the significance of treatment tailored to susceptibility testing results.Conclusion. This study provides valuable perspective into the epidemiology of NTM in Malaysia. The information gained from this study should prove useful for empirically treating serious NTM infections prior to species identification and the availability of antimicrobial susceptibility testing results.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM
    Drug Des Devel Ther, 2016;10:1817-27.
    PMID: 27330275 DOI: 10.2147/DDDT.S101212
    BACKGROUND: Zingiber spectabile, commonly known as Beehive Ginger, is used as an ethnobotanical plant in many countries as an appetizer or to treat stomachache, toothache, muscle sprain, and as a cure for swelling, sores and cuts. This is the first report of isolation of Streptomyces strain from the root of this plant. Strain Universiti Kebangsaan 25 (SUK 25) has a very high activity to produce secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA), which is associated with high morbidity and mortality rates due to acquired multidrug resistance genes and causes medication failure in some clinical cases worldwide. Phylogenetic analysis based on the 16S ribosomal RNA gene sequence exhibited that the most closely related strain was Streptomyces omiyaensis NBRC 13449T (99.0% similarity).

    AIM: This study was conducted to carry out the extraction, identification, and biological evaluation of active metabolites isolated from SUK 25 against three MRSA strains, namely, MRSA ATCC 43300, MRSA ATCC 33591, and MRSA ATCC 49476.

    MATERIALS AND METHODS: The production of secondary metabolites by this strain was optimized through Thronton's media. Isolation, purification, and identification of the bioactive compounds were carried out using reversed-phase high-performance liquid chromatography, high-resolution mass spectrometry, Fourier transform infrared, and one-dimensional and two-dimensional nuclear magnetic resonance.

    RESULTS: During screening procedure, SUK 25 exhibited good antimicrobial potential against several strains of MRSA. The best biological activity was shown from fraction number VII and its subfractions F2 and F3 with minimum inhibitory concentration values at 16 µg/mL and 8 µg/mL, respectively. These two subfractions were identified as diketopiperazine cyclo-(tryptophanyl-prolyl) and chloramphenicol.

    CONCLUSION: On the basis of obtained results, SUK 25 isolated from Z. spectabile can be regarded as a new valuable source to produce secondary metabolites against bacteria, especially MRSA.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  14. Al-Shaibani MM, Radin Mohamed RMS, Sidik NM, Enshasy HAE, Al-Gheethi A, Noman E, et al.
    Molecules, 2021 Jul 26;26(15).
    PMID: 34361657 DOI: 10.3390/molecules26154504
    The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities' well-being.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/metabolism
  15. Ahmad SJ, Abdul Rahim MBH, Baharum SN, Baba MS, Zin NM
    J Trop Med, 2017;2017:2189814.
    PMID: 29123551 DOI: 10.1155/2017/2189814
    Natural products continue to play an important role as a source of biologically active substances for the development of new drug. Streptomyces, Gram-positive bacteria which are widely distributed in nature, are one of the most popular sources of natural antibiotics. Recently, by using a bioassay-guided fractionation, an antimalarial compound, Gancidin-W, has been discovered from these bacteria. However, this classical method in identifying potentially novel bioactive compounds from the natural products requires considerable effort and is a time-consuming process. Metabolomics is an emerging "omics" technology in systems biology study which integrated in process of discovering drug from natural products. Metabolomics approach in finding novel therapeutics agent for malaria offers dereplication step in screening phase to shorten the process. The highly sensitive instruments, such as Liquid Chromatography-Mass Spectrophotometry (LC-MS), Gas Chromatography-Mass Spectrophotometry (GC-MS), and Nuclear Magnetic Resonance ((1)H-NMR) spectroscopy, provide a wide range of information in the identification of potentially bioactive compounds. The current paper reviews concepts of metabolomics and its application in drug discovery of malaria treatment as well as assessing the antimalarial activity from natural products. Metabolomics approach in malaria drug discovery is still new and needs to be initiated, especially for drug research in Malaysia.
    Matched MeSH terms: Anti-Bacterial Agents
  16. Remali J, Sarmin N'M, Ng CL, Tiong JJL, Aizat WM, Keong LK, et al.
    PeerJ, 2017;5:e3738.
    PMID: 29201559 DOI: 10.7717/peerj.3738
    Background: Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea.

    Methods: The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites.

    Results: The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis.

    Discussion: The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites.

    Matched MeSH terms: Anti-Bacterial Agents
  17. Sarwar A, Katas H, Samsudin SN, Zin NM
    PLoS One, 2015;10(4):e0123084.
    PMID: 25928293 DOI: 10.1371/journal.pone.0123084
    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
  18. Shirazi OU, Ab Rahman NS, Zin CS
    J Pharm Bioallied Sci, 2020 10 08;12(4):369-380.
    PMID: 33679082 DOI: 10.4103/jpbs.JPBS_311_19
    The overuse of antibiotics has led to various healthcare problems such as the emergence of resistance in infectious microbes and mortality due to antibiotic resistant healthcare associated infections (HAIs). An antimicrobial stewardship (AMS) program is the set of interventions used worldwide to enhance the rational use of antibiotics especially for the hospitalized patients. This review aimed to describe the characteristics of the implemented AMS programs in various hospitals of the world mainly focusing on the interventions and patients outcomes. The literature about AMS program was searched through various databases such as PubMed, Google Scholar, Science Direct, Cochran Library, Ovid (Medline), Web of Science and Scopus. In this review the literature pertaining to the AMS programs for hospitalized patients is sorted on the basis of various interventions that are categorized as formulary restriction (pre-authorization), guideline development, clinical pathway development, educative interventions and prospective audit. Moreover a clear emphasis is laid on the patient outcomes obtained as a result of these interventions namely the infection control, drop in readmission rate, mortality control, resistance control and the control of an overall cost of antibiotic treatment obtained mainly by curbing the overuse of antibiotics within the hospital wards. AMS program is an efficient strategy of pharmacovigilance to rationalize the antimicrobial practice for hospitalized patients as it prevents the misuse of antibiotics, which ultimately retards the health threatening effects of various antibiotics.
    Matched MeSH terms: Anti-Bacterial Agents
  19. Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z
    Mar Drugs, 2010;8(6):1743-9.
    PMID: 20631866 DOI: 10.3390/md8061743
    In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  20. Jacqz-Aigrain E, Leroux S, Thomson AH, Allegaert K, Capparelli EV, Biran V, et al.
    J Antimicrob Chemother, 2019 08 01;74(8):2128-2138.
    PMID: 31049551 DOI: 10.1093/jac/dkz158
    OBJECTIVES: In the absence of consensus, the present meta-analysis was performed to determine an optimal dosing regimen of vancomycin for neonates.

    METHODS: A 'meta-model' with 4894 concentrations from 1631 neonates was built using NONMEM, and Monte Carlo simulations were performed to design an optimal intermittent infusion, aiming to reach a target AUC0-24 of 400 mg·h/L at steady-state in at least 80% of neonates.

    RESULTS: A two-compartment model best fitted the data. Current weight, postmenstrual age (PMA) and serum creatinine were the significant covariates for CL. After model validation, simulations showed that a loading dose (25 mg/kg) and a maintenance dose (15 mg/kg q12h if <35 weeks PMA and 15 mg/kg q8h if ≥35 weeks PMA) achieved the AUC0-24 target earlier than a standard 'Blue Book' dosage regimen in >89% of the treated patients.

    CONCLUSIONS: The results of a population meta-analysis of vancomycin data have been used to develop a new dosing regimen for neonatal use and to assist in the design of the model-based, multinational European trial, NeoVanc.

    Matched MeSH terms: Anti-Bacterial Agents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links