Displaying publications 1 - 20 of 254 in total

Abstract:
Sort:
  1. Yousefi S, Bayat S, Rahman MB, Ibrahim Z, Abdulmalek E
    Chem Biodivers, 2017 Apr;14(4).
    PMID: 28036129 DOI: 10.1002/cbdv.201600362
    Inflammatory bowel disease (IBD) is the main risk factor for developing colorectal cancer which is common in patients of all ages. 5-Aminosalicylic acid (5-ASA), structurally related to the salicylates, is highly active in the treatment of IBD with minor side effects. In this study, the synthesis of galactose and fructose esters of 5-ASA was planned to evaluate the role of glycoconjugation on the bioactivity of the parent drug. The antibacterial activity of the new compounds were evaluated against two Gram-negative and two Gram-positive species of bacteria, with a notable effect observed against Staphylococcus aureus and Escherichia coli in comparisons with the 5-ASA. Cytotoxicity testing over HT-29 and 3T3 cell lines indicated that the toxicity of the new products against normal cells was significantly reduced compared with the original drug, whereas their activity against cancerous cells was slightly decreased. The anti-inflammatory activity test in RAW264.7 macrophage cells indicated that the inhibition of nitric oxide by both of the monosaccharide conjugated derivatives was slightly improved in comparison with the non-conjugated drug.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  2. Azman AS, Mawang CI, Khairat JE, AbuBakar S
    Int Microbiol, 2019 Dec;22(4):403-409.
    PMID: 30847714 DOI: 10.1007/s10123-019-00066-4
    A biofilm is a community of microorganisms attached to a surface and embedded in a matrix of extracellular polymeric substances. Biofilms confer resistance towards conventional antibiotic treatments; thus, there is an urgent need for newer and more effective antimicrobial agents that can act against these biofilms. Due to this situation, various studies have been done to investigate the anti-biofilm effects of natural products including bioactive compounds extracted from microorganisms such as Actinobacteria. This review provides an insight into the anti-biofilm potential of Actinobacteria against various pathogenic bacteria, which hopefully provides useful information, guidance, and improvements for future antimicrobial studies. Nevertheless, further research on the anti-biofilm mechanisms and compound modifications to produce more potent anti-biofilm effects are required.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  3. Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(7):16779-16796.
    PMID: 35084685 DOI: 10.1007/s11356-022-18515-5
    Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  4. Azmana M, Mahmood S, Hilles AR, Rahman A, Arifin MAB, Ahmed S
    Int J Biol Macromol, 2021 Aug 31;185:832-848.
    PMID: 34237361 DOI: 10.1016/j.ijbiomac.2021.07.023
    Over the last few years, several attempts have been made to replace petrochemical products with renewable and biodegradable components. The most challenging part of this approach is to obtain bio-based materials with properties and functions equivalent to those of synthetic products. Various naturally occurring polymers such as starch, collagen, alginate, cellulose, and chitin represent attractive candidates as they could reduce dependence on synthetic products and consequently positively impact the environment. Chitosan is also a unique bio-based polymer with excellent intrinsic properties. It is known for its anti-bacterial and film-forming properties, has high mechanical strength and good thermal stability. Nanotechnology has also applied chitosan-based materials in its most recent achievements. Therefore, numerous chitosan-based bionanocomposites with improved physical and chemical characteristics have been developed in an eco-friendly and cost-effective approach. This review discusses various sources of chitosan, its properties and methods of modification. Also, this work focuses on diverse preparation techniques of chitosan-based bionanocomposites and their emerging application in various sectors. Additionally, this review sheds light on future research scope with some drawbacks and challenges to motivate the researchers for future outstanding research works.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  5. Haque RA, Choo SY, Budagumpi S, Iqbal MA, Al-Ashraf Abdullah A
    Eur J Med Chem, 2015 Jan 27;90:82-92.
    PMID: 25461313 DOI: 10.1016/j.ejmech.2014.11.005
    A series of benzimidazole-based N-heterocyclic carbene (NHC) proligands {1-benzyl-3-(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (1/4), 1,3-bis(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (2/5) and 1,3-bis(3-(2-methylbenzyl)-benzimidazolium-1-ylmethylbenzene dibromide/dihexafluorophosphate (3/6)} has been synthesized by the successive N-alkylation method. Ag complexes {1-benzyl-3-(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (7), 1,3-bis(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (8) and 1,3-bis(3-(2-methylbenzyl)-benzimidazol-2-ylidene)-1-ylmethylbenzene disilver(I) dihexafluorophosphate (9)} of NHC ligands have been synthesized by the treatment of benzimidazolium salts with Ag2O at mild reaction conditions. Both, NHC proligands and Ag-NHC complexes have been characterized by (1)H and (13)C{(1)H} NMR and FTIR spectroscopy and elemental analysis technique. Additionally, the structure of the NHC proligand 5 and the mononuclear Ag complexes 7 and 8 has been elucidated by the single crystal X-ray diffraction analysis. Both the complexes exhibit the same general structural motif with linear coordination geometry around the Ag centre having two NHC ligands. Preliminary in vitro antibacterial potentials of reported compounds against a Gram negative (Escherichia coli) and a Gram positive (Bacillus subtilis) bacteria evidenced the higher activity of mononuclear silver(I) complexes. The anticancer studies against the human derived colorectal cancer (HCT 116) and colorectal adenocarcinoma (HT29) cell lines using the MTT assay method, revealed the higher activity of Ag-NHC complexes. The benzimidazolium salts 4-6 and Ag-NHC complexes 7-9 displayed the following IC50 values against the HCT 116 and HT29 cell lines, respectively, 31.8 ± 1.9, 15.2 ± 1.5, 4.8 ± 0.6, 10.5 ± 1.0, 18.7 ± 1.6, 1.20 ± 0.3 and 245.0 ± 4.6, 8.7 ± 0.8, 146.1 ± 3.1, 7.6 ± 0.7, 5.5 ± 0.8, 103.0 ± 2.3 μM.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  6. Aljumaily MM, Alsaadi MA, Binti Hashim NA, Mjalli FS, Alsalhy QF, Khan AL, et al.
    Biotechnol Prog, 2020 05;36(3):e2963.
    PMID: 31943942 DOI: 10.1002/btpr.2963
    To overcome the biofouling challenge which faces membrane water treatment processed, the novel superhydrophobic carbon nanomaterials impregnated on/powder activated carbon (CNMs/PAC) was utilized to successfully design prepare an antimicrobial membrane. The research was conducted following a systematic statistical design of experiments technique considering various parameters of composite membrane fabrication. The impact of these parameters of composite membrane on Staphylococcus aureus growth was investigated. The bacteria growth was analyzed through spectrophotometer and SEM. The effect of CNMs' hydrophobicity on the bacterial colonies revealed a decrease in the abundance of bacterial colonies and an alteration in structure with increasing the hydrophobicity. The results revealed that the optimum preparative conditions for carbon loading CNMs/PAC was 363.04 mg with a polymer concentration of 22.64 g/100 g, and a casting knife thickness of 133.91 μm. These conditions have resulted in decreasing the number of bacteria colonies to about 7.56 CFU. Our results provided a strong evidence on the antibacterial effect and consequently on the antibiofouling potential of CNMs/PAC in membrane.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  7. Al-Jbour ND, Beg MD, Gimbun J, Alam AKMM
    Curr Drug Deliv, 2019;16(4):272-294.
    PMID: 30674256 DOI: 10.2174/1567201816666190123121425
    Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  8. Omar H, Hashim NM, Zajmi A, Nordin N, Abdelwahab SI, Azizan AH, et al.
    Molecules, 2013 Jul 29;18(8):8994-9009.
    PMID: 23899833 DOI: 10.3390/molecules18088994
    The oxoaporphine alkaloid lysicamine (1), and three proaporphine alkaloids, litsericinone (2), 8,9,11,12-tetrahydromecambrine (3) and hexahydromecambrine A (4) were isolated from the leaves of Phoebe grandis (Nees) Merr. (Lauraceae). Compounds 2 and 3 were first time isolated as new naturally occurring compounds from plants. The NMR data for the compounds 2-4 have never been reported so far. Compounds 1 and 2 showed significant cytotoxic activity against a MCF7 (human estrogen receptor (ER+) positive breast cancer) cell line with IC₅₀ values of 26 and 60 µg/mL, respectively. Furthermore, in vitro cytotoxic activity against HepG2 (human liver cancer) cell line was evaluated for compounds 1-4 with IC₅₀ values of 27, 14, 81 and 20 µg/mL, respectively. Lysicamine (1) displayed strong antibacterial activity against Bacillus subtilis (B145), Staphylococcus aureus (S1434) and Staphylococus epidermidis (a clinically isolated strain) with inhibition zones of 15.50 ± 0.57, 13.33 ± 0.57 and 12.00 ± 0.00 mm, respectively. However, none of the tested pathogenic bacteria were susceptible towards compounds 2 and 3.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  9. Ikram M, Mahmood A, Haider A, Naz S, Ul-Hamid A, Nabgan W, et al.
    Int J Biol Macromol, 2021 Aug 31;185:153-164.
    PMID: 34157328 DOI: 10.1016/j.ijbiomac.2021.06.101
    Various concentrations of Mg into fixed amount of cellulose nanocrystals (CNC)-doped ZnO were synthesized using facile chemical precipitation. The aim of present study is to remove dye degradation of methylene blue (MB) and bactericidal behavior with synthesized product. Phase constitution, functional group analysis, optical behavior, elemental composition, morphology and microstructure were examined using XRD, FTIR, UV-Vis spectrophotometer, EDS and HR-TEM. Highly efficient photocatalytic performance was observed in basic medium (98%) relative to neutral (65%), and acidic (83%) was observed upon Mg and CNC co-doping. Significant bactericidal activity of doped ZnO nanoparticles depicted inhibition zones for G -ve and +ve bacteria ranging (2.20 - 4.25 mm) and (5.80-7.25 mm) for E. coli and (1.05 - 2.75 mm) and (2.80 - 4.75 mm) for S. aureus at low and high doses, respectively. Overall, doped nanostructures showed significant (P 
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  10. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  11. Ahmed S, Govender T, Khan I, Rehman NU, Ali W, Shah SMH, et al.
    Drug Des Devel Ther, 2018;12:255-269.
    PMID: 29440875 DOI: 10.2147/DDDT.S148912
    Background and aim: The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity.

    Methods: Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics®. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles.

    Results and conclusion: The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250 nm ±2.0 and 280 nm ±4.2 and polydispersity indices of 0.15 nm ±0.01 and 0.25 nm ±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22 kcal/mol ±0.79) and EUD-PVP-FLU (-25.17 kcal/mol ±1.12). In addition, it was observed that Ethocel® favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90 days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C-8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate (P<0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control.

    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  12. Qaralleh HN, Abboud MM, Khleifat KM, Tarawneh KA, Althunibat OY
    Pak J Pharm Sci, 2009 Jul;22(3):247-51.
    PMID: 19553168
    This study was carried out to evaluate the antibacterial activity of aqueous and organic extracts of Thymus capitatus L. (Lamiaceae) leaves and stems. Dried ground powder leaves and stems were extracted with water (aqueous extracts), ethanol, dichloromethane and hexane (Soxhlet extracts). The antibacterial activity of these extracts was evaluated against bacteria using disc diffusion method. The result obtained showed that the leaves had stronger antibacterial activity than the stems extracts. The ethanolic extract had the highest yield products and the high antibacterial activity than all other solvents. The results suggest that essential oil as non-polar organic compounds could be the main active compounds in this plant. Therefore the antibacterial activity of leaves ethanol extracts (LEE) was compared with essential oils leaves extracts (LEO) of T. capitatus. The LEO showed greater antibacterial activity than LEE. The LEO showed a broad spectrum of antibacterial activity and the Pseudomonas aeruginosa was the most sensitive bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  13. Qamer S, Romli MH, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, et al.
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443644 DOI: 10.3390/molecules26165057
    The biosynthesis of silver nanoparticles and the antibacterial activities has provided enormous data on populations, geographical areas, and experiments with bio silver nanoparticles' antibacterial operation. Several peer-reviewed publications have discussed various aspects of this subject field over the last generation. However, there is an absence of a detailed and structured framework that can represent the research domain on this topic. This paper attempts to evaluate current articles mainly on the biosynthesis of nanoparticles or antibacterial activities utilizing the scientific methodology of big data analytics. A comprehensive study was done using multiple databases-Medline, Scopus, and Web of Sciences through PRISMA (i.e., Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The keywords used included 'biosynthesis silver nano particles' OR 'silver nanoparticles' OR 'biosynthesis' AND 'antibacterial behavior' OR 'anti-microbial opposition' AND 'systematic analysis,' by using MeSH (Medical Subject Headings) terms, Boolean operator's parenthesis, or truncations as required. Since their effectiveness is dependent on particle size or initial concentration, it necessitates more research. Understanding the field of silver nanoparticle biosynthesis and antibacterial activity in Gulf areas and most Asian countries also necessitates its use of human-generated data. Furthermore, the need for this work has been highlighted by the lack of predictive modeling in this field and a need to combine specific domain expertise. Studies eligible for such a review were determined by certain inclusion and exclusion criteria. This study contributes to the existence of theoretical and analytical studies in this domain. After testing as per inclusion criteria, seven in vitro studies were selected out of 28 studies. Findings reveal that silver nanoparticles have different degrees of antimicrobial activity based on numerous factors. Limitations of the study include studies with low to moderate risks of bias and antimicrobial effects of silver nanoparticles. The study also reveals the possible use of silver nanoparticles as antibacterial irrigants using various methods, including a qualitative evaluation of knowledge and a comprehensive collection and interpretation of scientific studies.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  14. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS One, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  15. Tayyeb JZ, Priya M, Guru A, Kishore Kumar MS, Giri J, Garg A, et al.
    Mol Biol Rep, 2024 Mar 15;51(1):423.
    PMID: 38489102 DOI: 10.1007/s11033-024-09407-7
    BACKGROUND: Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties.

    METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity.

    RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells.

    CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.

    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  16. Aziz-Ur-Rehman -, Khan SG, Bokhari TH, Anjum F, Akhter N, Rasool S, et al.
    Pak J Pharm Sci, 2020 Mar;33(2(Supplementary)):871-876.
    PMID: 32863264
    A novel series of 5-(3-Chlorophenyl)-2-((N-(substituted)-2-acetamoyl)sulfanyl)-1,3,4-oxadiazole derivatives was efficiently synthesized and screened for antibacterial, hemolytic and thrombolytic activities. The molecule 7c remained the best inhibitor of all selected bacterial strains and furthermore possessed very low toxicity, 8.52±0.31. Compound 7a 7b and 7f showed very good thrombolytic activity relative to Streptokinase employed as reference drug. In addition to low toxicity and moderately good thrombolytic activity, the synthesized compounds possessed excellent to moderate antibacterial activity, relative to ciprofloxacin. All compounds especially 7b and 7f can be consider for further clinical studies and might be helpful in synthesis of new drugs for treatment of cardiovascular diseases.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  17. Chuo SC, Abd-Talib N, Mohd-Setapar SH, Hassan H, Nasir HM, Ahmad A, et al.
    Sci Rep, 2018 01 11;8(1):477.
    PMID: 29323139 DOI: 10.1038/s41598-017-18279-w
    Reverse micelles extraction of erythromycin and amoxicillin were carried out using the novel Sophorolipids biosurfactant. By replacing commonly used chemical surfactants with biosurfactant, reverse micelle extraction can be further improved in terms of environmental friendliness and sustainability. A central composite experimental design was used to investigate the effects of solution pH, KCl concentration, and sophorolipids concentration on the reverse micelle extraction of antibiotics. The most significant factor identified during the reverse micelle extraction of both antibiotics is the pH of aqueous solutions. Best forward extraction performance for erythromycin was found at feed phase pH of approximately 8.0 with low KCl and sophorolipids concentrations. Optimum recovery of erythromycin was obtained at stripping phase pH around 10.0 and with low KCl concentration. On the other hand, best forward extraction performance for amoxicillin was found at feed phase pH around 3.5 with low KCl concentration and high sophorolipids concentration. Optimum recovery of erythromycin was obtained at stripping phase pH around 6.0 with low KCl concentration. Both erythromycin and amoxicillin were found to be very sensitive toaqueous phase pH and can be easily degraded outside of their stable pH ranges.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  18. Sivasothy Y, Krishnan T, Chan KG, Abdul Wahab SM, Othman MA, Litaudon M, et al.
    Molecules, 2016 Mar 21;21(3):391.
    PMID: 27102164 DOI: 10.3390/molecules21030391
    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  19. Sivasothy Y, Ibrahim H, Paliany AS, Alias SA, Awang K
    Bioorg Med Chem Lett, 2013 Dec 1;23(23):6280-5.
    PMID: 24144849 DOI: 10.1016/j.bmcl.2013.09.082
    The rhizomes of Alpinia pahangensis Ridley yielded a new bis-labdanic diterpene for which the name pahangensin A (1) was proposed along with a new labdane diterpene, pahangensin B (2). Their structures were elucidated by spectroscopic methods including, 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Pahangensin A (1) was found to be an antibacterial agent against Staphylococcus aureus, Bacillus cereus and Bacillus subtilis with MIC values less than 100 μg/mL, respectively. Pahangensin B (2) exhibited antibacterial activity (MIC <100 μg/mL) against B. cereus.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  20. Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TDF, et al.
    Molecules, 2022 Nov 30;27(23).
    PMID: 36500458 DOI: 10.3390/molecules27238369
    Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links