Displaying publications 1 - 20 of 160 in total

Abstract:
Sort:
  1. Sadek MM, Barlow N, Leung EWW, Williams-Noonan BJ, Yap BK, Shariff FM, et al.
    ACS Chem. Biol., 2018 10 19;13(10):2930-2938.
    PMID: 30226743 DOI: 10.1021/acschembio.8b00561
    SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4 interact with inducible nitric oxide synthase (iNOS), causing the iNOS to be polyubiquitinated and targeted for degradation. Inhibition of this interaction increases iNOS levels, and consequently cellular nitric oxide (NO) concentrations, and has been proposed as a potential strategy for killing intracellular pathogens. We previously described two DINNN-containing cyclic peptides (CP1 and CP2) as potent inhibitors of the murine SPSB-iNOS interaction. In this study, we report the crystal structures of human SPSB4 bound to CP1 and CP2 and human SPSB2 bound to CP2. We then used these structures to design a new inhibitor in which an intramolecular hydrogen bond was replaced with a hydrocarbon linkage to form a smaller macrocycle while maintaining the bound geometry of CP2 observed in the crystal structures. This resulting pentapeptide SPSB-iNOS inhibitor (CP3) has a reduced macrocycle ring size, fewer nonbinding residues, and includes additional conformational constraints. CP3 has a greater affinity for SBSB2 ( KD = 7 nM as determined by surface plasmon resonance) and strongly inhibits the SPSB2-iNOS interaction in macrophage cell lysates. We have also determined the crystal structure of CP3 in complex with human SPSB2, which reveals the structural basis for the increased potency of CP3 and validates the original design.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  2. Wong KW, Ee GCL, Ismail IS, Karunakaran T, Jong VYM
    Nat Prod Res, 2017 Nov;31(21):2513-2519.
    PMID: 28412841 DOI: 10.1080/14786419.2017.1315717
    Phytochemical studies on the stem bark of Garcinia nervosa has resulted in the discovery of one new pyranoxanthone derivative, garner xanthone (1) and five other compounds, 1,5-dihydroxyxanthone (2), 6-deoxyisojacareubin (3), 12b-hydroxy-des-D-garcigerrin A (4) stigmasterol (5), and β-sitosterol (6). The structures of these compounds were elucidated with the aid of spectroscopic techniques, such as NMR and MS. The crude extracts of the plant were assessed for their antimicrobial activity.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  3. Kumaresan V, Bhatt P, Ganesh MR, Harikrishnan R, Arasu M, Al-Dhabi NA, et al.
    Mol Immunol, 2015 Dec;68(2 Pt B):421-33.
    PMID: 26477736 DOI: 10.1016/j.molimm.2015.10.001
    In aquaculture, accumulation of antibiotics resulted in development of resistance among bacterial pathogens. Consequently, it became mandatory to find alternative to synthetic antibiotics. Antimicrobial peptides (AMPs) which are described as evolutionary ancient weapons have been considered as promising alternates in recent years. In this study, a novel antimicrobial peptide had been derived from goose type lysozyme (LyzG) which was identified from the cDNA library of freshwater fish Channa striatus (Cs). The identified lysozyme cDNA contains 585 nucleotides which encodes a protein of 194 amino acids. CsLyzG was closely related to Siniperca chuatsi with 92.8% homology. The depicted protein sequence contained a GEWL domain with conserved GLMQ motif, 7 active residues and 2 catalytic residues. Gene expression analysis revealed that CsLyzG was distributed in major immune organs with highest expression in head kidney. Results of temporal expression analysis after bacterial (Aeromonas hydrophila) and fungal (Aphanomyces invadans) challenges indicated a stimulant-dependent expression pattern of CsLyzG. Two antimicrobial peptides IK12 and TS10 were identified from CsLyzG and synthesized. Antibiogram showed that IK12 was active against Salmonella enterica, a major multi-drug resistant (MDR) bacterial pathogen which produces beta lactamase. The IK12 induced loss of cell viability in the bacterial pathogen. Flow cytometry assay revealed that IK12 disrupt the membrane of S. enterica which is confirmed by scanning electron microscope (SEM) analysis that reveals blebs around the bacterial cell membrane. Conclusively, CsLyzG is a potential innate immune component and the identified antimicrobial peptide has great caliber to be used as an ecofriendly antibacterial substance in aquaculture.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  4. Arockiaraj J, Kumaresan V, Bhatt P, Palanisamy R, Gnanam AJ, Pasupuleti M, et al.
    Peptides, 2014 Mar;53:79-88.
    PMID: 24269604 DOI: 10.1016/j.peptides.2013.11.008
    In this study, we reported a complete molecular characterization including bioinformatics features, gene expression, peptide synthesis and its antimicrobial activities of an anti-lipopolysaccharide (LPS) factor (ALF) cDNA identified from the established cDNA library of freshwater prawn Macrobrachium rosenbergii (named as MrALF). The mature protein has an estimated molecular weight of 11.240 kDa with an isoelectric point of 9.46. The bioinformatics analysis showed that the MrALF contains an antimicrobial peptide (AMP) region between T54 and P77 with two conserved cysteine residues (Cys55 and Cys76) which have an anti-parallel β-sheet confirmation. The β-sheet is predicted as cationic with hydrophobic nature containing a net charge of +5. The depicted AMP region is determined to be amphipathic with a predicted hydrophobic face 'FPVFI'. A highest MrALF gene expression was observed in hemocytes and is up-regulated with virus [white spot syndrome baculovirus (WSBV)], bacteria (Aeromonas hydrophila) and Escherichia coli LPS at various time points. The LPS binding region of MrALF peptide was synthesized to study the antimicrobial property, bactericidal efficiency and hemolytic capacity. The peptide showed antimicrobial activity against both the Gram-negative and Gram-positive bacteria. The bactericidal assay showed that the peptide recognized the LPS of bacterial cell walls and binding on its substrate and thereby efficiently distinguishing the pathogens. The hemolytic activity of MrALF peptide is functioning in a concentration dependant manner. In summary, the comprehensive analysis of MrALF showed it to be an effective antimicrobial peptide and thus it plays a crucial role in the defense mechanism of M. rosenbergii.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  5. Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, et al.
    Microbiol Res, 2015 Jan;170:78-86.
    PMID: 25271126 DOI: 10.1016/j.micres.2014.08.011
    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal peptide can be recommended for the development of an antimicrobial agent.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  6. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p 
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  7. Hossain MS, Sharfaraz A, Dutta A, Ahsan A, Masud MA, Ahmed IA, et al.
    Biomed Pharmacother, 2021 Nov;143:112182.
    PMID: 34649338 DOI: 10.1016/j.biopha.2021.112182
    Nigella sativa L. is one of the most extensively used traditional medicinal plants. This widely studied plant is known to display diverse pharmacological actions, including antimicrobial activities. Current literature has documented its multi-target mode of antimicrobial actions. N. sativa or its bioactive compounds, such as thymoquinone, can induce oxidative stress, cell apoptosis (by producing reactive oxygen species), increase membrane permeability, inhibit efflux pumps, and impose strong biocidal actions. Despite its well-documented antimicrobial efficacy in the experimental model, to the best of our knowledge its antimicrobial mechanisms highlighting the multi-targeting properties have yet to be well discussed. Is N. sativa or thymoquinone a valuable lead compound for therapeutic development for infectious diseases? Are N. sativa's bioactive compounds potential antimicrobial agents or able to overcome antimicrobial resistance? This review aims to discuss the antimicrobial pharmacology of N. sativa-based treatments. Additionally, it provides a holistic overview of the ethnobotany, ethnopharmacology, and phytochemistry of N. sativa.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  8. Najafian L, Babji AS
    Peptides, 2012 Jan;33(1):178-85.
    PMID: 22138166 DOI: 10.1016/j.peptides.2011.11.013
    Fishes are rich sources of structurally diverse bioactive compounds. In recent years, much attention has been paid to the existence of peptides with biological activities and proteins derived from foods that might have beneficial effects for humans. Antioxidant and antimicrobial peptides isolated from fish sources may be used as functional ingredients in food formulations to promote consumer health and improve the shelf life of food products. This paper presents an overview of the antioxidant and antimicrobial peptides derived from various fishes. In addition, we discuss the extraction of fish proteins, enzymatic production, and the techniques used to isolate and characterize these compounds. Furthermore, we review the methods used to assay the bioactivities and their applications in food and nutraceuticals.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  9. Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, et al.
    Carbohydr Polym, 2020 Dec 15;250:116800.
    PMID: 33049807 DOI: 10.1016/j.carbpol.2020.116800
    Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  10. Asghar A, Tan YC, Zahoor M, Zainal Abidin SA, Yow YY, Khan E, et al.
    Sci Rep, 2021 Jul 05;11(1):13859.
    PMID: 34226594 DOI: 10.1038/s41598-021-92622-0
    The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  11. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY
    Mar Drugs, 2020 Jun 19;18(6).
    PMID: 32575468 DOI: 10.3390/md18060323
    Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  12. Yu L, Lu M, Zhang W, Alarfaj AA, Hirad AH, Zhang H
    Microb Pathog, 2020 Apr;141:103960.
    PMID: 31953224 DOI: 10.1016/j.micpath.2019.103960
    BACKGROUND: Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) among the children and adults that results upper and lower respiratory tract infections.

    OBJECTIVE: This study was aimed to inspect the ameliorative action of A. chinensis synthesized ZnONPs against M. pneumoniae infected pneumonia mice model.

    MATERIALS AND METHODS: ZnO NPs was synthesized from Albizia chinensis bark extract and characterized by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), energy dispersive X-ray (EDX) and atomic force microscope (AFM) analyses. The antibacterial effectual of synthesized ZnONPs were examined against clinical pathogens. The pneumonia was induced to BALB/c mice via injecting the M. pneumoniae and treated with synthesized ZnONPs, followed by the total protein content, total cell counts and inflammatory mediators level was assessed in the BALF of experimental animals. The Histopathological investigation was done in the lung tissues of test animals.

    RESULTS: The outcomes of this work revealed that the formulated ZnONPs was quasi-spherical, radial and cylindrical; the size was identified as 116.5 ± 27.45 nm in diameter. The in vitro antimicrobial potential of formulated ZnO-NPs displayed noticeable inhibitory capacity against the tested fungal and bacterial strains. The administration of synthesized ZnO-NPs in MP infected mice model has significantly reduced the levels of total protein, inflammatory cells, inflammatory cytokines such as IL-1, IL-6, IL-8, tumour necrosis factor-alpha (TNF-a) and transforming growth factor (TGF). Besides, the histopathological examination of MP infected mice lung tissue showed the cellular arrangements were effectively retained after administration of synthesized ZnO-NPs.

    CONCLUSION: In conclusion, synthesized ZnO-NPs alleviate pneumonia progression via reducing the level of inflammatory cytokines and inflammatory cells in MP infected mice model.

    Matched MeSH terms: Anti-Infective Agents/pharmacology
  13. Aal-Saraj AB, Ariffin Z, Masudi SM
    Aust Endod J, 2012 Aug;38(2):60-3.
    PMID: 22827817 DOI: 10.1111/j.1747-4477.2010.00241.x
    The aim of this study was to evaluate the antimicrobial activity of a new experimental nano-hydroxyapatite epoxy resin-based sealer (Nanoseal) with several other commercially available sealers; AH26, Tubliseal, Sealapex and Roekoseal against Enterococcus faecalis, Pseudomonas aeruginosa, Streptococcus mutans, Streptococcus sobrinus and Escherichia coli for up to 7 days. Agar diffusion was used in this study. Fifty Muller-Hinton agar plates were prepared and divided into five experimental groups (n = 10), for each micro-organism. Another 10 agar plates were used as positive and negative controls. Endodontic sealers were tested against each micro-organism. Inhibition zones produced were recorded. The results of this study showed that all test materials exhibited inhibition zones towards the tested micro-organisms for 7 days except for Roekoseal, which showed no inhibition zones. Nanoseal and AH26 exhibited similar zones of inhibition. Significant difference was found between Nanoseal and the other tested sealers (P < 0.001).
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  14. Mustaffa F, Indurkar J, Ismail S, Shah M, Mansor SM
    Molecules, 2011 Apr 08;16(4):3037-47.
    PMID: 21478819 DOI: 10.3390/molecules16043037
    This study was designed to investigate the antimicrobial activity of Cinnamomum iners standardized leave methanolic extract (CSLE), its fractions and isolated compounds. CSLE and fractions were subjected to disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests using different Gram positive and Gram negative bacteria and yeast. Within the series of fractions tested, the ethyl acetate fraction was the most active, particularly against methicillin resistant Staphylococcus aureus (MRSA) and Escherichia coli, with MIC values of 100 and 200 µg/mL, respectively. The active compound in this fraction was isolated and identified as xanthorrhizol [5-(1, 5-dimethyl-4-hexenyl)-2-methylphenol] by various spectroscopic techniques. The overall results of this study provide evidence that Cinnamomum iners leaves extract as well as the isolated compound xanthorrhizol exhibit antimicrobial activity for both Gram negative and Gram positive pathogens, especially against MRSA strains.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  15. MubarakAli D, LewisOscar F, Gopinath V, Alharbi NS, Alharbi SA, Thajuddin N
    Microb Pathog, 2018 Jan;114:323-327.
    PMID: 29229504 DOI: 10.1016/j.micpath.2017.11.043
    Chitosan is the second most abundant polymer obtained from the byproduct of seafood. Chitosan and its derivatives and chitosan loaded drugs are the recent area of interest against microbial pathogenesis. The cationic chitosan nanoparticles (ChNPs) interact with the anionic surfaces of the microbial cell membrane, which promotes antimicrobial activity. Although, ChNPs are potential against pathogenic microbes, selection of adaptable, suitable and cost effective synthesis method is much important. In the present study, ChNPs were synthesized adopting ionic gelation using sodium tripolyphosphate as a cross linking agent and characterized by FTIR, DLS, SEM and TEM analysis. ChNPs were investigated for antimicrobial activity against bacterial (Escherichia coli and Staphylococcus aureus) and fungal (Candida albicans) pathogens. ChNPs showed bactericidal activity at the lower minimum inhibitory concentration of about 40-80 μg mL-1. Interestingly, ChNPs exhibits biocompatible antioxidant property by inhibiting DPPH free radicals at 76% and also proven to be a potential candidate against the microbial pathogenesis with an inevitable applications in biomedicine.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  16. Jinfeng EC, Mohamad Rafi MI, Chai Hoon K, Kok Lian H, Yoke Kqueen C
    World J Microbiol Biotechnol, 2017 Jan;33(1):5.
    PMID: 27844243
    Plants are primary source of natural product drugs. However, with every new bioactive molecule reported from a plant source, there follows reports of endangered status or even extinction of a medicinally important plant due to over-harvesting. Hence, the attention turned towards fungi namely the endophytes, which reside within medicinally important plants and thus may have acquired their medicinal properties. Strobilanthes crispus is a traditional medicinal plant which has been used traditionally to treat kidney stones, diabetes, hypertension and cancer as well as having antimicrobial activities. In our efforts to bioprospect for anticancer and antimicrobial metabolites, two fungal endophytes most closely related to the Sordariomycetes sp. showed promising results. Sample (PDA)BL3 showed highest significant antimicrobial activity against 6 bacteria at 200 µg/disc whereas sample (PDA)BL5 has highest significant anticancer activity against all 5 cancer cell lines at concentrations ranging from 30 to 300 μg/ml. As for the gas chromatography coupled with mass spectrometry (GC-MS) results, a total of 20 volatile metabolites identified from sample (PDA)BL3 and 21 volatile metabolites identified from sample (PDA)BL5 having more than 1% abundance. Both GC-MS analysis showed that compound Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) has the highest abundance at 15.10% abundance for sample (PDA)BL3 and 19.00% abundance for sample (PDA)BL5 respectively. In conclusion, these results have shown bio-prospecting potential of endophytic fungi having antimicrobial and anticancer activities as well as its potential secondary metabolites of interest. Therefore, this work has further indicated the medicinal and industrial potential of endophytic fungi.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  17. Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA
    Int J Mol Sci, 2015;16(7):15625-58.
    PMID: 26184167 DOI: 10.3390/ijms160715625
    Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  18. Chung PY, Toh YS
    Pathog Dis, 2014 Apr;70(3):231-9.
    PMID: 24453168 DOI: 10.1111/2049-632X.12141
    Staphylococcus aureus is a Gram-positive pathogen that causes potentially life-threatening nosocomial- and community-acquired infections, such as osteomyelitis and endocarditis. Staphylococcus aureus has the ability to form multicellular, surface-adherent communities called biofilms, which enables it to survive in various sources of stress, including antibiotics, nutrient limitations, heat shock, and immune responses. Biofilm-forming capacity is now recognized as an important virulence determinant in the development of staphylococcal device-related infections. In light of the projected increase in the numbers of elderly patients who will require semi-permanent indwelling medical devices such as artificial knees and hips, we can anticipate an expanded need for new agents and treatment options to manage biofilm-associated infections in an expanding at-risk population. With better understanding of staphylococcal biofilm formation and growth, novel strategies that target biofilm-associated infections caused by S. aureus have recently been described and seem promising as future anti-biofilm therapies.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  19. Nor Azman NS, Hossan MS, Nissapatorn V, Uthaipibull C, Prommana P, Jin KT, et al.
    Exp Parasitol, 2018 Nov;194:67-78.
    PMID: 30268422 DOI: 10.1016/j.exppara.2018.09.020
    Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5 cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5 cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50 anti-infective leads.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  20. Kamaruzzaman WMIWM, Fekeri MFM, Nasir NAM, Hamidi NASM, Baharom MZ, Adnan A, et al.
    Molecules, 2021 Jun 03;26(11).
    PMID: 34205014 DOI: 10.3390/molecules26113379
    With the trend for green technology, the study focused on utilizing a forgotten herb to produce an eco-friendly coating. Andrographis paniculata or the kalmegh leaves extract (KLE) has been investigated for its abilities in retarding the corrosion process due to its excellent anti-oxidative and antimicrobial properties. Here, KLE was employed as a novel additive in coatings and formulations were made by varying its wt%: 0, 3, 6, 9, and 12. These were applied to stainless steel 316L immersed in seawater for up to 50 days. The samples were characterized and analyzed to measure effectiveness of inhibition of corrosion and microbial growth. The best concentration was revealed to be 6 wt% KLE; it exhibited the highest performance in improving the ionic resistance of the coating and reducing the growth of bacteria.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links