Displaying publications 1 - 20 of 160 in total

Abstract:
Sort:
  1. Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, et al.
    Sci Rep, 2021 11 09;11(1):21969.
    PMID: 34753977 DOI: 10.1038/s41598-021-01281-8
    The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (- 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  2. Hossain MS, Sharfaraz A, Dutta A, Ahsan A, Masud MA, Ahmed IA, et al.
    Biomed Pharmacother, 2021 Nov;143:112182.
    PMID: 34649338 DOI: 10.1016/j.biopha.2021.112182
    Nigella sativa L. is one of the most extensively used traditional medicinal plants. This widely studied plant is known to display diverse pharmacological actions, including antimicrobial activities. Current literature has documented its multi-target mode of antimicrobial actions. N. sativa or its bioactive compounds, such as thymoquinone, can induce oxidative stress, cell apoptosis (by producing reactive oxygen species), increase membrane permeability, inhibit efflux pumps, and impose strong biocidal actions. Despite its well-documented antimicrobial efficacy in the experimental model, to the best of our knowledge its antimicrobial mechanisms highlighting the multi-targeting properties have yet to be well discussed. Is N. sativa or thymoquinone a valuable lead compound for therapeutic development for infectious diseases? Are N. sativa's bioactive compounds potential antimicrobial agents or able to overcome antimicrobial resistance? This review aims to discuss the antimicrobial pharmacology of N. sativa-based treatments. Additionally, it provides a holistic overview of the ethnobotany, ethnopharmacology, and phytochemistry of N. sativa.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  3. Singh Y, Ali H, Alharbi KS, Almalki WH, Kazmi I, Al-Abbasi FA, et al.
    Drug Dev Res, 2021 09;82(6):784-788.
    PMID: 33687087 DOI: 10.1002/ddr.21810
    Over the recent decades, a number of new pathogens have emerged within specific and diverse populations across the globe, namely, the Nipah virus, the Ebola virus, the Zika virus, and coronaviruses (CoVs) to name a few. Recently, a new form of coronavirus was identified in the city of Wuhan, China. Interestingly, the genomic architecture of the virus did not match with any of the existing genomic sequencing data of previously sequenced CoVs. This had led scientists to confirm the emergence of a new CoV strain. Originally, named as 2019-nCoV, the strain is now called as SARS-CoV-2. High serum levels of proinflammatory mediators, namely, interleukin-12 (IL-12), IL-1β, IL-6, interferon-gamma (IFNγ), chemoattractant protein-1, and IFN-inducible protein, have been repeatedly observed in subjects who were infected with this virus. In addition, the virus demonstrated strong coagulation activation properties, leading to further the understanding on the SARS-CoV2. To our understanding, these findings are unique to the published literature. Numerous studies have reported anomalies, namely, decline in the number of lymphocytes, platelets and albumins; and a rise in neutrophil count, aspartate transaminase, alanine aminotransaminase, lactate dehydrogenase, troponins, creatinine, complete bilirubin, D-dimers, and procalcitonin. Supplementation of calcium during the SARS CoV-2 associated hyperactive stage of calcium-sensing receptors (CaSR) may be harmful to the cardio-renal system. Thus, pharmacological inhibition of CaSR may prevent the increase in the levels of intracellular calcium, oxidative, inflammatory stress, and cardio-renal cellular apoptosis induced by high cytokines level in COVID-19 infection.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  4. Suleiman JB, Mohamed M, Abu Bakar AB, Nna VU, Zakaria Z, Othman ZA, et al.
    Molecules, 2021 Aug 15;26(16).
    PMID: 34443531 DOI: 10.3390/molecules26164943
    The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  5. Asghar A, Tan YC, Zahoor M, Zainal Abidin SA, Yow YY, Khan E, et al.
    Sci Rep, 2021 Jul 05;11(1):13859.
    PMID: 34226594 DOI: 10.1038/s41598-021-92622-0
    The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  6. Kamaruzzaman WMIWM, Fekeri MFM, Nasir NAM, Hamidi NASM, Baharom MZ, Adnan A, et al.
    Molecules, 2021 Jun 03;26(11).
    PMID: 34205014 DOI: 10.3390/molecules26113379
    With the trend for green technology, the study focused on utilizing a forgotten herb to produce an eco-friendly coating. Andrographis paniculata or the kalmegh leaves extract (KLE) has been investigated for its abilities in retarding the corrosion process due to its excellent anti-oxidative and antimicrobial properties. Here, KLE was employed as a novel additive in coatings and formulations were made by varying its wt%: 0, 3, 6, 9, and 12. These were applied to stainless steel 316L immersed in seawater for up to 50 days. The samples were characterized and analyzed to measure effectiveness of inhibition of corrosion and microbial growth. The best concentration was revealed to be 6 wt% KLE; it exhibited the highest performance in improving the ionic resistance of the coating and reducing the growth of bacteria.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  7. Sim YY, Nyam KL
    Food Chem, 2021 May 15;344:128582.
    PMID: 33199120 DOI: 10.1016/j.foodchem.2020.128582
    The electronic database was searched up to July 2020, using keywords, kenaf and roselle, chemical constituents of kenaf and roselle, therapeutic uses of kenaf and roselle. Journals, books and conference proceedings were also searched. Investigations of pharmacological activities of kenaf revealed that this edible plant exhibits a broad range of therapeutic potential including antioxidant, antimicrobial, antityrosinase, anticancer, antihyperlipidemia, antiulcer, anti-inflammatory, and hepatoprotective activities. Kenaf also showed versatile utility as a functional ingredient in food, folk medicine, and animal nutritions, as well as in nanotechnology processes. The exploitation of underexploited kenaf by-products can be a significant part of waste management from an economic and environmental point of view. In addition, kenaf showed comparable nutritional, phytochemical, and pharmacological properties with Hibiscus sabdariffa (Roselle). This review has important implications for further investigations and applications of kenaf in food and pharmaceuticals industry.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  8. Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, et al.
    Mar Drugs, 2021 Apr 27;19(5).
    PMID: 33925365 DOI: 10.3390/md19050246
    Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  9. Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, et al.
    Phytother Res, 2021 Jan;35(1):256-277.
    PMID: 32940412 DOI: 10.1002/ptr.6823
    There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  10. Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, et al.
    Mini Rev Med Chem, 2021;21(4):398-425.
    PMID: 33001013 DOI: 10.2174/1389557520666201001130114
    β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  11. Jakinala P, Lingampally N, Hameeda B, Sayyed RZ, Khan M Y, Elsayed EA, et al.
    PLoS One, 2021;16(3):e0241729.
    PMID: 33735177 DOI: 10.1371/journal.pone.0241729
    Silver nanoparticles (AgNPs) are among the most widely synthesized and used nanoparticles (NPs). AgNPs have been traditionally synthesized from plant extracts, cobwebs, microorganisms, etc. However, their synthesis from wing extracts of common insect; Mang mao which is abundantly available in most of the Asian countries has not been explored yet. We report the synthesis of AgNPs from M. mao wings extract and its antioxidant and antimicrobial activity. The synthesized AgNPs were spherical, 40-60 nm in size and revealed strong absorption plasmon band around at 430 nm. Highly crystalline nature of these particles as determined by Energy-dispersive X-ray analysis and X-ray diffraction further confirmed the presence of AgNPs. Hydrodynamic size and zeta potential of AgNPs were observed to be 43.9 nm and -7.12 mV, respectively. Fourier-transform infrared spectroscopy analysis revealed the presence of characteristic amide proteins and aromatic functional groups. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis revealed the presence of fatty acids in the wings extract that may be responsible for biosynthesis and stabilization of AgNPs. Further, SDS-PAGE of the insect wing extract protein showed the molecular weight of 49 kDa. M. mao silver nanoparticles (MMAgNPs) exhibit strong antioxidant, broad-range antibacterial and antifungal activities, (66.8 to 87.0%), broad-range antibacterial and antifungal activities was found with maximum zone of inhibition against Staphylococcus aureus MTCC 96 (35±0.4 mm) and Fusarium oxysporum f. sp. ricini (86.6±0.4) which signifies their biomedical and agricultural potential.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  12. Assiry AA, Karobari MI, Bhavikatti SK, Marya A
    Biomed Res Int, 2021;2021:5510174.
    PMID: 34195261 DOI: 10.1155/2021/5510174
    Introduction: Illicium verum commonly known as star anise has been widely used in many Asian countries for pharmaceutical treatment for many diseases. The aim of the present study was to investigate the anti-inflammatory, astringent, and antimicrobial properties of an Illicium verum mouthwash.

    Methods: The present double blinded randomized clinical trial was conducted on fifty subjects, divided into groups A and B. Illicium verum mouthwash (group A) and placebo (group B) were provided to subjects for 21 days; after 14 days, washout period mouthwashes were switched as per crossover design between groups for 21 days. The gingival index (GI), papillary bleeding index (PBI), and oral microbial count were recorded at each stage of study.

    Results: The significant intragroup difference was observed, before crossover in group A and after crossover in group B for GI, PBI, and oral microbial count at different stages of study. On comparing both group A and group B at the first and second follow-up for GI, PBI, and oral microbial count, a statistically significant difference (p < 0.05) was observed. A statistically highly significant mean intergroup and intragroup difference was seen for all the clinical parameters at different stages of study.

    Conclusion: The study revealed that the Illicium verum/star anise has potent antibacterial, anti-inflammatory, and astringent properties.

    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  13. Aklilu E, Harun A, Singh KKB, Ibrahim S, Kamaruzzaman NF
    Biomed Res Int, 2021;2021:5596502.
    PMID: 34660793 DOI: 10.1155/2021/5596502
    Carbapenem-resistant Enterobacteriaceae (CRE) has been a public health risk in several countries, and recent reports indicate the emergence of CRE in food animals. This study was conducted to investigate the occurrence, resistance patterns, and phylogenetic diversity of carbapenem-resistant E. coli (CREC) from chicken. Routine bacteriology, PCR detection of E. coli species, multiplex PCR to detect carbapenemase-encoding genes, and phylogeny of CRE E. coli were conducted. The results show that 24.36% (19/78) were identified as CREC based on the phenotypic identifications of which 17 were positive for the tested carbapenemases genes. The majority, 57.99% (11/19), of the isolates harbored multiple carbapenemase genes. Four isolates harbored all bla NDM, bla OXA, and bla IMP, and five and two different isolates harbored bla NDM and bla OXA and bla OXA and bla IMP, respectively. The meropenem, imipenem, and ertapenem MIC values for the isolates ranged from 2 μg/mL to ≥256 μg/mL. Phylogenetic grouping showed that the CREC isolates belonged to five different groups: groups A, B1, C, D, and unknown. The detection of CREC in this study shows that it has become an emerging problem in farm animals, particularly, in poultry farms. This also implies the potential public health risks posed by CRE from chicken to the consumers.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  14. Shah MD, Venmathi Maran BA, Haron FK, Ransangan J, Ching FF, Shaleh SRM, et al.
    Sci Rep, 2020 12 16;10(1):22091.
    PMID: 33328532 DOI: 10.1038/s41598-020-79094-4
    Marine leech Zeylanicobdella arugamensis (Piscicolidae), an economically important parasite is infesting predominantly cultured groupers, hybrid groupers and other fish in Southeast Asian countries. In this study, we tested the anti-parasitic potential of a medicinal plant Nephrolepis biserrata found in Sabah, East Malaysia against Z. arugamensis. Various concentrations of methanol extracts of the plant were tested experimentally against Z. arugamensis and disinfestation of the leech from its primary host hybrid groupers. The composition of methanol extract of N. biserrata was determined through LC-QTOF analysis. The significant anti-parasitic activity of 100% mortality of leeches was observed with the exposure of N. biserrata extracts. The average time to kill the leeches at concentrations of 25, 50 and 100 mg/ml was 25.11 ± 3.26, 11.91 ± 0.99, and 4.88 ± 0.50 min., respectively. Further, at various low concentrations of N. biserrata 2.5, 5 and 10 mg/ml, hybrid groupers were disinfested in an average time of 108.33 ± 12.65, 65.83 ± 9.70 and 29.16 ± 5.85 min., respectively. The tandem mass spectrometry data from LC-QTOF indicated some hits on useful bioactive compounds such as terpenoids (ivalin, isovelleral, brassinolide, and eschscholtzxanthin), flavonoids (alnustin, kaempferol 7,4'-dimethyl ether, and pachypodol), phenolics (piscidic acid, chlorogenic acid, and ankorine), and aromatic (3-hydroxycoumarin). Thus N. biserrata can act as a potential biocontrol agent.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  15. Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, et al.
    Carbohydr Polym, 2020 Dec 15;250:116800.
    PMID: 33049807 DOI: 10.1016/j.carbpol.2020.116800
    Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  16. Tan WN, Tan ZH, Zulkifli NI, Nik Mohamed Kamal NNS, Rozman NAS, Tong WY, et al.
    Nat Prod Res, 2020 Dec;34(23):3404-3408.
    PMID: 30773054 DOI: 10.1080/14786419.2019.1569012
    Garcinia celebica L., locally known as "manggis hutan" in Malaysia is widely used in folkloric medicine to treat various diseases. The present study was aimed to examine the chemical composition of the essential oil from the leaves of G. celebica L. (EO-GC) and its cytotoxic and antimicrobial potential. EO-GC obtained by hydrodistillation was analysed using capillary GC and GC-MS. Twenty-two compounds were identified, dominated by α-copaene (61.25%), germacrene D (6.72%) and β-caryophyllene (5.85%). In the in vitro MTT assay, EO-GC exhibited significant anti-proliferative effects towards MCF-7 human breast cancer cells with IC50 value of 45.2 μg/mL. Regarding the antimicrobial activity, it showed better inhibitory effects on Gram-positive bacteria than Gram-negative bacteria and none on the fungi and yeasts tested.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  17. Tan SW, Israf Ali DAB, Khaza'ai H, Wong JW, Vidyadaran S
    Cell Immunol, 2020 11;357:104200.
    PMID: 32979761 DOI: 10.1016/j.cellimm.2020.104200
    Tocopherols long dominated studies on vitamin E, although interest has shifted to tocotrienols. It was previously shown that δ-tocotrienol derived from palm oil reduced nitric oxide released by BV2 microglia as early as 18 h after lipopolysaccharide stimulation. The current study measured δ-tocotrienol uptake by BV2 over a 24 h incubation period and its anti-inflammatory effects on primary microglia. Uptake of 17.5 μg/mL δ-tocotrienol by BV2 microglia began as early as 5 min and rose steeply to 21 ± 3% of the amount administered at 24 h. The amount of δ-tocotrienol retained in the lipopolysaccharide-stimulated microglia at 24 h was 14 ± 2%, with no substantial difference seen in unstimulated microglia. The same δ-tocotrienol regimen reduced nitric oxide levels by 82% at 24 h after lipopolysaccharide stimulation (p anti-inflammatory effects of δ-tocotrienol derived from palm oil and opens up interest for tocotrienol supplementation to reduce the effects of inflammatory conditions.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  18. Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, et al.
    J Tissue Eng Regen Med, 2020 10;14(10):1488-1501.
    PMID: 32761978 DOI: 10.1002/term.3115
    It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  19. Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN
    Int J Biol Macromol, 2020 Aug 15;157:743-751.
    PMID: 31805325 DOI: 10.1016/j.ijbiomac.2019.11.244
    This study describes a sago starch-based film by incorporation of cinnamon essential oil (CEO) and nano titanium dioxide (TiO2-N). Different concentrations (i.e., 0%, 1%, 3%, and 5%, w/w) of TiO2-N and CEO (i.e., 0%, 1%, 2%, and 3%, v/w) were incorporated into sago starch film, and the physicochemical, barrier, mechanical, and antimicrobial properties of the bionanocomposite films were estimated. Incorporation of CEO into the sago starch matrix increased oxygen and water vapor permeability of starch films while increasing TiO2-N concentration decreased barrier properties. Moisture content also decreased from 12.96% to 8.04%, solubility in water decreased from 25% to 13.7%, and the mechanical properties of sago starch films improved. Sago starch bionanocomposite films showed excellent antimicrobial activity against Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus. Results also showed that incorporation of TiO2-N and CEO had synergistic effects on functional properties of sago starch films. In summary, sago starch films incorporated with both TiO2-N and CEO shows potential application for active packaging in food industries such as fresh pistachio packaging.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  20. Mavani HAK, Tew IM, Wong L, Yew HZ, Mahyuddin A, Ahmad Ghazali R, et al.
    PMID: 32679828 DOI: 10.3390/ijerph17145107
    Sodium hypochlorite (NaOCl), an effective endodontic irrigant against Enterococcus faecalis (EF), is harmful to periapical tissues. Natural pineapple-orange eco-enzymes (M-EE) and papaya eco-enzyme (P-EE) could be potential alternatives. This study aimed to assess the antimicrobial efficacy of M-EE and P-EE at different concentrations and fermentation periods against EF, compared to 2.5% NaOCl. Fermented M-EE and P-EE (3 and 6 months) at various concentrations were mixed with EF in a 96-well plate incubated for 24 h anaerobically. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of M-EE and P-EE were determined via EF growth observation. EF inhibition was quantitatively measured and compared between different irrigants using the one-way analysis of variance (ANOVA), and different fermentation periods using the independent-samples T-test. M-EE and P-EE showed MIC at 50% and MBC at 100% concentrations. There was no significant difference in antimicrobial effect when comparing M-EE and P-EE at 50% and 100% to 2.5% NaOCl. P-EE at 6 months fermentation exhibited higher EF inhibition compared to 3 months at concentrations of 25% (p = 0.017) and 0.78% (p = 0.009). The antimicrobial properties of M-EE and P-EE, at both 100% and 50% concentrations, are comparable to 2.5% NaOCl. They could therefore be potential alternative endodontic irrigants, but further studies are required.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links