Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Azman KF, Aziz CBA, Zakaria R, Ahmad AH, Shafin N, Ismail CAN
    Molecules, 2021 Sep 06;26(17).
    PMID: 34500857 DOI: 10.3390/molecules26175424
    Tualang honey has been shown to protect against neurodegeneration, leading to improved memory/learning as well as mood. In addition, studies have also demonstrated its anti-inflammatory and antioxidant properties. However, a substantial part of this research lacks systematization, and there seems to be a tendency to start anew with every study. This review presents a decade of research on Tualang honey with a particular interest in the underlying mechanisms related to its effects on the central nervous system. A total of 28 original articles published between 2011 and 2020 addressing the central nervous system (CNS) effects of Tualang honey were analysed. We identified five main categories, namely nootropic, antinociceptive, stress-relieving, antidepressant, and anxiolytic effects of Tualang honey, and proposed the underlying mechanisms. The findings from this review may potentially be beneficial towards developing new therapeutic roles for Tualang honey and help in determining how best to benefit from this brain supplement.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry*
  2. Ng SF, Tan LS, Buang F
    Drug Dev Ind Pharm, 2017 Jan;43(1):108-119.
    PMID: 27588411 DOI: 10.1080/03639045.2016.1224893
    Previous studies have shown that hydroxytyrosol (HT) can be a potential alternative therapeutic agent for the treatment of rheumatoid arthritis (RA). However, HT is extensively metabolized following oral administration, which leads to formulating HT in a topical vehicle to prolong drug action as well as to provide a localized effect. Hidrox-6 is a freeze-dried powder derived from fresh olives and contains a high amount of HT (∼3%) and other polyphenols. Alginate bilayer films containing 5% and 10% Hidrox-6 were formulated. The films were characterized with respect to their physical, morphology, rheological properties; drug content uniformity; and in vitro drug release. Acute dermal irritancy tests and a skin sensitization study were carried out in rats. An efficacy study of the bilayer films for RA was conducted using Freund's adjuvant-induced polyarthritis rats. Animal data showed that the bilayer film formulations did not cause skin irritancy. The efficacy in vivo results showed that the Hidrox-6 bilayer films lowered the arthritic scores, paw and ankle circumference, serum IL-6 level and cumulative histological scores compared with those measured for controls. The topical Hidrox-6 bilayer films improve synovitis and inflammatory symptoms in RA and can be a potential alternative to oral RA therapy.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  3. Yam ML, Abdul Hafid SR, Cheng HM, Nesaretnam K
    Lipids, 2009 Sep;44(9):787-97.
    PMID: 19655189 DOI: 10.1007/s11745-009-3326-2
    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  4. Pillai MK, Young DJ, Bin Hj Abdul Majid HM
    Mini Rev Med Chem, 2018;18(14):1220-1232.
    PMID: 28969549 DOI: 10.2174/1389557517666171002154123
    The plant Alpinia officinarum of the ginger family originated in China and is used throughout South and South-East Asian countries to flavor food and as a traditional medicine to treat a variety of diseases. This review summarizes the biological, pharmacological and phytochemical properties of extracts and subsequently isolated compounds from A. officinarum. In vitro and in vivo studies of both extracts and pure compounds indicate a wide variety of potent bioactivities including antiinflammatory, antibacterial, antioxidant, antiobesity, anticancer, enzyme inhibitory and remarkable antiviral properties. The latter is particularly promising in the face of emerging, virulent respiratory diseases in Asia and the Middle East.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  5. Chin KY
    Drug Des Devel Ther, 2016;10:3029-3042.
    PMID: 27703331
    Osteoarthritis is a degenerative disease of the joint affecting aging populations worldwide. It has an underlying inflammatory cause, which contributes to the loss of chondrocytes, leading to diminished cartilage layer at the affected joints. Compounds with anti-inflammatory properties are potential treatment agents for osteoarthritis. Curcumin derived from Curcuma species is an anti-inflammatory compound as such. This review aims to summarize the antiosteoarthritic effects of curcumin derived from clinical and preclinical studies. Many clinical trials have been conducted to determine the effectiveness of curcumin in osteoarthritic patients. Extracts of Curcuma species, curcuminoids and enhanced curcumin, were used in these studies. Patients with osteoarthritis showed improvement in pain, physical function, and quality of life after taking curcumin. They also reported reduced concomitant usage of analgesics and side effects during treatment. In vitro studies demonstrated that curcumin could prevent the apoptosis of chondrocytes, suppress the release of proteoglycans and metal metalloproteases and expression of cyclooxygenase, prostaglandin E-2, and inflammatory cytokines in chondrocytes. These were achieved by blocking the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) system in the chondrocytes, by preventing the activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, phosphorylation, and translocation of the p65 subunit of NF-κB complexes into the nucleus. In conclusion, curcumin is a potential candidate for the treatment of osteoarthritis. More well-planned randomized control trials and enhanced curcumin formulation are required to justify the use of curcumin in treating osteoarthritis.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry*
  6. Eid AM, El-Enshasy HA, Aziz R, Elmarzugi NA
    Int J Nanomedicine, 2014;9:4685-95.
    PMID: 25336948 DOI: 10.2147/IJN.S66180
    There is an increasing trend among pharmaceutical industries to use natural bioactive materials as medicinal agents and to use new technologies such as self-nanoemulsifying systems. The solubility and bioavailability of poorly soluble drugs can be enhanced by self-nanoemulsifying systems. Swietenia oil is frequently used because of its antimicrobial, antimutagenic, and anticancer bioactive medical properties. This study was conducted to develop self-nanoemulsifying systems for Swietenia oil that will enhance the anti-inflammatory activity of the oil. The self-emulsifying systems developed for Swietenia oil in this study were constructed using ternary phase diagrams and contained the nonionic surfactants Labrasol(®), Tween 20, Capmul(®), and Labrafil(®). The effect of these surfactants on the formulation was examined. The mean droplet size of Swietenia oil as well as their distribution, appearance, viscosity, and spreading times were studied to find the optimum formula, which contained droplets that were less than 200 nm. The next step was to test the anti-inflammatory properties of the optimum formula using a carrageenan-induced rat paw edema test. The results from this test were compared to the oil solution. Different oil/surfactants mixtures had various emulsification properties that were related to the size of their droplets. Tween 20 is a good surfactant to use in self-emulsifying systems because it produces droplets of nano-size. Mixtures of Capmul/Labrasol at a ratio of 2:1 and Labrafil/Tween 20 at a ratio of 1:2 were able to produce self-nanoemulsifying formulations containing Swietenia oil concentrations that ranged from 20%-50%. Nanoemulsion occurred when the size of the droplets fell below 200 nm with low size distribution (<0.3) after being gently mixed with water. It was found that the hydrophilic/lipophilic balance value affected the ternary phase diagram behavior of Swietenia oil and surfactants. In addition, the anti-inflammatory properties of Swietenia oil were greater in the self-nanoemulsifying systems than in the oil solution.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry*
  7. Ahmad Azam A, Ismail IS, Kumari Y, Shaikh MF, Abas F, Shaari K
    PLoS One, 2020;15(9):e0238503.
    PMID: 32925968 DOI: 10.1371/journal.pone.0238503
    Clinacanthus nutans (CN) (Acanthaceae) is well-known for its anti-inflammatory properties among Asian communities; however, there are currently no data specifically focused on the anti-inflammatory effects of CN on the brain tissue. Neuroinflammation is a common consequence of toxin intrusion to any part of the central nervous system (CNS). As an innate immune response, the CNS may react through both protective and/or toxic actions due to the activation of neuron cells producing pro- and/or anti-inflammatory cytokines in the brain. The unresolved activation of the inflammatory cytokines' response is associated with the pathogenesis of neurological disorders. The present study aimed to decipher the metabolic mechanism on the effects of 14 days oral treatment with CN aqueous extract in induced-lipopolysaccharides (LPS) rats through 1H NMR spectroscopic biomarker profiling of the brain tissue and the related cytokines. Based on the principal component analysis (PCA) of the nuclear magnetic resonance (NMR) spectral data, twenty-one metabolites in the brain tissue were profiled as biomarkers for the LPS (10 μL)-induced neuroinflammation following intracerebroventricular injection. Among the twenty-one biomarkers in the neuroinflammed rats, CN treatment of 1000 and 500 mg/kg BW successfully altered lactate, pyruvate, phosphorylcholine, glutamine, and α-ketoglutarate when compared to the negative control. Likewise, statistical isolinear multiple component analysis (SIMCA) showed that treatments by CN and the positive control drug, dextromethorphan (DXM, 5 mg/kg BW), have anti-neuroinflammatory potential. A moderate correlation, in the orthogonal partial least squares (OPLS) regression model, was found between the spectral metabolite profile and the cytokine levels. The current study revealed the existence of high levels of pro-inflammatory cytokines, namely IL-1α, IL-1β, and TNF-α in LPS-induced rats. Both CN dose treatments lowered IL-1β significantly better than DXM Interestingly, DXM and CN treatments both exhibited the upregulation of the anti-inflammatory cytokines IL-2 and 4. However, DXM has an advantage over CN in that the former also increased the expression of IL-10 of anti-inflammatory cytokines. In this study, a metabolomics approach was successfully applied to discover the mechanistic role of CN in controlling the neuroinflammatory conditions through the modulation of complex metabolite interactions in the rat brain.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  8. Sum AYC, Li X, Yeng YYH, Razif MFM, Jamil AHA, Ting NS, et al.
    Int J Med Mushrooms, 2020;22(8):803-814.
    PMID: 33389874 DOI: 10.1615/IntJMedMushrooms.2020035658
    Natural compounds found in Lignosus rhinocerus like polysaccharides and polysaccharide-protein complexes have the capabilities to modulate the immune system. It possesses antitumor and anti-inflammatory properties and is commonly used in Southeast Asia and Southern China to alleviate illness. To investigate its immunomodulating properties, composition of polysaccharides and the expression of cytokines/chemokines from L. rhinocerus (TM02®) cultivar treated RAW 264.7 were explored. It was revealed, CWE contains linear polysaccharides with 1,4-linkages and rhinoprolycan fraction (HMW & MMW) possesses 1,4-Glcp and 1,6-Glcp backbone and branched chain (1,3,6-Glcp, 1,4,6-Glcp, 1,3,6-Glcp, 1,2,4,6-Glcp). Cytokines profile showed upregulation from CWE (IL-5: 12.078 ± 1.225), HMW (IL-6: 7.297 ± 0.338; TIMP-1: 3.358 ± 0.200), MMW (IL-5: 15.412 ± 5.823; TIMP-1: 1.747 ± 0.053), and LMW (MIP-2: 3.495 ± 0.416; TIMP-1: 7.573 ± 0.088) and possible involvement of NF-κB and MAPK signaling pathway. Further in vivo studies are needed to fully understand the immunomodulatory effects of TM02®.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  9. Vo TS, Ngo DH
    Biomolecules, 2019 02 21;9(2).
    PMID: 30795643 DOI: 10.3390/biom9020076
    Rhodomyrtus tomentosa (Aiton) Hassk. is a flowering plant belonging to the family Myrtaceae, native to southern and southeastern Asia. It has been used in traditional Vietnamese, Chinese, and Malaysian medicine for a long time for the treatment of diarrhea, dysentery, gynecopathy, stomachache, and wound healing. Moreover, R. tomentosa is used to make various food products such as wine, tea, and jam. Notably, R. tomentosa has been known to contain structurally diverse and biologically active metabolites, thus serving as a potential resource for exploring novel functional agents. Up to now, numerous phenolic and terpenoid compounds from the leaves, root, or fruits of R. tomentosa have been identified, and their biological activities such as antioxidant, antibacterial, anti-inflammatory, and anticancer have been evidenced. In this contribution, an overview of R. tomentosa and its health beneficial properties was focused on and emphasized.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry*
  10. Mohamed Isa SSP, Ablat A, Mohamad J
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438299 DOI: 10.3390/molecules23020400
    Plumeria rubra Linn of the family Apocynaceae is locally known in Malaysia as "Kemboja". It has been used by local traditional medicine practitioners for the treatment of arthritis-related disease. The LCMS/MS analysis of the methanol extract of flowers (PR-ME) showed that it contains 3-O-caffeyolquinic acid, 5-caffeoquinic acid, 1,3-dicaffeoquinic acid, chlorogenic acid, citric acid, 3,3-di-O-methylellagic acid, kaempferol-3-O-glucoside, kaempferol-3-rutinoside, kaempferol, quercetin 3-O-α-l-arabinopyranoside, quercetin, quinic acid and rutin. The flower PR-ME contained high amounts of phenol and flavonoid at 184.632 mg GAE/g and 203.2.2 mg QE/g, respectively. It also exhibited the highest DPPH, FRAP, metal chelating, hydrogen peroxide, nitric oxide superoxide radical scavenging activity. Similarly, the XO inhibitory activity in vitro assay possesses the highest inhibition effects at an IC50 = 23.91 μg/mL. There was no mortality or signs of toxicity in rats at a dose of 4 g/kg body weight. The administration of the flower PR-ME at doses of 400 mg/kg to the rats significantly reduced serum uric acid 43.77%. Similarly, the XO activity in the liver was significantly inhibited by flower PR-ME at doses of 400 mg/kg. These results confirm that the flower PR-ME of P. rubra contains active phytochemical compounds as detected in LCMS/MS that contribute to the inhibition of XO activity in vitro and in vivo in reducing acid uric level in serum and simultaneously scavenging the free radical to reduce the oxidative stress.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  11. Satija S, Mehta M, Gupta G, Chellappan DK, Dua K
    Future Med Chem, 2020 10;12(20):1805-1807.
    PMID: 33016120 DOI: 10.4155/fmc-2020-0190
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  12. Abbas A, Nazir H, Naseer MM, Bolte M, Hussain S, Hafeez N, et al.
    PMID: 24177882 DOI: 10.1016/j.saa.2013.10.023
    A series of new pyrazoline derivatives (1b-4c) bearing N-acyl arms and nine to twelve carbon long alkoxy side chains was synthesized and characterized on the basis of spectroscopic data and microanalysis. The nature of self-assembly to understand the interplay of alkoxy chain crystallization and various supramolecular interactions was investigated using single crystal X-ray diffraction studies. Interesting self-assembled supramolecular structures of 1b and 4c were observed in the crystal lattice owing to various CH⋯O, H⋯H, CH⋯π, lonepair⋯π and π⋯π interactions. Further, all the synthesized compounds (1b-4c) were screened for their in vitro antifungal and anti-inflammatory activities. Compounds 2b, 3b, 2c and 3c showed significant to moderate antifungal activity against Microsporum canis whereas most of the other compounds were found inactive against all the five tested fungal strains. Good anti-inflammatory activity was observed for compounds 1b with IC50 value 331 μM compared to 273 μM for Indomethacine, a standard reference drug. The bio-activity data demonstrates the relationship between lipophilicity, solubility and bioavailability.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry*
  13. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry*
  14. Wong KW, Teh SS, Law KP, Ismail IS, Sato K, Mase N, et al.
    Arch Pharm (Weinheim), 2023 Jan;356(1):e2200418.
    PMID: 36285691 DOI: 10.1002/ardp.202200418
    Oxidative stress and its constant companion, inflammation, play a critical part in the pathogenesis of many acute and chronic illnesses. The discovery of new multi-targeted drug candidates with antioxidant and anti-inflammatory properties is deemed necessary. Thus, a series of novel xanthone derivatives with halogenated benzyl (4b-4d, 4f-4h) and methoxylated benzyl groups (4e) attached to the butoxy amine substituent were synthesized in this study. The synthesized xanthone derivatives exhibited stronger antioxidant activity against H2 O2 scavenging than the standard drug, α-tocopherol, but weaker towards DPPH scavenging and ferrous ion chelation. Besides that, 4b-4d, 4f-4h demonstrated good anti-inflammatory activities through NO production inhibition towards lipopolysaccharide (LPS)-induced RAW 264.7 cells and showed 2-4 times stronger effects than the standard drug, diclofenac sodium. Moreover, compound 4b with two brominated benzyl groups attached to the butoxy amine substituent suppressed the production of pro-inflammatory cytokines, TNF-α and IL-1β, significantly. Structure-activity relationship elucidated that the halogenated benzylamine substituent plays an important role in contributing the antioxidant and anti-inflammatory activities of xanthones. In summary, xanthone 4b was identified as a potential lead compound to be further developed into antioxidant and anti-inflammatory drugs. Thus, further studies on the related mechanisms of action of 4b are recommended.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  15. Leong SW, Faudzi SM, Abas F, Aluwi MF, Rullah K, Wai LK, et al.
    Molecules, 2014 Oct 09;19(10):16058-81.
    PMID: 25302700 DOI: 10.3390/molecules191016058
    A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure-activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  16. Ng CH, Rullah K, Aluwi MF, Abas F, Lam KW, Ismail IS, et al.
    Molecules, 2014;19(8):11645-59.
    PMID: 25100256 DOI: 10.3390/molecules190811645
    The natural product molecule 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) isolated from the medicinal plant Melicope ptelefolia was shown to exhibit potent lipoxygenase (LOX) inhibitory activity. It is known that LOX plays an important role in inflammatory response as it catalyzes the oxidation of unsaturated fatty acids, such as linoleic acid to form hydroperoxides. The search for selective LOX inhibitors may provide new therapeutic approach for inflammatory diseases. Herein, we report the synthesis of tHGA analogs using simple Friedel-Craft acylation and alkylation reactions with the aim of obtaining a better insight into the structure-activity relationships of the compounds. All the synthesized analogs showed potent soybean 15-LOX inhibitory activity in a dose-dependent manner (IC50 = 10.31-27.61 μM) where compound 3e was two-fold more active than tHGA. Molecular docking was then applied to reveal the important binding interactions of compound 3e in soybean 15-LOX binding site. The findings suggest that the presence of longer acyl bearing aliphatic chain (5Cs) and aromatic groups could significantly affect the enzymatic activity.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  17. Lee KH, Ab Aziz FH, Syahida A, Abas F, Shaari K, Israf DA, et al.
    Eur J Med Chem, 2009 Aug;44(8):3195-200.
    PMID: 19359068 DOI: 10.1016/j.ejmech.2009.03.020
    A series of 46 curcumin related diarylpentanoid analogues were synthesized and evaluated for their anti-inflammatory, antioxidant and anti-tyrosinase activities. Among these compounds 2, 13 and 33 exhibited potent NO inhibitory effect on IFN-gamma/LPS-activated RAW 264.7 cells as compared to L-NAME and curcumin. However, these series of diarylpentanoid analogues were not significantly inhibiting NO scavenging, total radical scavenging and tyrosinase enzyme activities. The results revealed that the biological activity of these diarylpentanoid analogues is most likely due to their action mainly upon inflammatory mediator, inducible nitric oxide synthase (iNOS). The present results showed that compounds 2, 13 and 33 might serve as a useful starting point for the design of improved anti-inflammatory agents.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  18. Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, et al.
    J Ethnopharmacol, 2021 May 10;271:113887.
    PMID: 33539951 DOI: 10.1016/j.jep.2021.113887
    ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever.

    AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages.

    MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS.

    RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin.

    CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.

    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  19. Yong YK, Sulaiman N, Hakim MN, Lian GE, Zakaria ZA, Othman F, et al.
    Biomed Res Int, 2013;2013:463145.
    PMID: 24224164 DOI: 10.1155/2013/463145
    The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO) leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO), indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF) were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg⁻¹) prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats' paws were observed with AEBO at the dose of 150 mg kg⁻¹. Pharmacological screening of the extract showed significant (P < 0.05) anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
  20. Jantan I, Bukhari SN, Adekoya OA, Sylte I
    Drug Des Devel Ther, 2014;8:1405-18.
    PMID: 25258510 DOI: 10.2147/DDDT.S67370
    Arachidonic acid metabolism leads to the generation of key lipid mediators which play a fundamental role during inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as a synergistic anti-inflammatory effect with enhanced spectrum of activity. A series of 1,3-diphenyl-2-propen-1-one derivatives were investigated for anti-inflammatory related activities involving inhibition of secretory phospholipase A2, cyclooxygenases, soybean lipoxygenase, and lipopolysaccharides-induced secretion of interleukin-6 and tumor necrosis factor-alpha in mouse RAW264.7 macrophages. The results from the above mentioned assays exhibited that the synthesized compounds were effective inhibitors of pro-inflammatory enzymes and cytokines. The results also revealed that the chalcone derivatives with 4-methlyamino ethanol substitution seem to be significant for inhibition of enzymes and cytokines. Molecular docking experiments were carried out to elucidate the molecular aspects of the observed inhibitory activities of the investigated compounds. Present findings increase the possibility that these chalcone derivatives might serve as a beneficial starting point for the design and development of improved anti-inflammatory agents.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links