Displaying publications 1 - 20 of 228 in total

Abstract:
Sort:
  1. Rehman K, Aluwi MF, Rullah K, Wai LK, Mohd Amin MC, Zulfakar MH
    Int J Pharm, 2015 Jul 25;490(1-2):131-41.
    PMID: 26003416 DOI: 10.1016/j.ijpharm.2015.05.045
    Imiquimod is a chemotherapeutic agent for many skin-associated diseases, but it has also been associated with inflammatory side effects. The aim of this study was to prevent the inflammatory effect of commercial imiquimod (Aldara(®)) by controlled release of imiquimod through a hydrogel/oleogel colloidal mixture (CA bigel) containing fish oil as an anti-inflammatory agent. Imiquimod permeability from Aldara® cream and bigel through mice skin was evaluated, and the drug content residing in the skin via the tape stripping technique was quantified. The fish oil fatty acid content in skin along with its lipophilic environment was also determined. An inflammation study was conducted using animal models, and Aldara(®) cream was found to potentially cause psoriasis-like inflammation, which could be owing to prolonged application and excessive drug permeation. Controlled release of imiquimod along with fish oil through CA bigel may have caused reduced imiquimod inflammation. NMR studies and computerized molecular modeling were also conducted to observe whether the fish oil and imiquimod formed a complex that was responsible for improving imiquimod transport and reducing its side effects. NMR spectra showed dose-dependent chemical shifts and molecular modeling revealed π-σ interaction between EPA and imiquimod, which could help reduce imiquimod inflammation.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  2. Gul S, Ahmed S, Kifli N, Uddin QT, Batool Tahir N, Hussain A, et al.
    J Transl Med, 2014;12:316.
    PMID: 25428431 DOI: 10.1186/s12967-014-0316-9
    Hordeum vulgare L. (HV or barley) is used by traditional healers to treat various inflammatory and cardiovascular diseases, without the knowledge of pharmacologic rationale behind its actions. This study was designed to explore the potential scientific mechanism(s) that could explain the use of Hordeum vulgare in traditional medicine as a treatment for various inflammatory and cardiovascular diseases.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  3. Yong DOC, Saker SR, Chellappan DK, Madheswaran T, Panneerselvam J, Choudhury H, et al.
    PMID: 32359343 DOI: 10.2174/1871530320666200503053846
    The application of medicinal plants has captured the interest of researchers in recent times due to their potent therapeutic properties and a better safety profile. The prominent role of herbal products in treating and preventing multiple diseases dates back to ancient history and most of the modern drugs today originated from their significant sources owing to their ability to control multiple targets via different signalling pathways. Among them, flavonoids consist of a large group of polyphenols, which are well known for their various therapeutic benefits. Rutin is considered one of the attractive phytochemicals and important flavonoids in the pharmaceutical industry due to its diverse pharmacological activities via various underlying molecular mechanisms. It is usually prescribed for various disease conditions such as varicosities, haemorrhoids and internal haemorrhage. In this review, we have discussed and highlighted the different molecular mechanisms attributed to the various pharmacological activities of rutin, such as antioxidant, anti-inflammatory, anticancer, anti-allergic and antidiabetic. This review will be beneficial to herbal, biological and molecular scientists in understanding the pharmacological relevance of rutin at the molecular level.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  4. Balan T, Sani MH, Mumtaz Ahmad SH, Suppaiah V, Mohtarrudin N, Zakaria ZA
    J Ethnopharmacol, 2015 Apr 22;164:1-15.
    PMID: 25540923 DOI: 10.1016/j.jep.2014.12.017
    In traditional medicine, the leaves, flowers, barks and roots of Muntingia calabura L. (Muntingiaceae) have been employed as a treatment for various ailments including dyspepsia and to relieve pain caused by gastritis and peptic ulcer disease. The methanolic extract of Muntingia calabura leaves (MEMC) has been proven in the previous study to possess significant antiulcer activity. In this study, we attempted to determine the prophylactic effect of the fractions obtained from MEMC against ethanol-induced gastric lesion in rats and the involvement of antioxidants and anti-inflammatory mediators.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  5. Mohd Jamil MDH, Taher M, Susanti D, Rahman MA, Zakaria ZA
    Nutrients, 2020 Aug 26;12(9).
    PMID: 32858812 DOI: 10.3390/nu12092584
    Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims to critically review the presence of phytochemicals in P. quassioides and correlate their pharmacological activities with the significance of its use as traditional medicine. Data were collected by reviewing numerous scientific articles from several journal databases on the pharmacological activities of P. quassioides using certain keywords. As a result, approximately 94 phytochemicals extracted from P. quassioides were found to be associated with quassinoids, β-carbolines and canthinones. These molecules exhibited various pharmacological benefits such as anti-inflammatory, antioxidant, anti-cancer, anti-microbial, and anti-parasitic activities which help to treat different diseases. However, P. quassioides were also found to have several toxicity effects in high doses, although the evidence regarding these effects is limited in proving its safe use and efficacy as herbal medicine. Accordingly, while it can be concluded that P. quassioides may have many potential pharmacological benefits with more phytochemistry discoveries, further research is required to determine its real value in terms of quality, safety, and efficacy of use.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  6. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.
    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.
    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.
    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  7. Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM
    Nutr Res, 2010 Sep;30(9):650-9.
    PMID: 20934607 DOI: 10.1016/j.nutres.2010.08.008
    Natural honey has been used in traditional medicine of different cultures throughout the world. This study looked into the extraction of Malaysian honey and the evaluation of the anti-inflammatory activity of these extracts. It was hypothesized that honey extracts contain varying amounts of phenolic compounds and that they possess different in vitro anti-inflammatory activities. Honey extracts were analyzed using liquid chromatography-mass spectrometry to identify and compare phenolic compounds, whereas high-performance liquid chromatography was used for their quantification. Subsequently, honey methanol extract (HME) and honey ethyl acetate extract (HEAE) were tested in vitro for their effect on nitric oxide production in stimulated macrophages. The extracts were also tested for their effects on tumor necrosis factor-α (TNF) cytotoxicity in L929 cells. The major phenolics in the extracts were ellagic, gallic, and ferulic acids; myricetin; chlorogenic acid; and caffeic acid. Other compounds found in lower concentrations were hesperetin, p-coumaric acid, chrysin, quercetin, luteolin, and kaempferol. Ellagic acid was the most abundant of the phenolic compounds recorded, with mean concentrations of 3295.83 and 626.74 μg/100 g of honey in HME and HEAE, respectively. The median maximal effective concentrations for in vitro nitric oxide inhibition by HEAE and HME were calculated to be 37.5 and 271.7 μg/mL, respectively. The median maximal effective concentrations for protection from TNF cytotoxicity by HEAE and HME were 168.1 and 235.4 μg/mL, respectively. In conclusion, HEAE exhibited greater activity in vitro, whereas HME contained a higher concentration of phenolic compounds per 100 g of honey.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  8. Ramli M, Hussein MZ, Yusoff K
    Int J Nanomedicine, 2013;8:297-306.
    PMID: 23345976 DOI: 10.2147/IJN.S38858
    A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  9. Samud AM, Asmawi MZ, Sharma JN, Yusof AP
    Immunopharmacology, 1999 Sep;43(2-3):311-6.
    PMID: 10596868
    Crinum asiaticum Linn plant is used in Malaysia as a rheumatic remedy and to relieve local pain. In the present study, we examined the anti-inflammatory effects of this plant extract on carrageenan-induced hind paw oedema in mice. C. asiaticum was serially extracted with petroleum ether, followed by chloroform and lastly, methanol. The chloroform and methanol extracts of the plant given orally (50 mg kg-1) caused significant (p < 0.05; n = 7) reduction in paw oedema but the petroleum ether extract did not induce significant effect (p > 0.05) on paw oedema. The methanol extract was then dissolved in water and extracted consecutively with chloroform, ethyl acetate and butanol. The chloroform fraction of methanol extract (CFME) treatment (50 mg kg(-1)) significantly reduced (p < 0.05; n = 7) the acute paw oedema. This may indicate that active anti-inflammatory compounds are present in the CFME. In an attempt to study the mechanism of action of its anti-inflammatory activity, the effects of CFME on BK- and histamine-induced contractions were investigated in isolated rat uterus and guinea-pig ileum preparations, respectively. It was found that CFME caused dose-dependent reduction (p < 0.05; n = 6) of the contractile response induced by BK and shifted the log dose-response curve of histamine to the right. The present findings suggest that C. asiaticum possessed an anti-inflammatory activity as suggested by its use in traditional medicine. The anti-inflammatory activity of this plant could not have been due to its anti-bradykinin activities as CFME non-specifically inhibited BK-induced contraction. It also suggest that CFME may contain compound(s) with anti-histaminic properties. The significance of these findings is discussed.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  10. Awang AF, Ferdosh S, Sarker MZ, Sheikh HI, Ghafoor K, Yunus K
    Curr Pharm Biotechnol, 2016 9 23;17(12):1024-1035.
    PMID: 27655363
    Stereospermum fimbriatum is one of the medicinal plants that has been claimed to be used traditionally to treat several illnesses such as stomachache, earache, skin irritation and postpartum illness. The genus of this plant is known to possess medicinal properties in every part of the plant. Therapeutic potential of S. fimbriatum is anticipated based on numerous previous studies that documented variety of phytochemical contents and bioactivity of the genus. The most reported bioactivities of its genus are antimicrobial, antioxidant, anti-diabetic, anti-inflammatory, anti-diarrheal and analgesic activities. S. fimbriatum is a rare species that has not been discovered yet. Thus, this review aims at highlighting the potentials of S. fimbriatum by collecting available data on the bioactivities of its genus and set the directions for future research on this plant.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  11. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY
    Mar Drugs, 2020 Jun 19;18(6).
    PMID: 32575468 DOI: 10.3390/md18060323
    Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  12. Ooi BK, Phang SW, Yong PVC, Chellappan DK, Dua K, Khaw KY, et al.
    Life Sci, 2021 Aug 01;278:119658.
    PMID: 34048809 DOI: 10.1016/j.lfs.2021.119658
    AIMS: Maslinic acid (MA) is a naturally occurring pentacyclic triterpene known to exert cardioprotective effects. This study aims to investigate the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2) for MA-mediated anti-inflammatory effects in atheroma pathogenesis in vitro, including evaluation of tumor necrosis factor-alpha (TNF-α)-induced monocyte recruitment, oxidized low-density lipoprotein (oxLDL)-induced scavenger receptors expression, and nuclear factor-kappa B (NF-ĸB) activity in human umbilical vein endothelial cells (HUVECS) and human acute monocytic leukemia cell line (THP-1) macrophages.

    MATERIALS AND METHODS: An in vitro monocyte recruitment model utilizing THP-1 and HUVECs was developed to evaluate TNF-α-induced monocyte adhesion and trans-endothelial migration. To study the role of Nrf2 for MA-mediated anti-inflammatory effects, Nrf2 inhibitor ML385 was used as the pharmacological inhibitor. The expression of Nrf2, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 36 (CD36), and scavenger receptor type A (SR-A) in HUVECs and THP-1 macrophages were investigated using RT-qPCR and Western blotting. The NF-κB activity was determined using NF-κB (p65) Transcription Factor Assay Kit.

    KEY FINDINGS: The results showed opposing effects of MA on Nrf2 expression in HUVECs and THP-1 macrophages. MA suppressed TNF-α-induced Nrf2 expression in HUVECs, but enhanced its expression in THP-1 macrophages. Combined effects of MA and ML385 suppressed MCP-1, VCAM-1, and SR-A expressions. Intriguingly, at the protein level, ML385 selectively inhibited SR-A but enhanced CD36 expression. Meanwhile, ML385 further enhanced MA-mediated inhibition of NF-κB activity in HUVECs. This effect, however, was not observed in THP-1 macrophages.

    SIGNIFICANCE: MA attenuated foam cell formation by suppressing VCAM-1, MCP-1, and SR-A expression, as well as NF-κB activity, possibly through Nrf2 inhibition. The involvement of Nrf2 for MA-mediated anti-inflammatory effects however differs between HUVECs and macrophages. Future investigations are warranted for a detailed evaluation of the contributing roles of Nrf2 in foam cells formation.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  13. Mohd Faudzi SM, Leong SW, Auwal FA, Abas F, Wai LK, Ahmad S, et al.
    Arch Pharm (Weinheim), 2021 Jan;354(1):e2000161.
    PMID: 32886410 DOI: 10.1002/ardp.202000161
    A new series of pyrazole, phenylpyrazole, and pyrazoline analogs of diarylpentanoids (excluding compounds 3a, 4a, 5a, and 5b) was pan-assay interference compounds-filtered and synthesized via the reaction of diarylpentanoids with hydrazine monohydrate and phenylhydrazine. Each analog was evaluated for its anti-inflammatory ability via the suppression of nitric oxide (NO) on IFN-γ/LPS-activated RAW264.7 macrophage cells. The compounds were also investigated for their inhibitory capability toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), using a modification of Ellman's spectrophotometric method. The most potent NO inhibitor was found to be phenylpyrazole analog 4c, followed by 4e, when compared with curcumin. In contrast, pyrazole 3a and pyrazoline 5a were found to be the most selective and effective BChE inhibitors over AChE. The data collected from the single-crystal X-ray diffraction analysis of compound 5a were then applied in a docking simulation to determine the potential binding interactions that were responsible for the anti-BChE activity. The results obtained signify the potential of these pyrazole and pyrazoline scaffolds to be developed as therapeutic agents against inflammatory conditions and Alzheimer's disease.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  14. Sharma JN, Wirth KJ
    Gen. Pharmacol., 1996 Jan;27(1):133-6.
    PMID: 8742510
    1. This study examines the effect of Hoe 140, a bradykinin (BK) 2 receptor antagonist, indomethacin and prednisolone on chronic adjuvant arthritis of the knee in rats. We also evaluated the influence of Hoe 140 on BK-forming enzymes in the synovial and paw tissues. 2. Adjuvant arthritis was induced in male Sprague-Dawley rats in the right knee by injecting 0.05 ml of a fine suspension of heat-killed Mycobacterium tubercle bacilli in liquid paraffin (5 mg/ml). 3. Hoe 140 (1.5 mg/kg i.p.), indomethacin (2.5 mg/kg orally) and prednisolone (3.0 mg/kg orally) administration for 9 days resulted in significant suppression of knee joint swelling. Plasma and tissue kallikrein levels were raised (P < 0.01) in the synovial and paw tissues of adjuvant arthritic rats. Hoe 140 treatment reduced (P < 0.05) tissue kallikrein but increased (P < 0.01) plasma kallikrein levels in synovial tissue. 4. Hoe 140 treatment did not alter (P > 0.05) the raised plasma and tissue kallikrein levels in the paw tissue. The findings indicate that Hoe 140 may be a useful anti-inflammatory agent and BK plays a major role in this adjuvant-induced arthritis model.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  15. Ismail NA, Baines DL, Wilson SM
    Eur J Pharmacol, 2014 Jun 05;732:32-42.
    PMID: 24657276 DOI: 10.1016/j.ejphar.2014.03.005
    Neural precursor cell expressed, developmentally down-regulated protein 4-2 (Nedd4-2) mediates the internalisation / degradation of epithelial Na(+) channel subunits (α-, β- and γ-ENaC). Serum / glucocorticoid inducible kinase 1 (SGK1) and protein kinase A (PKA) both appear to inhibit this process by phosphorylating Nedd4-2-Ser(221), -Ser(327) and -Thr(246). This Nedd4-2 inactivation process is thought to be central to the hormonal control of Na(+) absorption. The present study of H441 human airway epithelial cells therefore explores the effects of SGK1 and / or PKA upon the phosphorylation / abundance of endogenous Nedd4-2; the surface expression of ENaC subunits, and electrogenic Na(+) transport. Effects on Nedd4-2 phosphorylation/abundance and the surface expression of ENaC were monitored by western analysis, whilst Na(+) absorption was quantified electrometrically. Acutely (20min) activating PKA in glucocorticoid-deprived (24h) cells increased the abundance of Ser(221)-phosphorylated, Ser(327)-phosphorylated and total Nedd4-2 without altering the abundance of Thr(246)-phosphorylated Nedd4-2. Activating PKA under these conditions did not cause a co-ordinated increase in the surface abundance of α-, β- and γ-ENaC and had only a very small effect upon electrogenic Na(+) absorption. Activating PKA (20min) in glucocorticoid-treated (0.2µM dexamethasone, 24h) cells, on the other hand, increased the abundance of Ser(221)-, Ser(327)- and Thr(246)-phosphorylated and total Nedd4-2; increased the surface abundance of α-, β- and γ-ENaC and evoked a clear stimulation of Na(+) transport. Chronic glucocorticoid stimulation therefore appears to allow cAMP-dependent control of Na(+) absorption by facilitating the effects of PKA upon the Nedd4-2 and ENaC subunits.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  16. Shipton FN, Khoo TJ, Hossan MS, Wiart C
    J Ethnopharmacol, 2017 Feb 23;198:91-97.
    PMID: 28049063 DOI: 10.1016/j.jep.2016.12.045
    ETHNOPHARMACOLOGICAL RELEVANCE: Pericampylus glaucus is a climbing plant found across Asia and used in traditional medicine to treat a number of conditions including splenomegaly, fever, cough, laryngitis, pulmonary disease, asthma, headache, hair loss, snake bite, boar bite, factures, boils, tumours, tetanus, rheumatic pain, itches and eclampsia.

    AIM OF THE STUDY: To test extracts of P. glaucus in a number of bioassays and determine the legitimacy of its traditional use.

    MATERIALS AND METHODS: The stems, leaves, roots and fruits of P. glaucus were collected and extracted sequentially with hexane, chloroform and ethanol, respectively. The anti-inflammatory activity was assessed by testing the ability of the extracts to inhibit heat induced protein denaturation, stabilise human red blood cells under hypotonic stress and by testing the inhibitory activity of the extracts against cyclooxygenases 1 and 2. Cytotoxicity was tested using the human lung epithelial cell line MRC-5 and nasopharangeal carcinoma cell line HK1 in the MTT assay.

    RESULTS: Many of the samples showed an ability to prevent heat induced protein denaturation, as well as prevent lysis of red blood cells. Most of the extracts demonstrated inhibitory activity towards both of the COX enzymes. The ethanol extracts tended to demonstrate greater toxicity than other extracts, with some of the other extracts significantly enhancing growth and metabolism of the cells.

    CONCLUSION: The benefit of P. glaucus for the treatment of diseases related to inflammation and cancer was supported by the in vitro assays adopted in this study.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  17. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  18. Ali SS, Noordin L, Bakar RA, Zainalabidin S, Jubri Z, Wan Ahmad WAN
    Cardiovasc Toxicol, 2021 08;21(8):605-618.
    PMID: 34114196 DOI: 10.1007/s12012-021-09666-x
    Clinically, timely reperfusion strategies to re-establish oxygenated blood flow in ischemic heart diseases seem to salvage viable myocardium effectively. Despite the remarkable improvement in cardiac function, reperfusion therapy could paradoxically trigger hypoxic cellular injury and dysfunction. Experimental laboratory models have been developed over the years to explain better the pathophysiology of cardiac ischemia-reperfusion injury, including the in vitro hypoxia-reoxygenation cardiac injury model. Furthermore, the use of nutritional myocardial conditioning techniques have been successful. The cardioprotective potential of flavonoids have been greatly linked to its anti-oxidant, anti-apoptotic and anti-inflammatory properties. While several studies have reviewed the cardioprotective properties of flavonoids, there is a scarce evidence of their function in the hypoxia-reoxygenation injury cell culture model. Hence, the aim of this review was to lay out and summarize our current understanding of flavonoids' function in mitigating hypoxia-reoxygenation cardiac injury based on evidence from the last five years. We also discussed the possible mechanisms of flavonoids in modulating the cardioprotective effects as such information would provide invaluable insight on future therapeutic application of flavonoids.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  19. Dewi IP, Dachriyanus, Aldi Y, Ismail NH, Hefni D, Susanti M, et al.
    J Ethnopharmacol, 2024 Feb 10;320:117381.
    PMID: 37967776 DOI: 10.1016/j.jep.2023.117381
    ETHNOPHARMACOLOGICAL RELEVANCE: Garcinia cowa Roxb. is called asam kandis in West Sumatra. This plant contains several quinone compounds, including tetraprenyltoluquinone (TPTQ). The bioactivity of this compound has been tested as an anticancer agent. However, reports regarding its anti-inflammatory effects are still limited, especially against coronavirus disease (Covid-19).

    AIM OF THE STUDY: This study explores the anti-inflammatory effect of TPTQ in silico, in vitro, and in vivo.

    MATERIALS AND METHODS: In silico testing used the Gnina application, opened via Google Colab. The TPTQ structure was docked with the nuclear factor kappa B (NF-ĸB) protein (PDB: 2RAM). In vitro testing began with testing the cytotoxicity of TPTQ against Raw 264.7 cells, using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method. A phagocytic activity test was carried out using the neutral red uptake method, and interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) secretion tests were carried out using the enzyme-linked immunosorbent assay (ELISA) method. In vivo, tests were carried out on mice by determining cluster of differentiation 8+ (CD8+), natural killer cell (NK cell), and IL-6 parameters, using the ELISA method.

    RESULTS: TPTQ has a lower binding energy than the native ligand and occupies the same active site as the native ligand. TPTQ decreased the phagocytosis index and secretion of IL-6 and TNF-α experimentally in vitro. TPTQ showed significant downregulation of CD8+ and slightly decreased NK cells and IL-6 secretion in vivo.

    CONCLUSION: The potent inhibitory effect of TPTQ on the immune response suggests that TPTQ can be developed as an anti-inflammatory agent, especially in the treatment of Covid-19.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  20. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links