Displaying all 8 publications

Abstract:
Sort:
  1. Zyoud SH, Awang R, Sulaiman SA, Al-Jabi SW
    Hum Exp Toxicol, 2011 Jul;30(7):550-9.
    PMID: 20630911 DOI: 10.1177/0960327110377647
    Acetaminophen is one of the most commonly encountered medications in self-poisoning, with a high rate of morbidity. The prevalence and characteristics of acetaminophen intoxication associated with long hospital stay in patients are not well defined.
    Matched MeSH terms: Antidotes/administration & dosage
  2. Zyoud SH, Awang R, Sulaiman SA, Al-Jabi SW
    Pharmacoepidemiol Drug Saf, 2010 Oct;19(10):1064-70.
    PMID: 20712021 DOI: 10.1002/pds.1955
    To investigate the relationship between different types of adverse drug reaction (ADR) and late time to N-acetylcysteine (NAC) infusion in patients presenting to the hospital with acetaminophen overdose.
    Matched MeSH terms: Antidotes/administration & dosage
  3. Zyoud SH, Awang R, Sulaiman SA, Al-Jabi SW
    Fundam Clin Pharmacol, 2011 Jun;25(3):405-10.
    PMID: 20584210 DOI: 10.1111/j.1472-8206.2010.00831.x
    Intravenous N-acetylcysteine (IV-NAC) is usually regarded as a safe antidote to acetaminophen overdose. However, during infusion of the loading dose, adverse drug reactions such as a headache may occur. The objectives of this study were to investigate the prevalence of headache in patients presenting to hospital after acetaminophen overdose and to determine which clinical findings are most predictive of headache among these patients. This is a retrospective cohort study of hospital admissions for acute acetaminophen overdose that was conducted over a period of 4 years from January 1, 2005 to December 31, 2008. Demographic data, clinical characteristics, and predictors of headache were analyzed. spss 15 was used for data analysis. Two-hundred and fifty-five patients were studied; their mean age was 23.1 ± 1.6; 83.9% of them were women and 14.9% had a headache during hospitalization. Headache among patients was significantly associated with IV-NAC administration (P = 0.001), intentional ingestion of drug (P = 0.04), acetaminophen concentration above 'possible toxicity' treatment line (P = 0.04), a high acetaminophen concentration (P = 0.04), and a long hospital stay (P = 0.03). Multiple logistic regression showed a significant risk factor for headache in patients administered IV-NAC (P = 0.04). We recorded a high frequency of headache in patients with acute acetaminophen overdose in our geographical area. This study suggests that among those patients, the use of IV-NAC is associated with an increased risk of headache.
    Matched MeSH terms: Antidotes/administration & dosage
  4. Zyoud SH, Awang R, Syed Sulaiman SA, Sweileh WM, Al-Jabi SW
    Hum Exp Toxicol, 2010 Mar;29(3):153-60.
    PMID: 20071472 DOI: 10.1177/0960327109359642
    Intravenous N-acetylcysteine (IV-NAC) is widely recognized as the antidote of choice for acetaminophen overdose. However, its use is not without adverse drug reactions (ADR) that might affect therapeutic outcome or lead to treatment delay.
    Matched MeSH terms: Antidotes/administration & dosage
  5. Zhang SS, Noordin MM, Rahman SO, Haron J
    Vet Hum Toxicol, 2000 Oct;42(5):261-4.
    PMID: 11003114
    The influence of copper (Cu) overload on hepatic lipid peroxidation and antioxidation defense capacity was studied by overloading rats with copper sulphate orally (500 mg Cu/kg bw) 5 d/w for 8 w. Malondialdehyde (MDA), Cu-Zn superoxide dismutase (SOD), and Se-glutathione peroxidase (GSH-Px) were measured in serum and liver homogenate at 2, 4 and 8 w of dosing. Liver Cu concentration and alanine aminotransferase (ALT) activity were also determined. As Cu loading progressed, there were multiparameter changes with significant ALT elevation, increased MDA concentrations in serum and liver homogenate, and dramatic declines of SOD and GSH-Px activities in erythrocytes and whole blood respectively, along with marked elevation of hepatic Cu in the Cu-dosed group. Excessive Cu accumulation in the liver depressed SOD and GSH-Px activities and resulted in high MDA in serum and liver homogenate due to the lipid peroxidation induced by the Cu overload.
    Matched MeSH terms: Antidotes/administration & dosage
  6. Dezfouli MG, Eissazadeh S, Zade SM
    Microsc Microanal, 2014 Aug;20(4):1167-79.
    PMID: 24735566 DOI: 10.1017/S1431927614000701
    This study examines histometrical changes induced by sodium arsenite (SA), as an environmental pollutant, and investigates the protective effect of α-tocopherol on ovaries of SA-treated rats during the prenatal stage until sexual maturity. Rats were classified into groups: control, SA (8 ppm/day), α-tocopherol (100 ppm/day), and SA+α-tocopherol. Treatment was performed from pregnancy until maturation when the rats and ovaries were weighed. The Cavalieri method was used to estimate volume of the ovaries, cortex, medulla, and corpus luteum. The mean diameter of oocytes, granulosa cells, and nuclei were measured and volume was estimated using the Nucleator method. The number of oocytes and thickness of the zona pellucida (ZP) were determined using an optical dissector and orthogonal intercept method, respectively. SA reduced the body and ovary weight, the number of secondary, antral and Graafian oocytes, volume of the ovaries, cortex, medulla and corpus luteum, mean diameter and volume of oocytes in primordial and primary follicles, mean diameter and volume of oocyte nuclei in all types of follicles, and mean thickness of the ZP in secondary and antral follicles. Also, the mean diameter and volume of granulosa cells and their nuclei in antral and Graafian follicles decreased significantly. Vacuolization and vascular congestion in the corpus luteum and an increase in the number of atretic oocytes were seen in the SA group. Most of these parameters were unchanged from the control level in the SA+α-tocopherol group. It was concluded that α-tocopherol supplementation reduced the toxic effects of SA exposure on ovarian tissue in rats.
    Matched MeSH terms: Antidotes/administration & dosage
  7. Dear JW, Ng ML, Bateman DN, Leroy Sivappiragasam P, Choi H, Khoo BBJ, et al.
    Clin Transl Sci, 2021 07;14(4):1476-1489.
    PMID: 33742775 DOI: 10.1111/cts.13009
    N-acetylcysteine (NAC) is an antidote to prevent acetaminophen (paracetamol-APAP)-induced acute liver injury (ALI). The 3-bag licensed 20.25 h standard regimen, and a 12 h modified regimen, are used to treat APAP overdose. This study evaluated the redox thiol response and APAP metabolites, in patients with a single APAP overdose treated with either the 20.25 h standard or 12 h modified regimen. We used liquid chromatography tandem mass spectrometry to quantify clinically important oxidative stress biomarkers and APAP metabolites in plasma samples from 45 patients who participated in a randomized controlled trial (SNAP trial). We investigated the time course response of plasma metabolites at predose, 12 h, and 20.25 h post-start of NAC infusion. The results showed that the 12 h modified regimen resulted in a significant elevation of plasma NAC and cysteine concentrations at 12 h post-infusion. We found no significant alteration in the metabolism of APAP, mitochondrial, amino acids, and other thiol biomarkers with the two regimens. We examined APAP and purine metabolism in overdose patients who developed ALI. We showed the major APAP-metabolites and xanthine were significantly higher in patients with ALI. These biomarkers correlated well with alanine aminotransferase activity at admission. Receiver operating characteristic analysis showed that at admission, plasma APAP-metabolites and xanthine concentrations were predictive for ALI. In conclusion, a significantly higher redox thiol response with the modified NAC regimen at 12 h postdose suggests this regimen may produce greater antioxidant efficacy. At baseline, plasma APAP and purine metabolites may be useful biomarkers for early prediction of APAP-induced ALI.
    Matched MeSH terms: Antidotes/administration & dosage*
  8. Chahal KS, Prakash A, Majeed AB
    Environ Toxicol Pharmacol, 2015 Jul;40(1):220-9.
    PMID: 26151868 DOI: 10.1016/j.etap.2015.06.002
    The current study has been designed to examine the effect of multifunctional drug therapy on carbofuran induced acute (2.187 mg/kg, s.c.) and sub-acute (0.2187 mg/kg, s.c.) neurotoxicity in male wistar rats. Drug treatment which includes nimodipine (Ca(2+) channel blocker), diazepam, ropinirole (dopamine agonist) and GSPE (antioxidant) was started 2h after carbofuran administration. Morris water maze was employed for aiming spatial memory. Narrow beam walk and rotarod were employed for testing motor functions. Brain acetylcholinesterase activity, thiobarbituric acid reactive species, nitrite, reduced glutathione, catalase levels, and mitochondrial complexes were also estimated. Carbofuran treatment resulted in significant development of cognitive and motor functions manifested as impairment in learning and memory along with increased thiobarbituric acid reactive species, nitrite levels and decreased acetylcholinesterase activity, reduced glutathione, catalase levels, and mitochondrial complexes. The standard antidote therapy (atropine) was not able to provide neuroprotection but was able to provide symptomatic relief. The multifunctional drug therapy attenuated carbofuran induced cognitive and motor dysfunction, acetylcholinesterase activity and other biochemical parameters. The triple combination in sub-acute study may be avoided in future as two drug combinations provide adequate neuroprotection. Thus it can be concluded that standard antidotal therapy may not provide neuroprotection while the multifunctional drug therapy offers neuroprotection against carbofuran and may dramatically increase survival and life quality.
    Matched MeSH terms: Antidotes/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links