Displaying publications 1 - 20 of 323 in total

Abstract:
Sort:
  1. Tan SW, Billa N
    AAPS PharmSciTech, 2014 Apr;15(2):287-95.
    PMID: 24318197 DOI: 10.1208/s12249-013-0056-9
    We aimed to investigate the effects that natural lipids, theobroma oil (TO) and beeswax (BW), might have on the physical properties of formulated nanoparticles and also the degree of expulsion of encapsulated amphotericin B (AmB) from the nanoparticles during storage. Lecithin and sodium cholate were used as emulsifiers whilst oleic acid (OA) was used to study the influence of the state of orderliness/disorderliness within the matrices of the nanoparticles on the degree of AmB expulsion during storage. BW was found to effect larger z-average diameter compared with TO. Lecithin was found to augment the stability of the nanoparticles imparted by BW and TO during storage. An encapsulation efficiency (%EE) of 59% was recorded when TO was the sole lipid as against 42% from BW. In combination however, the %EE dropped to 39%. When used as sole lipid, TO or BW formed nanoparticles with comparatively higher enthalpies, 21.1 and 23.3 J/g respectively, which subsequently caused significantly higher degree of AmB expulsion, 81 and 83% respectively, whilst only 11.8% was expelled from a binary TO/BW mixture. A tertiary TO/BW/OA mixture registered the lowest enthalpy at 8.07 J/g and expelled 12.6% of AmB but encapsulated only 22% of AmB. In conclusion, nanoparticles made from equal concentrations of TO and BW produced the most desirable properties and worthy of further investigations.
    Matched MeSH terms: Antifungal Agents/chemistry*
  2. Ling JTS, Roberts CJ, Billa N
    AAPS PharmSciTech, 2019 Mar 05;20(3):136.
    PMID: 30838459 DOI: 10.1208/s12249-019-1346-7
    Surface-modified nanostructured lipid carriers (NLC) represent a promising mode of drug delivery used to enhance retention of drugs at absorption site. Formulated chitosan-coated amphotericin-B-loaded NLC (ChiAmp NLC) had a size of 394.4 ± 6.4 nm, encapsulation and loading efficiencies of 86.0 ± 3% and 11.0 ± 0.1% respectively. Amphotericin-B release from NLCs was biphasic with no changes in physical properties upon exposure to simulated gastrointestinal conditions. Antifungal properties of Amphotericin-B and ChiAmpB NLC were comparable but ChiAmpB NLC was twice less toxic to red blood cells and ten times safer on HT-29 cell lines. In vitro mucoadhesion data were observed ex vivo, where ChiAmpB NLC resulted in higher retention within the small intestine compared to the uncoated formulation. The data strongly offers the possibility of orally administering a non-toxic, yet effective Amphotericin-B nanoformulation for the treatment of systemic fungal infections.
    Matched MeSH terms: Antifungal Agents/administration & dosage*; Antifungal Agents/pharmacology*; Antifungal Agents/chemistry
  3. Long CM, Tang K, Chokshi H, Fotaki N
    AAPS PharmSciTech, 2019 Feb 13;20(3):113.
    PMID: 30761437 DOI: 10.1208/s12249-019-1317-z
    The aim of this study is to investigate the dissolution properties of poorly soluble drugs from their pure form and their amorphous formulation under physiological relevant conditions for oral administration based on surface dissolution ultraviolet (UV) imaging. Dissolution of two poorly soluble drugs (cefuroxime axetil and itraconazole) and their amorphous formulations (Zinnat® and Sporanox®) was studied with the Sirius Surface Dissolution Imager (SDI). Media simulating the fasted state conditions (compendial and biorelevant) with sequential media/flow rate change were used. The dissolution mechanism of cefuroxime axetil in simulated gastric fluid (SGF), fasted state simulated gastric fluid (FaSSGF) and simulated intestinal fluid (SIF) is predominantly swelling as opposed to the convective flow in fasted state simulated intestinal fluid (FaSSIF-V1), attributed to the effect of mixed micelles. For the itraconazole compact in biorelevant media, a clear upward diffusion of the dissolved itraconazole into the bulk buffer solution is observed. Dissolution of itraconazole from the Sporanox® compact is affected by the polyethylene glycol (PEG) gelling layer and hydroxypropyl methylcellulose (HPMC) matrix, and a steady diffusional dissolution pattern is revealed. A visual representation and a quantitative assessment of dissolution properties of poorly soluble compounds and their amorphous formulation can be obtained with the use of surface dissolution imaging under in vivo relevant conditions.
    Matched MeSH terms: Antifungal Agents/chemistry*
  4. Alli YA, Ejeromedoghene O, Oladipo A, Adewuyi S, Amolegbe SA, Anuar H, et al.
    ACS Appl Bio Mater, 2022 Nov 21;5(11):5240-5254.
    PMID: 36270024 DOI: 10.1021/acsabm.2c00670
    Quaternary Trimethyl Chitosan (QTMC) and QTMC-Silver Nanoparticles (QTMC-AgNPs) have been synthesized, characterized, and tested as antibacterial agents against Staphylococcus aureus, Escherichia coli, and two plant fungi (Sclerotium rolfsil and Fusarium oxysporum). The as-prepared water-soluble QTMC was in situ reacted with silver nitrate in the presence of clean compressed hydrogen gas (3 bar) as a reducing agent to produce QTMC-AgNPs. UV-vis, ATR-FTIR, HR-TEM/SEM, XPS, DLS, XRD, and TGA/DTG were employed to assess the optical response, morphology/size, surface chemistry, particle size distribution, crystal nature, and thermal stability of the synthesized QTMC-AgNPs, respectively. The as-prepared QTMC-AgNPs were quasi-spherical in shape with an average particle size of 12.5 nm, as determined by ImageJ software utilizing HR-TEM images and further validated by DLS analysis. The development of crystalline nanoparticles was confirmed by the presence of distinct and consistent lattice fringes with an approximate interplanar d-spacing of 2.04 nm in QTMC-AgNPs. The QTMC-AgNPs exhibited significant antibacterial activity with a clear zone of inhibition of 30 mm and 26 mm around the disks against E. coli and S. aureus, respectively. In addition, QTMC-AgNPs showed highly efficient antifungal activity with 100% and 76.67% growth inhibition against two plant pathogens, S. rolfsii and F. oxysporum, respectively, whereas QTMC revealed no impact. Overall, QTMC-AgNPs showed a promising therapeutic potential and,thus, can be considered for drug design rationale.
    Matched MeSH terms: Antifungal Agents/pharmacology
  5. Wee JL, Chan YS, Law MC
    ACS Appl Bio Mater, 2023 Nov 20;6(11):4972-4987.
    PMID: 37910790 DOI: 10.1021/acsabm.3c00515
    The use of nanometal oxides in nanoagronomy has garnered considerable attention due to their excellent antifungal and plant growth promotion properties. Hybrid nanometal oxides, which combine the strengths of individual nanomaterials, have emerged as a promising class of materials. In this study, nanomagnesium oxide (n-MgO) and hybrid magnetic nanomagnesium oxide (m/n-MgO) were successfully synthesized via the ultrasound-mediated sol-gel method. Characterization results, including TGA, XRD, VSM, and FTIR, confirmed the successful synthesis of m/n-MgO. Both n-MgO and m/n-MgO underwent antifungal assays and plant growth promotion ability studies, benchmarked against the conventional fungicide-copper oxychloride. This study bridges a significant gap by simultaneously reporting the antifungal properties of both n-MgO and m/n-MgO and their impact on plant growth. The disc diffusion assay suggested that the antifungal activity of n-MgO and m/n-MgO against F. oxysporum was inversely related to the particle size. Notably, n-MgO exhibited superior antifungal performance (lower minimum inhibitory concentration (MIC)) and sustained efficacy compared with m/n-MgO, owing to distinct antifungal mechanisms. Nanorod-shaped MgO, with a smaller size (8.24 ± 5.61 nm) and higher aspect ratio, allowed them to penetrate the fungal cell wall and cause intercellular damage. In contrast, cubical m/n-MgO, with a larger size (20.95 ± 9.99 nm) and lower aspect ratio, accumulate on the fungal cell wall surface, disrupting the wall integrity, albeit less effectively against F. oxysporum. Moreover, in plant growth promotion studies, m/n-MgO-treated samples exhibited a 15.7% stronger promotion effect compared to n-MgO at their respective MICs. In addition, both n-MgO and m/n-MgO outperformed copper oxychloride in terms of antifungal and plant growth promoting activities. Thus, m/n-MgO presents a promising alternative to conventional copper-based fungicides, offering dual functionality as a fungicide and plant growth promoter, while the study also delves into the antifungal mechanisms at the intracellular level, enhancing its novelty.
    Matched MeSH terms: Antifungal Agents/pharmacology
  6. Rajendran K, Anwar A, Khan NA, Aslam Z, Raza Shah M, Siddiqui R
    ACS Chem Neurosci, 2020 08 19;11(16):2431-2437.
    PMID: 31347828 DOI: 10.1021/acschemneuro.9b00289
    Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis (PAM) which almost always results in death. N. fowleri is also known as "brain-eating amoeba" due to its literal infestation of the brain leading to an inflammatory response in the brain tissues. Currently, there is no single drug that is available to treat PAM, and most treatments are combinations of antifungal, anticancer, and anti-inflammatory drugs. Recently nanotechnology has gained attention in chemotherapeutic research converging on drug delivery, while oleic acid (OA) has shown positive effects on the human immune system and inflammatory processes. In continuation of our recent research in which we reported the effects of oleic acid conjugated with silver nanoparticles (OA-AgNPs) against free-living amoeba Acanthamoeba castellanii, in this report, we show their antiamoebic effects against N. fowleri. OA alone and its nanoconjugates were tested against the amoeba by using amoebicidal and host cell cytopathogenicity assays. Trypan blue exclusion assay was used to determine cell viability. The results revealed that OA-AgNPs exhibited significantly enhanced antiamoebic effects (P < 0.05) against N. fowleri as compared to OA alone. Evidently, lactate dehydrogenase release shows reduced N. fowleri-mediated host cell cytotoxicity. Based on our study, we anticipate that further studies on OA-AgNPs could potentially provide an alternative treatment of PAM.
    Matched MeSH terms: Antifungal Agents
  7. Masood A, Maheen S, Khan HU, Shafqat SS, Irshad M, Aslam I, et al.
    ACS Omega, 2021 Mar 30;6(12):8210-8225.
    PMID: 33817480 DOI: 10.1021/acsomega.0c06242
    The current research aimed at designing mesoporous silica nanoparticles (MSNs) for a controlled coadministration of salicylic acid (SA) and ketoconazole (KCZ) to effectively treat highly resistant fungal infections. The sol-gel method was used to formulate MSNs, which were further optimized using central composite rotatable design (CCRD) by investigating mathematical impact of independent formulation variables such as pH, stirring time, and stirring speed on dependent variables entrapment efficiency (EE) and drug release. The selected optimized MSNs and pure drugs were subjected to comparative in vitro/in vivo antifungal studies, skin irritation, cytotoxicity, and histopathological evaluations. The obtained negatively charged (-23.1), free flowing spherical, highly porous structured MSNs having a size distribution of 300-500 nm were suggestive of high storage stability and improved cell proliferation due to enhanced oxygen supply to cells. The physico-chemical evaluation of SA/KCZ-loaded MSNs performed through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) indicates absolute lack of any interaction between formulation components and successful encapsulation of both drugs in MSNs. The EESA, EEKCZ, SA release, and KCZ release varied significantly from 34 to 89%, 36 to 85%, 39 to 88%, and 43 to 90%, respectively, indicating the quadratic impact of formulation variables on obtained MSNs. For MSNs, the skin tolerability and cell viability percentage rate were also having an extraordinary advantage over suspension of pure drugs. The optimized SA/KCZ-loaded MSNs demonstrated comparatively enhanced in vitro/in vivo antifungal activities and rapid wound healing efficacy in histopathological evaluation without any skin irritation impact, suggesting the MSNs potential for the simultaneous codelivery of antifungal and keratolyic agents in sustained release fashion.
    Matched MeSH terms: Antifungal Agents
  8. Oslan SN, Salleh AB, Rahman RN, Basri M, Chor AL
    Acta Biochim. Pol., 2012;59(2):225-9.
    PMID: 22577620
    Yeasts are a convenient platform for many applications. They have been widely used as the expression hosts. There is a need to have a new yeast expression system to contribute the molecular cloning demands. Eight yeast isolates were screened from various environment sources and identified through ribosomal DNA (rDNA) Internal Transcribed Spacer (ITS). Full sequence of the rDNA ITS region for each isolate was BLASTed and phylogenetic study was constructed by using MEGA4. Among the isolates, isolate WB from 'ragi' (used to ferment carbohydrates) could be identified as a new species in order Saccharomycetales according to rDNA ITS region, morphology and biochemical tests. Isolate SO (from spoiled orange), RT (rotten tomato) and RG (different type of 'ragi') were identified as Pichia sp. Isolates R1 and R2, S4 and S5 (from the surrounding of a guava tree) were identified as Issatchenkia sp. and Hanseniaspora sp., respectively. Geneticin, 50 µg/mL, was determined to be the antibiotic marker for all isolates excepted for isolates RT and SO which used 500 µg/mL and 100 µg/mL Zeocin, respectively. Intra-extracellular proteins were screened for lipolytic activity at 30°C and 70°C. Thermostable lipase activity was detected in isolates RT and R1 with 0.6 U/mg and 0.1 U/mg, respectively. In conclusion, a new yeast-vector system for isolate WB can be developed by using phleomycin or geneticin as the drugs resistance marker. Moreover, strains RT and R1 can be investigated as a novel source of a thermostable lipase.
    Matched MeSH terms: Antifungal Agents/pharmacology
  9. Walvekar S, Anwar A, Anwar A, Sridewi N, Khalid M, Yow YY, et al.
    Acta Trop, 2020 Nov;211:105618.
    PMID: 32628912 DOI: 10.1016/j.actatropica.2020.105618
    Acanthamoeba spp. are free living amoeba (FLA) which are widely distributed in nature. They are opportunistic parasites and can cause severe infections to the eye, skin and central nervous system. The advances in drug discovery and modifications in the chemotherapeutic agents have shown little improvement in morbidity and mortality rates associated with Acanthamoeba infections. The mechanism-based process of drug discovery depends on the molecular drug targets present in the signaling pathways in the genome. Synthetic libraries provide a platform for broad spectrum of activities due to their desired structural modifications. Azoles, originally a class of synthetic anti-fungal drugs, disrupt the fungal cell membrane by inhibiting the biosynthesis of ergosterol through the inhibition of cytochrome P450 dependent 14α-lanosterol, a key step of the sterol pathway. Acanthamoeba and fungi share the presence of similar sterol intermediate, as ergosterol is also the major end-product in the sterol biosynthesis in Acanthamoeba. Sterols present in the eukaryotic cell membrane are one of the most essential lipids and exhibit important structural and signaling functions. Therefore, in this review we highlight the importance of specific targeting of ergosterol present in Acanthamoebic membrane by azole compounds for amoebicidal activity. Previously, azoles have also been repurposed to report antimicrobial, antiparasitic and antibacterial properties. Moreover, by loading the azoles into nanoparticles through advanced techniques in nanotechnology, such as physical encapsulation, adsorption, or chemical conjugation, the pharmacokinetics and therapeutic index of the drugs can be significantly improved. The current review proposes an important strategy to target Acanthamoeba using synthetic libraries of azoles and their conjugated nanoparticles for the first time.
    Matched MeSH terms: Antifungal Agents/pharmacology*
  10. Zuhainis Saad W, Abdullah N, Alimon AR, Yin Wan H
    Anaerobe, 2008 Apr;14(2):118-22.
    PMID: 18083606
    The effects of phenolic monomers (i.e. rho-coumaric acid, ferulic acid, rho-hydroxybenzaldehyde and vanillin) on the enzymes and fermentation activities of Neocallimastix frontalis B9 grown in ball-milled filter paper and guinea grass media were studied. The enzymes studied were carboxymethylcellulase (CMCase), filterpaperase (FPase), xylanase and beta-glucosidase. At 96 h of incubation, N. frontalis grown in ball-milled filter paper medium produced comparable xylanase and CMCase activities (0.41, 0.5 micromol/min/mg protein) while in guinea grass medium, N. frontalis produced higher xylanase activity than that of CMCase activity (2.35, 0.05 micromol/min/mg protein). The other enzymes activities were low. When N. frontalis was grown in ball-milled filter paper medium, only acetic acid was produced. However, when grown in guinea grass medium, the major end-product was acetate, but propionic, butyric and isovaleric were also produced in lesser amount. Vanillin showed the least inhibitory effects to enzyme activities of N. frontalis B9 grown in both ball-milled filter paper and guinea grass media. For total volatile fatty acid production, all phenolic monomers showed inhibitory effects, but rho-coumaric and ferulic acids were the stronger inhibitors than rho-hydroxybenzaldehyde and vanillin.
    Matched MeSH terms: Antifungal Agents/pharmacology*
  11. Sushma R, Sathe TT, Farias A, Sanyal PK, Kiran S
    Ann Afr Med, 2017;16(1):6-12.
    PMID: 28300045 DOI: 10.4103/aam.aam_43_16
    BACKGROUND: Candida albicans is one of the microorganisms which harbor the oral cavity, especially in elderly. However, the incidence of existence of this increases in patients using removable dental prosthesis. There is therefore a need to test the anticandidal efficacy of these cost-effective, easily available products to be used as routine denture cleansers.

    AIM AND OBJECTIVES: (1) To evaluate antifungal properties of triphala churna on the heat cure denture base material. (2) To evaluate the antifungal effect of chlorhexidine gluconate on the heat cure denture base material. (3) To compare the antifungal effect of triphala churna and chlorhexidine gluconate with a control. (4) To evaluate which among triphala churna and chlorhexidine gluconate has a better antifungal property on the heat cure denture base material.

    MATERIALS AND METHODS: Study population consisted of sixty dentures wearers from those attending the Outpatient Department of Prosthodontics of the School of Dentistry, Krishna Institute of Medical Sciences Deemed University, Karad. Swabs were collected from the dentures before and after the use of triphala and chlorhexidine. The swabs were cultured on Sabouraud dextrose agar and the total Candida counts were determined.

    CONCLUSION: Triphala as an antifungal is shown to have more efficacy than the conventional chlorhexidine mouthwash. Résumé Arrière-plan: Candida albicans est l'un des micro-organismes qui abritent la cavité buccale surtout chez les personnes âgées. Cependant, l'incidence de l'existence de cette augmentation chez les patients utilisant des prothèses dentaires amovibles. Il est donc nécessaire de tester l'efficacité anticancédique de ces produits rentables et faciles à utiliser pour être utilisés comme nettoyants de routine pour prothèses dentaires. Buts et Objectifs: (1) Évaluer les propriétés antifongiques de Triphala churna sur le matériau de base de la prothèse thermo-durcissable. (2) Évaluer l'effet antifongique du gluconate de chlorhexidine sur le matériau de base de la prothèse thermo-durcissable. (3) Comparer l'effet antifongique de Triphala churna et du gluconate de chlorhexidine avec un témoin. (4) Évaluer lequel parmi Triphala churna et le gluconate de chlorhexidine a une meilleure propriété antifongique sur le matériel de base de la prothèse de durcissement à chaud. Matériaux et Méthode: La population de l'étude était constituée de soixante porteurs de prothèses dentaires de ceux qui fréquentaient le Département de Prosthodontie de l'École des Sciences Dentaires de l'Institut Krishna des Sciences Médicales de l'Université de Karad. Des prélèvements ont été effectués sur les prothèses avant et après l'utilisation de Triphala et de chlorhexidine. On a cultivé les écouvillons sur de l'agar Sabouraud dextrose et on a déterminé le nombre total de candida.

    CONCLUSION: Triphala comme un anti fongique est démontré pour avoir plus d'efficacité que le lavage de la bouche classique chlorhexidine.

    Matched MeSH terms: Antifungal Agents/pharmacology; Antifungal Agents/therapeutic use*
  12. Ding CH, Situ SF, Steven A, Razak MFA
    Ann Clin Lab Sci, 2019 09;49(4):546-549.
    PMID: 31471347
    Candida auris is an emerging pathogenic yeast responsible for nosocomial infections with high mortality, on a global scale. A 65-year-old woman with hypovolemic shock and severe metabolic acidosis was intubated and admitted to the intensive care unit (ICU). Shortly after admission, she developed ventilator-associated pneumonia caused by multidrug-resistant Acinetobacter baumannii, which necessitated treatment with high-dose ampicillin-sulbactam. Two weeks later, a yeast was cultured from her blood. It formed pale pink colonies on CHROMagar Candida medium and produced predominantly oval budding yeast cells with the occasional rudimentary pseudohyphae on cornmeal agar. ID 32 C identified the yeast as Candida sake However, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and sequencing of the D1/D2 region of the 28S rRNA gene identified the yeast as C. auris.
    Matched MeSH terms: Antifungal Agents/pharmacology
  13. Lord AT, Mohandas K, Somanath S, Ambu S
    PMID: 20307325 DOI: 10.1186/1476-0711-9-11
    The aim of this study was to investigate the presence of multidrug resistant yeasts in the faeces of synanthropic wild birds from the Bangsar suburb of Kuala Lumpur.
    Matched MeSH terms: Antifungal Agents/pharmacology*
  14. Lachmanan SR, Haniza O, Hisham AN, Subramaniam J, Merican I
    Ann Acad Med Singap, 2001 Nov;30(6):656-8.
    PMID: 11817299
    INTRODUCTION: Bilateral adrenal enlargement is often the result of disseminated malignant disease, and this diagnosis is particularly likely in a patient with severe weight loss. We describe a case with bilateral adrenal enlargement presenting with progressively worsening backache as a prominent symptom.

    CLINICAL PICTURE: A 55-year-old man presented with intermittent low back pain which was progressively worsening, fever, anorexia, low back pain and a 10-kg weight loss. He had underlying diabetes mellitus and ischaemic heart disease. He gave a history of travel to caves for worship. Clinically, the most significant findings included nodular lesions in the anterior fauces and left palatoglossal region. Computed tomographic scan revealed bilateral adrenal masses. Biopsies were taken from the palatal nodules, which revealed histiocytes with numerous histoplasma organisms.

    TREATMENT: He was commenced on itraconazole 200 mg daily for a period of 9 months. There was a dramatic initial response with settling of his fever and this was followed by subjective improvement in his well-being.

    OUTCOME: He is presently on follow-up and has completed 9 months of itraconazole therapy with resolution of all his symptoms and has gained about 10 kg of weight.

    Matched MeSH terms: Antifungal Agents/therapeutic use
  15. Menon BS, Shuaib IL, Zamari M, Haq JA, Aiyar S, Noh LM
    Ann Trop Paediatr, 1998 Mar;18(1):45-8.
    PMID: 9692001
    We describe a Malay girl with disseminated cryptococcosis affecting the lungs, liver, lymph nodes and bones. The diagnosis was made by culture of the bone marrow. Tests of immune function showed that she was HIV-negative but the CD4 percentage was persistently low. Idiopathic CD4+ T-lymphocytopenia was diagnosed. The child died despite two courses of anti-fungal therapy.
    Matched MeSH terms: Antifungal Agents/therapeutic use
  16. Soo GW, Law JH, Kan E, Tan SY, Lim WY, Chay G, et al.
    Anticancer Drugs, 2010 Aug;21(7):695-703.
    PMID: 20629201
    Imatinib, a selective inhibitor of c-KIT and Bcr-Abl tyrosine kinases, approved for the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors, shows further therapeutic potential for gliomas, glioblastoma, renal cell carcinoma, autoimmune nephritis and other neoplasms. It is metabolized by CYP3A4, is highly bound to alpha-1-acid glycoprotein and is a P-glycoprotein substrate limiting its brain distribution. We assess imatinib's protein binding interaction with primaquine, which also binds to alpha-1-acid glycoprotein, and its metabolic interaction with ketoconazole, which is a CYP3A4 inhibitor, on its pharmacokinetics and biodistribution. Male ICR mice, 9-12 weeks old were given imatinib PO (50 mg/kg) alone or co-administered with primaquine (12.5 mg/kg), ketoconazole (50 mg/kg) or both, and imatinib concentration in the plasma, kidney, liver and brain was measured at prescheduled time points by HPLC. Noncompartmental pharmacokinetic parameters were estimated. Primaquine increased 1.6-fold plasma AUC(0)--> infinity, C(Max) decreased 24%, T(Max) halved and t(1/2) and mean residence time were longer. Ketoconazole increased plasma AUC(0)-->infinity 64% and doubled the C(Max), but this dose did not affect t(1/2) or mean residence time. When ketoconazole and primaquine were co-administered, imatinib AUC(0)-->infinity and C(Max) increased 32 and 35%, respectively. Ketoconazole did not change imatinib's distribution efficiency in the liver and kidney, primaquine increased it two-fold and it was larger when both the drugs were co-administered with imatinib. Ketoconazole did not change brain penetration but primaquine increased it approximately three-fold. Ketoconazole and primaquine affect imatinib clearance, bioavailability and distribution pattern, which could improve the treatment of renal and brain tumors, but also increase toxicity. This would warrant hepatic and renal functions monitoring.
    Matched MeSH terms: Antifungal Agents/administration & dosage; Antifungal Agents/pharmacology*
  17. Neoh CF, Leung L, Chan E, Al-Badriyeh D, Fullinfaw RO, Jhanji V, et al.
    Antimicrob Agents Chemother, 2016 11;60(11):6896-6898.
    PMID: 27550348 DOI: 10.1128/AAC.00683-16
    Twenty participants undergoing elective cataract surgery received 1% voriconazole eye drops (1 drop per eye) either 20, 40, 60, or 80 min before surgery. Median voriconazole concentrations of 1.9 to 3.2 mg/liter in aqueous humor samples were attained over the first 80 min, which were higher than in vitro MIC90 values for typical fungi that cause keratitis.
    Matched MeSH terms: Antifungal Agents/pharmacokinetics
  18. Ng ZJ, Zarin MA, Lee CK, Phapugrangkul P, Tan JS
    Arch Oral Biol, 2020 Feb;110:104617.
    PMID: 31794906 DOI: 10.1016/j.archoralbio.2019.104617
    Streptococcus mutans and Candida albicans are the main oral pathogens which contribute to dental caries that affects all ages of human being.

    OBJECTIVES: This study focuses on the potential of crude cell free supernatant (CCFS) from lactic acid bacteria (LAB) to inhibit of the growth of S. mutans UKMCC 1019.

    DESIGN: A total of 61 CCFS from LAB strains were screened for their inhibitory ability against S. mutans UKMCC 1019 by broth microdilution method. The selected LAB with highest antimicrobial activity was identified and its CCFS was characterized for pH stability, temperature tolerance, enzyme sensitivity, metabolism of carbohydrates, enzymatic activities and antimicrobial activity against S. mutans UKMCC 1019 and C. albicans UKMCC 3001 by well diffusion assay. The effect of CCFS on cell structure of S. mutans UKMCC 1019 was observed under transmission electron microscopy (TEM).

    RESULTS: The CCFS from isolate CC2 from Kimchi showed the highest inhibition against S. mutans UKMCC 1019, which was 76.46 % or 4406.08 mm2/mL and it was identified to be most closely related to Enterococcus faecium DSM 20477 based on 16 s rRNA sequencing. The CCFS of E. faecium DSM 20477 had high tolerance to acidic and alkaline environment as well as high temperature. It also shows high antifungal activities against C. albicans UKMCC 3001 with 2362.56 mm2/mL. Under TEM, the cell walls and the cytoplasm membrane of S. mutans UKMCC 1019 were disrupted by the antimicrobial substance, causing cell lysis.

    CONCLUSIONS: Hence, the CCFS from E. faecium DSM 20477 is a potential bacteriocin in future for the treatment of dental caries.

    Matched MeSH terms: Antifungal Agents
  19. Salleh WM, Ahmad F, Yen KH
    Arch Pharm Res, 2015 Apr;38(4):485-93.
    PMID: 25098422 DOI: 10.1007/s12272-014-0460-z
    The present study aimed to examine the chemical compositions of the essential oils of Beilschmiedia madang and their antioxidant, antibacterial, antifungal, anticholinesterase and anti-tyrosinase activities. The major constituents of the essential oils of leaf and bark of B. madang were δ-cadinene (17.0 and 20.5 %), β-caryophyllene (10.3 and 6.7 %), α-cubebene (11.3 and 15.6 %), and α-cadinol (5.8 and 10.6 %). The essential oils were screened for their antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, β-carotene/linoleic acid bleaching, and total phenolic content. The bark oil showed the highest β-carotene/linoleic acid bleaching (90.3 % ± 0.2) and DPPH radical scavenging (IC50 212.0 µg/mL), while the highest phenolic content was exhibited by the leaf oil (94.5 % ± 0.3 mg GA/g). The antibacterial and antifungal activities were investigated by the disc diffusion and micro dilution method. The leaf and bark oils showed moderate activity towards Bacillus subtilis and Staphylococcus aureus with minimum inhibitory concentration (MIC) value 125 µg/mL. For antifungal assay, the bark oil showed strong activity towards Aspergillus niger and Aspergillus fumigatus with MIC value 62.5 µg/mL. Anticholinesterase and anti-tyrosinase activities were evaluated against Ellman method and mushroom tyrosinase, respectively. The results showed that leaf oil gave significant percentage inhibition (I%: acetylcholinesterase 55.2 %, butyrylcholinesterase 60.4 %, tyrosinase 53.1 %).
    Matched MeSH terms: Antifungal Agents/isolation & purification; Antifungal Agents/pharmacology; Antifungal Agents/chemistry
  20. Rajasekaran A, Murugesan S, AnandaRajagopal K
    Arch Pharm Res, 2006 Jul;29(7):535-40.
    PMID: 16903071
    Several novel 1-[2-(1H-tetrazol-5-yl) ethyl]-1H-benzo[d][1,2,3]triazoles (3a-h) have been synthesized by the condensation of 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) and appropriate acid chlorides. 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) was synthesized by reacting 3-(1H-benzo[d][1,2,3]triazol-1-yl)propanenitrile with sodium azide and ammonium chloride in the presence of dimethylformamide. The synthesized compounds were characterized by IR and PMR analysis. The titled compounds were evaluated for their in-vitro antibacterial and antifungal activity by the cup plate method and anticonvulsant activity evaluated by the maximal electroshock induced convulsion method in mice. All synthesized compounds exhibited moderate antibacterial activity against Bacillus subtilis and moderate antifungal activity against Candida albicans. Compounds 5-(2-(1H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(4-aminophenyl)methanone 3d and 5-(2-(1 H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(2-aminophenyl)methanone 3e elicited excellent anticonvulsant activity.
    Matched MeSH terms: Antifungal Agents/chemical synthesis; Antifungal Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links