Displaying publications 1 - 20 of 323 in total

Abstract:
Sort:
  1. Azadi S, Azizipour E, Amani AM, Vaez A, Zareshahrabadi Z, Abbaspour A, et al.
    Sci Rep, 2024 Mar 11;14(1):5855.
    PMID: 38467729 DOI: 10.1038/s41598-024-56512-5
    The antifungal efficacy and cytotoxicity of a novel nano-antifungal agent, the Fe3O4@SiO2/Schiff-base complex of Cu(II) magnetic nanoparticles (MNPs), have been assessed for targeting drug-resistant Candida species. Due to the rising issue of fungal infections, especially candidiasis, and resistance to traditional antifungals, there is an urgent need for new therapeutic strategies. Utilizing Schiff-base ligands known for their broad-spectrum antimicrobial activity, the Fe3O4@SiO2/Schiff-base/Cu(II) MNPs have been synthesized. The Fe3O4@SiO2/Schiff-base/Cu(II) MNPs was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Energy-dispersive X-ray (EDX), Vibrating Sample Magnetometer (VSM), and Thermogravimetric analysis (TGA), demonstrating successful synthesis. The antifungal potential was evaluated against six Candida species (C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis, C. glabrata, and C. albicans) using the broth microdilution method. The results indicated strong antifungal activity in the range of 8-64 μg/mL with the lowest MIC (8 μg/mL) observed against C. parapsilosis. The result showed the MIC of 32 μg/mL against C. albicans as the most common infection source. The antifungal mechanism is likely due to the disruption of the fungal cell wall and membrane, along with increased reactive oxygen species (ROS) generation leading to cell death. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay for cytotoxicity on mouse L929 fibroblastic cells suggested low toxicity and even enhanced cell proliferation at certain concentrations. This study demonstrates the promise of Fe3O4@SiO2/Schiff-base/Cu(II) MNPs as a potent antifungal agent with potential applications in the treatment of life-threatening fungal infections, healthcare-associated infections, and beyond.
    Matched MeSH terms: Antifungal Agents/pharmacology; Antifungal Agents/chemistry
  2. Abdulshaheed AA, Hanafiah MM, Nawaz R, Muslim SN
    Microb Pathog, 2024 Feb;187:106534.
    PMID: 38184176 DOI: 10.1016/j.micpath.2024.106534
    One of the most prevalent infectious diseases and a key driver of antibiotic prescriptions in pediatrics is urinary tract infection (UTI). Due to the emergence of more resistant uropathogenic bacterial and fungal strains, current treatments are no longer effective, necessitating the urgent development of novel antibacterial and antifungal drugs. In this study, the antifungal, antibacterial, and anti-biofilm capabilities of compounds, such as tannase (TN) and gallic acid (GA), which were produced from a novel natural source, Acinetobacter baumannii (AB11) bacteria, were assessed for the inactivation of uropathogenic microorganisms (UMs). Ammonium sulphate precipitation, ion exchange, high-performance liquid chromatography, and gel filtration were used to purify TN and GA that were isolated from A. baumannii. A 43.08 % pure TN with 1221.2 U/mg specific activity and 10.51 mg/mL GA was obtained. The antibacterial, antifungal and anti-biofilm activities of TN and GA were evaluated against UMs and compared to those of commercially available antibiotics including sulfamethoxazole (SXT), levofloxacin (LEV), ciprofloxacin (CIP), amikacin (Ak), and nitrofurantoin (F). The results showed that TN and GA were superior to commercial antibiotics in their ability to inactivate UMs and considerably reduced biofilms formation. Additionally, the GA emerges as the top substitute for currently available medications, demonstrating superior antibacterial and antibiofilm properties against all UMs evaluated in this study. The results of this investigation showed that A. baumannii-derived TN and GA could be utilized as an alternative medication to treat UTIs.
    Matched MeSH terms: Antifungal Agents/pharmacology; Antifungal Agents/therapeutic use
  3. Indumathi T, Suriyaprakash J, Alarfaj AA, Hirad AH, Jaganathan R, Mathanmohun M
    J Basic Microbiol, 2024 Feb;64(2):e2300505.
    PMID: 37988658 DOI: 10.1002/jobm.202300505
    The current investigation focuses on synthesizing copper oxide (CuO)-titanium oxide (TiO2 )-chitosan-farnesol nanocomposites with potential antibacterial, antifungal, and anticancer properties against Melanoma cells (melanoma cells [SK-MEL-3]). The nanocomposites were synthesized using the standard acetic acid method and subsequently characterized using an X-ray diffractometer, scanning electron microscope, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results from the antibacterial tests against Streptococcus pneumoniae and Stapylococcus aureus demonstrated significant antibacterial efficacy. Additionally, the antifungal studies using Candida albicans through the agar diffusion method displayed a considerable antifungal effect. For evaluating the anticancer activity, various assays such as MTT assay, acridine orange/ethidium bromide dual staining assay, reactive oxygen species (ROS) generation assay, and mitochondrial membrane potential (MMP) analysis were conducted on SK-MEL-3 cells. The nanocomposites exhibited the ability to induce ROS generation, decrease MMP levels, and trigger apoptosis in SK-MEL-3 cells. Collectively, the findings demonstrated a distinct pattern for the synthesized bimetallic nanocomposites. Furthermore, these nanocomposites also displayed significant (p 
    Matched MeSH terms: Antifungal Agents/pharmacology
  4. Al-Maweri SA, Alhajj MN, Anweigi L, Ashraf S, Halboub E, Salleh NM, et al.
    BMC Oral Health, 2024 Jan 16;24(1):84.
    PMID: 38229054 DOI: 10.1186/s12903-023-03789-z
    BACKGROUND: Photodynamic therapy (PDT) has been recently proposed as a promising alternative therapy for Denture Stomatitis (DS). The present systematic review and meta-analysis investigated the current available evidence regarding the efficacy of PDT in the management of DS.

    MATERIALS AND METHODS: PubMed, Scopus, Web of Science, Google Scholar, and ProQuest were searched up to June 7, 2023. All relevant clinical trials were included. RevMan software was used for the statistical analyses.

    RESULTS: Elven randomized clinical trials (460 DS patients) were included. Eight studies assessed the efficacy of PDT vs. topical antifungal therapy, while three studies assessed the adjunctive use of PDT (PDT + antifungal therapy) vs. topical antifungal therapy alone. The results revealed comparable efficacy of PDT and conventional antifungal therapy on candida colonization at 15 days (MD: 0.95, 95% CI: -0.28, 2.19, p = 0.13) and at the end of follow-up (MD: -0.17, 95% CI: -1.33, 0.98, p = 0.77). The pooled two studies revealed relatively better efficacy of adjunctive use of PDT with antifungal therapy on candida colonization compared to antifungal therapy alone at 15 days (MD: -6.67, 95% CI: -15.15, 1.82, p = 0.12), and at the end of follow-up (MD: -7.14, 95% CI: -19.78, 5.50, p = 0.27). Additionally, the results revealed comparable efficacy of PDT and topical antifungal therapy on the clinical outcomes.

    CONCLUSIONS: PDT might be considered a viable option for DS either as an adjunct or as an alternative to the topical antifungal medications. Further studies with adequate sample sizes and standardized PDT parameters are warranted.

    Matched MeSH terms: Antifungal Agents/therapeutic use
  5. Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN
    Med Mycol, 2024 Jan 09;62(1).
    PMID: 38061839 DOI: 10.1093/mmy/myad126
    Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
    Matched MeSH terms: Antifungal Agents/pharmacology; Antifungal Agents/therapeutic use
  6. Spruijtenburg B, Ahmad S, Asadzadeh M, Alfouzan W, Al-Obaid I, Mokaddas E, et al.
    Mycoses, 2023 Dec;66(12):1079-1086.
    PMID: 37712885 DOI: 10.1111/myc.13655
    Candida auris is an emerging, multidrug-resistant yeast, causing outbreaks in healthcare facilities. Echinocandins are the antifungal drugs of choice to treat candidiasis, as they cause few side effects and resistance is rarely found. Previously, immunocompromised patients from Kuwait with C. auris colonisation or infection were treated with echinocandins, and within days to months, resistance was reported in urine isolates. To determine whether the development of echinocandin resistance was due to independent introductions of resistant strains or resulted from intra-patient resistance development, whole genome sequencing (WGS) single-nucleotide polymorphism (SNP) analysis was performed on susceptible (n = 26) and echinocandin-resistant (n = 6) isolates from seven patients. WGS SNP analysis identified three distinct clusters differing 17-127 SNPs from two patients, and the remaining isolates from five patients, respectively. Sequential isolates within patients had a maximum of 11 SNP differences over a time period of 1-10 months. The majority of isolates with reduced susceptibility displayed unique FKS1 substitutions including a novel FKS1M690V substitution, and nearly all were genetically related, ranging from only three to six SNP differences compared to susceptible isolates from the same patient. Resistant isolates from three patients shared the common FKS1S639F substitution; however, WGS analysis did not suggest a common source. These findings strongly indicate that echinocandin resistance is induced during antifungal treatment. Future studies should determine whether such echinocandin-resistant strains are capable of long-term colonisation, cause subsequent breakthrough candidiasis, have a propensity to cross-infect other patients, or remain viable for longer time periods in the hospital environment.
    Matched MeSH terms: Antifungal Agents/pharmacology; Antifungal Agents/therapeutic use
  7. Boahen A, Chew SY, Neela VK, Than LTL
    Probiotics Antimicrob Proteins, 2023 Dec;15(6):1681-1699.
    PMID: 36881331 DOI: 10.1007/s12602-023-10050-0
    Vaginal dysbiosis advocates burgeoning of devious human vaginal pathobionts like Candida species that possess multiple virulence properties and metabolic flexibility to cause infections. Inevitably, antifungal resistance may emerge due to their innate nature (e.g., biofilm formation), which assists in their virulence as well as the formation of persister cells after dispersal. In consequence, the phenomenon of biofilm involvement in vulvovaginal candidiasis (VVC) and its recurrence is becoming paramount. Lactic acid bacteria and their derivatives have proven to be hostile to Candida species. Here, we throw more light on the potency of the derivatives, i.e., cell-free supernatant (CFS) produced by an indigenously isolated vaginal Lactobacillus strain, Limosilactobacillus reuteri 29A. In the present study, we investigated the antibiofilm and antagonistic effects of L. reuteri 29A CFS, against biofilms of Candida species and in murine model of vulvovaginal candidiasis. In our in vitro biofilm study, the CFS disrupted and inhibited preformed biofilms of C. albicans and C. glabrata. Scanning electron microscopy displayed the destruction of preformed biofilms and impediment of C. albicans morphogenesis by the CFS. Gas chromatography-mass spectrometry analysis showed multiple key compounds that may act singly or synergistically. In vivo, the CFS showed no collateral damage to uninfected mice; the integrity of infected vaginal tissues was restored by the administration of the CFS as seen from the cytological, histopathological, and electron microscopical analyses. The results of this study document the potential use of CFS as an adjuvant or prophylactic option in addressing vaginal fungal infections.
    Matched MeSH terms: Antifungal Agents/pharmacology
  8. Wee JL, Chan YS, Law MC
    ACS Appl Bio Mater, 2023 Nov 20;6(11):4972-4987.
    PMID: 37910790 DOI: 10.1021/acsabm.3c00515
    The use of nanometal oxides in nanoagronomy has garnered considerable attention due to their excellent antifungal and plant growth promotion properties. Hybrid nanometal oxides, which combine the strengths of individual nanomaterials, have emerged as a promising class of materials. In this study, nanomagnesium oxide (n-MgO) and hybrid magnetic nanomagnesium oxide (m/n-MgO) were successfully synthesized via the ultrasound-mediated sol-gel method. Characterization results, including TGA, XRD, VSM, and FTIR, confirmed the successful synthesis of m/n-MgO. Both n-MgO and m/n-MgO underwent antifungal assays and plant growth promotion ability studies, benchmarked against the conventional fungicide-copper oxychloride. This study bridges a significant gap by simultaneously reporting the antifungal properties of both n-MgO and m/n-MgO and their impact on plant growth. The disc diffusion assay suggested that the antifungal activity of n-MgO and m/n-MgO against F. oxysporum was inversely related to the particle size. Notably, n-MgO exhibited superior antifungal performance (lower minimum inhibitory concentration (MIC)) and sustained efficacy compared with m/n-MgO, owing to distinct antifungal mechanisms. Nanorod-shaped MgO, with a smaller size (8.24 ± 5.61 nm) and higher aspect ratio, allowed them to penetrate the fungal cell wall and cause intercellular damage. In contrast, cubical m/n-MgO, with a larger size (20.95 ± 9.99 nm) and lower aspect ratio, accumulate on the fungal cell wall surface, disrupting the wall integrity, albeit less effectively against F. oxysporum. Moreover, in plant growth promotion studies, m/n-MgO-treated samples exhibited a 15.7% stronger promotion effect compared to n-MgO at their respective MICs. In addition, both n-MgO and m/n-MgO outperformed copper oxychloride in terms of antifungal and plant growth promoting activities. Thus, m/n-MgO presents a promising alternative to conventional copper-based fungicides, offering dual functionality as a fungicide and plant growth promoter, while the study also delves into the antifungal mechanisms at the intracellular level, enhancing its novelty.
    Matched MeSH terms: Antifungal Agents/pharmacology
  9. Al-Ghamdi ARS, Khanam HK, Qamar Z, Abdul NS, Reddy N, Vempalli S, et al.
    Photodiagnosis Photodyn Ther, 2023 Jun;42:103326.
    PMID: 36773753 DOI: 10.1016/j.pdpdt.2023.103326
    BACKGROUND: The present report assessed the efficacy of curcumin-mediated photodynamic therapy (CUR-mediated PDT) as an adjunct to antifungal gel treatment by evaluating the salivary interleukin-6 (IL-6) and matrix metalloproteinases-8 (MMP-8) levels together with Candida species counts in denture stomatitis (DS) patients.

    METHODS: In total, 50 DS subjects were randomly categorized into 2 groups: Group-1: subjects who received the antifungal gel treatment and Group-2: participants who received CUR-mediated PDT. The Sabourad Dextrose Agar and CHROMAgar were utilized for evaluating Candida species counts, while the Enzyme-Linked Immunosorbent Assay was employed to estimate the salivary levels of IL-6 and MMP-8. All clinical evaluations were performed at the baseline, 1 month, and 2 months.

    RESULTS: In total, group-2 subjects showed a significant decrease in Candida albicans (C. albicans) counts on both follow-ups (i.e., 1-month and 2-month) than group-1 participants. C. krusei count also reduced in group-2 subejcts than group-1 participants at the 2nd follow-up as compared to the baseline, nevertheless, a slight increase in C. krusei count was noticed in group-2 subjects at the 2nd follow-up than the 1st follow-up. The salivary IL-6 and MMP-8 levels in both groups reduced significantly at both follow-ups than the baseline. According to the stepwise logistic regression analysis, no statistically significant correlation was observed between Candida species count and other parameters such as age and gender of the patient, duration of DS, and frequency of treatment(s).

    CONCLUSION: CUR-mediated PDT is an efficaciousness therapeutic modality for alleviating Candida species counts on the surface of denture and the palatal mucosa, as well as improving the salivary IL-6 and MMP-8 levels in DS patients.

    Matched MeSH terms: Antifungal Agents/therapeutic use
  10. Ge Q, Wang K, Shao X, Wei Y, Zhang X, Liu Y, et al.
    Foodborne Pathog Dis, 2023 May;20(5):197-208.
    PMID: 37172299 DOI: 10.1089/fpd.2022.0083
    Rhizopus nigricans is a widespread phytopathogen in fruits and vegetables that can cause considerable economic effects and resource waste. Flavonoids from Sedum aizoon L. (FSAL) have specific antifungal activities. This study selected FSAL as an antifungal to prolong the preservation of fruits and vegetables. The results showed that the mycelial morphology and ultrastructure were damaged by the FSAL treatment (1.0 minimum inhibitory concentration), led to the increase of reactive oxygen species and malondialdehyde, and affected the activity of key enzymes in the glycolytic pathway, such as lactic dehydrogenase, pyruvate kinase, and hexokinase of R. nigricans. Key genes in glycolysis were upregulated or downregulated. In addition, in the treatment and control groups, 221 differentially expressed genes were found, including 89 that were upregulated and 32 that were downregulated, according to the transcriptome results. The differential genes were mainly enriched in glycolysis, pyruvate metabolism, and citrate cycle pathways. The results revealed some insights into the antifungal mechanism of FSAL against R. nigricans and offered a theoretical foundation for its advancement as a novel plant-derived antifungal agent.
    Matched MeSH terms: Antifungal Agents/pharmacology
  11. Al-Fakih AM, Qasim MK, Algamal ZY, Alharthi AM, Zainal-Abidin MH
    SAR QSAR Environ Res, 2023 Apr;34(4):285-298.
    PMID: 37157994 DOI: 10.1080/1062936X.2023.2208374
    One of the recently developed metaheuristic algorithms, the coyote optimization algorithm (COA), has shown to perform better in a number of difficult optimization tasks. The binary form, BCOA, is used in this study as a solution to the descriptor selection issue in classifying diverse antifungal series. Z-shape transfer functions (ZTF) are evaluated to verify their efficiency in improving BCOA performance in QSAR classification based on classification accuracy (CA), the geometric mean of sensitivity and specificity (G-mean), and the area under the curve (AUC). The Kruskal-Wallis test is also applied to show the statistical differences between the functions. The efficacy of the best suggested transfer function, ZTF4, is further assessed by comparing it to the most recent binary algorithms. The results prove that ZTF, especially ZTF4, significantly improves the performance of the original BCOA. The ZTF4 function yields the best CA and G-mean of 99.03% and 0.992%, respectively. It shows the fastest convergence behaviour compared to other binary algorithms. It takes the fewest iterations to reach high classification performance and selects the fewest descriptors. In conclusion, the obtained results indicate the ability of the ZTF4-based BCOA to find the smallest subset of descriptors while maintaining the best classification accuracy performance.
    Matched MeSH terms: Antifungal Agents*
  12. Fan L, Wei Y, Chen Y, Jiang S, Xu F, Zhang C, et al.
    Food Chem, 2023 Mar 01;403:134419.
    PMID: 36191421 DOI: 10.1016/j.foodchem.2022.134419
    This study investigatedthe mechanism of epinecidin-1 against Botrytis cinerea, in vitro, and its effectiveness at inhibiting gray mold on postharvest peach fruit. We found that in vitro, epinecidin-1 had significantly greater antifungal activity against B. cinerea than either clavanin-A or mytimycin, two other marine derived antimicrobial peptides that we tested. Its antifungal activity was heat-resistant (15 min at 40-100 °C) and tolerant to lower concentrations of cations (<100 mM Na+, K+; <10 mM Ca2+). Epinecidin-1 interacted directly with B. cinerea genomic DNA, and that in mycelia, epinecidin-1 exposure induced accumulation of intracellular ROS and increased the permeability of cell membranes resulting in leakage of nucleic acids and aberrant cell morphology. Meanwhile, 200 μM of epinecidin-1 had a significant inhibitory effect on gray mold injected into peach fruit. These results suggested that epinecidin-1 showed promise as a potential method for controlling postharvest gray mold in peaches.
    Matched MeSH terms: Antifungal Agents/pharmacology
  13. Kirubakaran R, Uster DW, Hennig S, Carland JE, Day RO, Wicha SG, et al.
    Br J Clin Pharmacol, 2023 Mar;89(3):1162-1175.
    PMID: 36239542 DOI: 10.1111/bcp.15566
    AIM: Existing tacrolimus population pharmacokinetic models are unsuitable for guiding tacrolimus dosing in heart transplant recipients. This study aimed to develop and evaluate a population pharmacokinetic model for tacrolimus in heart transplant recipients that considers the tacrolimus-azole antifungal interaction.

    METHODS: Data from heart transplant recipients (n = 87) administered the oral immediate-release formulation of tacrolimus (Prograf®) were collected. Routine drug monitoring data, principally trough concentrations, were used for model building (n = 1099). A published tacrolimus model was used to inform the estimation of Ka , V2 /F, Q/F and V3 /F. The effect of concomitant azole antifungal use on tacrolimus CL/F was quantified. Fat-free mass was implemented as a covariate on CL/F, V2 /F, V3 /F and Q/F on an allometry scale. Subsequently, stepwise covariate modelling was performed. Significant covariates influencing tacrolimus CL/F were included in the final model. Robustness of the final model was confirmed using prediction-corrected visual predictive check (pcVPC). The final model was externally evaluated for prediction of tacrolimus concentrations of the fourth dosing occasion (n = 87) from one to three prior dosing occasions.

    RESULTS: Concomitant azole antifungal therapy reduced tacrolimus CL/F by 80%. Haematocrit (∆OFV = -44, P 

    Matched MeSH terms: Antifungal Agents
  14. de Jong AW, Al-Obaid K, Mohd Tap R, Gerrits van den Ende B, Groenewald M, Joseph L, et al.
    Med Mycol, 2023 Feb 03;61(2).
    PMID: 36694950 DOI: 10.1093/mmy/myad009
    Invasive fungal infections caused by non-albicans Candida species are increasingly reported. Recent advances in diagnostic and molecular tools enabled better identification and detection of emerging pathogenic yeasts. The Candida haemulonii species complex accommodates several rare and recently described pathogenic species, C. duobushaemulonii, C. pseudohaemulonii, C. vulturna, and the most notorious example is the outbreak-causing multi-drug resistant member C. auris. Here, we describe a new clinically relevant yeast isolated from geographically distinct regions, representing the proposed novel species C. khanbhai, a member of the C. haemulonii species complex. Moreover, several members of the C. haemulonii species complex were observed to be invalidly described, including the clinically relevant species C. auris and C. vulturna. Hence, the opportunity was taken to correct this here, formally validating the names of C. auris, C. chanthaburiensis, C. konsanensis, C. metrosideri, C. ohialehuae, and C. vulturna.
    Matched MeSH terms: Antifungal Agents
  15. Hsin YK, Thangarajoo T, Choudhury H, Pandey M, Meng LW, Gorain B
    J Pharm Sci, 2023 Feb;112(2):562-572.
    PMID: 36096286 DOI: 10.1016/j.xphs.2022.09.002
    Vaginal candidiasis is a common form of infection in women caused by Candida species. Due to several drawbacks of conventional treatments, the current research is attempted to formulate and optimize a miconazole nitrate-loaded in situ spray gel for vaginal candidiasis. The stimuli-responsive (pH and thermo-responsive) polymers selected for the in situ gel were chitosan and poloxamer 407, respectively, whereas hydroxypropyl methylcellulose (HPMC) was introduced in the formulation to further improve the mucoadhesive property. The dispersion of each polymer was carried out using the cold method, whereas the optimization of the formulation was achieved using Box-Behnken statistical design considering viscosity and gelation temperature as dependent variables. Present design achieved the optimized outcome with HPMC, poloxamer and chitosan at 0.52% (w/v), 18.68% (w/v) and 0.41% (w/v), respectively. Evaluation of drug-excipients compatibility was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy, and thermogravimetric analysis where the results showed the absence of any chemical interaction between the polymers and drug component. The optimized formulation showed gelation temperature at 31°C allowing in situ phase transition in a vaginal environment; pH of 4.21 is suitable for use in the vaginal cavity, and appropriate viscosity (290 cP) at storage temperature (below 30°C) would allow spraying at ease, whereas strong mucoadhesive force (22.4±0.513 g) would prevent leaking of the formulation after application. The drug release profile showed sustained release up to 24 h with a cumulative drug release of 81.72%, which is significantly better than the marketed miconazole nitrate cream. In addition, an improved antifungal activity could be correlated to the sustained release of the drug from the formulation. Finally, the safety of the formulation was established while tested on HaCaT cell lines. Based on our findings, it could be concluded that the in situ hydrogel formulation using stimuli-responsive polymers could be a viable alternative to the conventional dosage form that can help to reduce the frequency of administration with ease of application to the site of infection, thus will provide better patient compliance.
    Matched MeSH terms: Antifungal Agents/chemistry
  16. Karajacob AS, Azizan NB, Al-Maleki ARM, Goh JPE, Loke MF, Khor HM, et al.
    PLoS One, 2023;18(4):e0284043.
    PMID: 37068057 DOI: 10.1371/journal.pone.0284043
    Overgrowth of Candida yeasts in the oral cavity may result in the development of oral thrush in immunocompromised individuals. This study analyzed the diversity and richness of the oral mycobiota of patients clinically diagnosed with oral thrush (OT), follow-up of oral thrush patients after antifungal therapy (AT), and healthy controls (HC). Oral rinse and oral swab samples were collected from 38 OT patients, 21 AT patients, and 41 healthy individuals (HC). Pellet from the oral rinse and oral swab were used for the isolation of oral Candida yeasts on Brilliance Candida Agar followed by molecular speciation. ITS1 amplicon sequencing using Illumina MiSeq was performed on DNA extracted from the oral rinse pellet of 16 OT, 7 AT, and 7 HC oral rinse samples. Trimmed sequence data were taxonomically grouped and analyzed using the CLC Microbial Genomics Module workflow. Candida yeasts were isolated at significantly higher rates from oral rinse and swab samples of OT (68.4%, p < 0.001) and AT (61.9%, p = 0.012) patients, as compared to HC (26.8%). Predominance of Candida albicans specifically, was noted in OT (60.5%, p < 0.001) and AT (42.9%, p = 0.006) vs. HC (9.8%), while non-albicans Candida species was dominant in HC. Analysis of oral mycobiota from OT patients showed the presence of 8 phyla, 222 genera, and 309 fungal species. Low alpha diversity (Shannon index, p = 0.006; Chao-1 biased corrected index, p = 0.01), varied beta diversity (Bray-Curtis, p = 0.01986; Jaccard, p = 0.02766; Weighted UniFrac, p = 0.00528), and increased relative abundance of C. albicans (p = 3.18E-02) was significantly associated with the oral mycobiota of OT vs. HC. This study supported that C. albicans is the main etiological agent in oral thrush and highlights the association of fungal biodiversity with the pathophysiology of oral thrush.
    Matched MeSH terms: Antifungal Agents
  17. Jafarzadeh S, Hadidi M, Forough M, Nafchi AM, Mousavi Khaneghah A
    Crit Rev Food Sci Nutr, 2023;63(23):6393-6411.
    PMID: 35089844 DOI: 10.1080/10408398.2022.2031099
    Conventionally used petrochemical-based plastics are poorly degradable and cause severe environmental pollution. Alternatively, biopolymers (e.g., polysaccharides, proteins, lipids, and their blends) are biodegradable and environment-friendly, and thus their use in packaging technologies has been on the rise. Spoilage of food by mycotoxigenic fungi poses a severe threat to human and animal health. Hence, because of the adverse effects of synthetic preservatives, active packaging as an effective technique for controlling and decontaminating fungi and related mycotoxins has attracted considerable interest. The current review aims to provide an overview of the prevention of fungi and mycotoxins through active packaging. The impact of different additives on the antifungal and anti-mycotoxigenic functionality of packaging incorporating active films/coatings is also investigated. In addition, active packaging applications to control and decontaminate common fungi and mycotoxins in bakery products, cereal grains, fruits, nuts, and dairy products are also introduced. The results of recent studies have confirmed that biopolymer films and coatings incorporating antimicrobial agents provide great potential for controlling common fungi and mycotoxins and enhancing food quality and safety.
    Matched MeSH terms: Antifungal Agents
  18. Alli YA, Ejeromedoghene O, Oladipo A, Adewuyi S, Amolegbe SA, Anuar H, et al.
    ACS Appl Bio Mater, 2022 Nov 21;5(11):5240-5254.
    PMID: 36270024 DOI: 10.1021/acsabm.2c00670
    Quaternary Trimethyl Chitosan (QTMC) and QTMC-Silver Nanoparticles (QTMC-AgNPs) have been synthesized, characterized, and tested as antibacterial agents against Staphylococcus aureus, Escherichia coli, and two plant fungi (Sclerotium rolfsil and Fusarium oxysporum). The as-prepared water-soluble QTMC was in situ reacted with silver nitrate in the presence of clean compressed hydrogen gas (3 bar) as a reducing agent to produce QTMC-AgNPs. UV-vis, ATR-FTIR, HR-TEM/SEM, XPS, DLS, XRD, and TGA/DTG were employed to assess the optical response, morphology/size, surface chemistry, particle size distribution, crystal nature, and thermal stability of the synthesized QTMC-AgNPs, respectively. The as-prepared QTMC-AgNPs were quasi-spherical in shape with an average particle size of 12.5 nm, as determined by ImageJ software utilizing HR-TEM images and further validated by DLS analysis. The development of crystalline nanoparticles was confirmed by the presence of distinct and consistent lattice fringes with an approximate interplanar d-spacing of 2.04 nm in QTMC-AgNPs. The QTMC-AgNPs exhibited significant antibacterial activity with a clear zone of inhibition of 30 mm and 26 mm around the disks against E. coli and S. aureus, respectively. In addition, QTMC-AgNPs showed highly efficient antifungal activity with 100% and 76.67% growth inhibition against two plant pathogens, S. rolfsii and F. oxysporum, respectively, whereas QTMC revealed no impact. Overall, QTMC-AgNPs showed a promising therapeutic potential and,thus, can be considered for drug design rationale.
    Matched MeSH terms: Antifungal Agents/pharmacology
  19. Mohamed N, Ding CH, Wahab AA, Tzar MN, Hassan M
    J Infect Dev Ctries, 2022 Oct 31;16(10):1668-1670.
    PMID: 36332225 DOI: 10.3855/jidc.17016
    Parengyodontium album is a very rarely encountered opportunistic fungal pathogen. A severely neutropenic 11-year-old boy with acute T-cell lymphoblastic leukemia/lymphoma was febrile and lethargic during his admission for elective chemotherapy. No cutaneous lesion or obvious source of infection was noted, and clinical examination was otherwise unremarkable. A blood specimen was sent for culture and fungal elements were visualized. Amphotericin B was administered empirically while awaiting fungal identification. Morphologically, a hyaline mould with thin septate hyphae plus smooth-walled conidiophores and conidiogenous cells arranged in whorls of up to four was cultured. Internal transcribed spacer region sequencing identified the fungus conclusively as P. album. Repeat blood culture was also positive for the same fungus. Following a two-week course of amphotericin B, fungemia clearance was attained.
    Matched MeSH terms: Antifungal Agents/therapeutic use
  20. Aziz H, Adam NL, Karim NA
    BMJ Case Rep, 2021 Dec 08;14(12).
    PMID: 34880036 DOI: 10.1136/bcr-2021-245025
    We report an elderly man who presented with giddiness and right-sided weakness, constipation and constitutional symptoms for 6 months duration. Blood investigations indicated hypercalcaemia with normal serum phosphate and acute kidney injury. Serum intact parathyroid hormone was suppressed. CT revealed bilateral tiny lung nodules with right upper lobe tree in bud appearance and incidental findings of bilateral adrenal lesion. Tuberculosis was ruled out. CT adrenal showed multiseptated hypodense rim enhancement adrenal lesion bilaterally. Adrenal function tests were normal except for low dehydroepiandrosterone (DHEA). Right-sided cervical lymph node biopsy confirmed fungal infection with the presence of intracellular and extracellular fungal yeast. Serum cryptococcus antigen titre was positive. Our final diagnosis was disseminated cryptococcosis with lungs, bilateral adrenal gland and lymph nodes involvement. The patient was then treated with antifungal treatment. Serum calcium was normalised after 1 month with marked clinical improvement.
    Matched MeSH terms: Antifungal Agents/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links