Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Balachandra D, Rahumatullah A, Lim TS, Mustafa FH, Ahmad H, Anuar NS, et al.
    Acta Trop, 2021 Sep;221:105986.
    PMID: 34058161 DOI: 10.1016/j.actatropica.2021.105986
    Serodiagnosis is an essential component of the laboratory diagnosis of Strongyloides infection and is usually performed using an indirect IgG antibody test. A direct antigen detection method can complement the IgG assay, particularly for detecting early infection and post-treatment follow-up. In the present study, a recombinant scFv monoclonal antibody against NIE recombinant protein (rMAb23) that we had previously produced was used to develop a Strongyloides antigen detection ELISA (SsAg-ELISA). The assay is based on detecting immune complexes of circulating NIE antigens bound to Strongyloides-specific IgG antibodies. The optimized ELISA parameters were 10 µg/mL of rMAb23 coated on microtitre plate wells, 2% skim milk as blocking reagent, 1:100 serum dilution, and 1:1000 goat anti-human IgG F(ab')2 conjugated to horseradish peroxidase. Four groups of serum samples were used, i.e., Strongyloides-positive serum samples categorized into Groups IA and IB; the former were from probable chronic infections and the latter from probable early/acute infections. Strongyloides-negative samples comprising Groups II (healthy samples) and III (other infections); the latter were from eleven different types of other parasitic infections. The receiver operating characteristic (ROC) curve showed an area under the curve (AUC) of 1.00, cut-off optical density (OD405) of 0.5002, and 100% diagnostic sensitivity and specificity. The results of the commercial IgG-ELISA and SsAg-ELISA from Group IA were found to be moderately correlated (r = 0.416; p 
    Matched MeSH terms: Antigens, Helminth
  2. Noordin R, Yunus MH, Tan Farrizam SN, Arifin N
    Adv Parasitol, 2020;109:131-152.
    PMID: 32381194 DOI: 10.1016/bs.apar.2020.01.003
    Toxocariasis is a human infection primarily caused by larvae of Toxocara canis from dogs, and also by T. cati from cats. Children have a more significant risk of acquiring the infection due to their closer contact with pets, and greater chances of ingesting soil. Diagnosis of toxocariasis is based on clinical, epidemiological, and serological data. Indirect IgG ELISA is a widely used serodiagnostic method for toxocariasis, with native T. canis TES most commonly used as the antigen. Western blots, using the same antigen, can be used to confirm positive ELISA findings to reduce false-positive results. Improvements in Toxocara serodiagnosis include the use of recombinant TES antigens, simpler and more rapid assay formats, and IgG4 subclass detection. Also, incorporation of recombinant T. cati TES protein increases the diagnostic sensitivity. Development of antigen detection tests using polyclonal and monoclonal antibodies, nanobodies, or aptamers can complement the antibody detection assays, and enhance the effectiveness of the serodiagnosis.
    Matched MeSH terms: Antigens, Helminth/immunology
  3. Norhaida A, Suharni M, Liza Sharmini AT, Tuda J, Rahmah N
    Ann Trop Med Parasitol, 2008 Mar;102(2):151-60.
    PMID: 18318937 DOI: 10.1179/136485908X252250
    Currently, the laboratory diagnosis of toxocariasis, caused by Toxocara canis or T. cati, mainly relies on serological tests. Unfortunately, however, the specificities of most of the commercial tests that are available for the serodiagnosis of this disease are not very high and this may cause problems, especially in tropical countries where co-infections with other helminths are common. In an effort to develop a serological assay with improved specificity for the detection of Toxocara infection, an IgG(4)-ELISA based on a recombinant version (rTES-30USM) of the 30-kDa Toxocara excretory-secretory antigen (TES-30) has recently been developed. To produce the antigen, the TES-30 gene was cloned via assembly PCR, subcloned into a His-tagged prokaryotic expression vector, and purified by affinity chromatography using Ni(2+)-nitrilotriacetic-acid (Ni-NTA) resin. The performance of the ELISA based on the recombinant antigen was then compared with that of commercial kit, based on an IgG-ELISA, for the serodiagnosis of toxocariasis (Toxocara IgG-ELISA; Cypress Diagnostics, Langdorp, Belgium). Both assays were used to test 338 serum samples, including 26 samples from probable cases of toxocariasis. Assuming that all the probable cases were true cases, the assay based on rTES-30USM demonstrated a sensitivity of 92.3% (24/26) and a specificity of 89.6% (103/115) whereas the commercial kit exhibited a sensitivity of 100% (26/26) but a specificity of only 55.7% (64/115). The high sensitivity and specificity exhibited by the new IgG(4)-ELISA should make the assay a good choice for use in tropical countries and any other area where potentially cross-reactive helminthic infections are common.
    Matched MeSH terms: Antigens, Helminth/analysis; Antigens, Helminth/genetics*; Antigens, Helminth/immunology
  4. Rahmah N, Anuar AK, A'shikin AN, Lim BH, Mehdi R, Abdullah B, et al.
    Biochem Biophys Res Commun, 1998 Sep 29;250(3):586-8.
    PMID: 9784388
    Western blot analyses were performed on 444 serum specimens: 40 sera from microfilaraemic individuals, 10 sera from elephantiasis patients, 24 treated individuals, 50 sera from residents of endemic areas without anti-filarial IgG4 antibodies (endemic normals), 20 sera from amicrofilaraemic individuals with high anti-filarial IgG4 antibodies, 200 sera from healthy city-dwellers (non-endemic samples), and 100 sera from soil-transmitted helminth-infected individuals. Phast electrophoresis system was used to electrophorese Brugia malayi soluble adult worm antigen on 10-15% SDS-PAGE gradient gels followed by electrophoretic transfer onto PVDF membranes. Membrane strips were then successively incubated with blocking solution, human sera, and monoclonal anti-human IgG4 antibody-HRP, with adequate washings done in between each incubation step. Luminol chemiluminescence detection was then used to develop the blots. An antigenic band with the MW of approximately 37 kDa was found to be consistently present in the Western blots of all microfilaraemic sera, all amicrofilaraemic sera with high titres of anti-filarial IgG4 antibodies, some treated patients, and some elephantiasis patients. The antigen did not occur in immunoblots of individuals with other helminthic infections, normal endemic individuals, and city dwellers. Therefore the B. malayi antigen of with the MW of approximately 37 kDa demonstrated specific reactions with sera of B. malayi-infected individuals and thus may be useful for diagnostic application.
    Matched MeSH terms: Antigens, Helminth/blood*; Antigens, Helminth/immunology
  5. Abdo AIK, Ngoh YY, Lew MH, Dass SA, Rahumatullah A, Noordin R, et al.
    Biotechnol Appl Biochem, 2022 Feb;69(1):70-76.
    PMID: 33258152 DOI: 10.1002/bab.2082
    Lymphatic filariasis is a neglected parasitic disease that affects millions in tropical and subtropical countries and is caused by Wuchereria and Brugia species. Specific and sensitive detection methods are essential in mapping infected areas where rapid tests are needed to cover underdeveloped and remote regions, which facilitates eliminating the disease as a public health problem. A few commercialized rapid tests based on antigen or antibody detection are available, but the former only detects infection by Wuchereria species and cross-reacts with nonlymphatic filaria, whereas antibody detection might provide positive results of previous infection. Here, we report the production of three different recombinant immunoglobulin gamma (IgG)1 antibodies based on scFvs previously generated via human antibody phage display technology, that is, anti-BmR1 clone 4, anti-BmXSP clone 5B, and anti-BmXSP clone 2H2. The scFv sequences were cloned into a pCMV-IgG1 vector, then transfected into a HEK293F cell line. The generated antibodies were found to be able to bind to their respective targets even at relatively low concentration. Conjugation of Fc to scFv induces binder stability and provides multiple labeling sites for probes and signaling molecules that can be used in rapid tests.
    Matched MeSH terms: Antigens, Helminth*
  6. Omar N, Hamidon NH, Yunus MH, Noordin R, Choong YS, Lim TS
    Biotechnol Appl Biochem, 2018 May;65(3):346-354.
    PMID: 28833498 DOI: 10.1002/bab.1591
    Phage display has been applied successfully as a tool for the generation of monoclonal antibodies (mAbs). Naive antibody libraries are unique as they are able to overcome several limitations associated with conventional mAb generation methods like the hybridoma technology. Here, we performed an in vitro selection and generation of Fab antibodies against Brugia malayi SXP protein (BmSXP), a recombinant antigen for the detection of lymphatic filariasis. We developed a naïve multi ethnic Fab antibody library with an estimated diversity of 2.99 × 109 . The antibody library was used to screen for mAbs against BmSXP recombinant antigen. Soluble monoclonal Fab antibodies against BmSXP were successfully isolated from the naïve library. The Fab antibodies obtained were expressed and analyzed to show its binding capability. The diversity obtained from a pool of donors from various ethnic groups allowed for a diverse antibody library to be generated. The mAbs obtained were also functional in soluble form, which makes it useful for further downstream applications. We believe that the Fab mAbs are valuable for further studies and could also contribute to improvements in the diagnosis of filariasis.
    Matched MeSH terms: Antigens, Helminth/immunology*
  7. Balachandra D, Ahmad H, Arifin N, Noordin R
    Eur J Clin Microbiol Infect Dis, 2021 Jan;40(1):27-37.
    PMID: 32729057 DOI: 10.1007/s10096-020-03949-x
    Laboratory diagnosis of Strongyloides infections can be grouped into direct and indirect detection methods, and a combination of the two methods is often needed to reach an accurate and timely diagnosis. This review focuses on non-conventional direct detection via molecular and antigen detection assays. Conventional PCR is the most commonly used molecular diagnostic for Strongyloides. Real-time PCR is accurate and highly sensitive for quantitative and qualitative analysis. Meanwhile, PCR-RFLP can efficiently distinguish human and dog isolates of S. stercoralis, S. fuelleborni (from monkey), and S. ratti (from rodent). Loop-mediated isothermal amplification (LAMP) amplifies DNA isothermally with high specificity, efficiency, and rapidity, and has potential for point-of-care (POC) translation. As for antigen detection assay, coproantigen detection ELISAs for strongyloidiasis traditionally relied on raising rabbit polyclonal antibodies against the parasite antigens for use as capture or detection reagents. Subsequently, hybridoma technology using animals has enabled the discovery of monoclonal antibodies specific to Strongyloides antigens and was utilised to develop antigen detection assays. In recent times, phage display technology has facilitated the discovery of scFv antibody against Strongyloides protein that can accelerate the development of such assays. Improvements in both direct detection methods are being made. Strongyloides molecular diagnostics is moving from the detection of a single infection to the simultaneous detection of soil-transmitted helminths. Meanwhile, antigen detection assays can also be multiplexed and aptamers can be used as antigen binders. In the near future, these two direct detection methods may be more widely used as diagnostic tools for strongyloidiasis.
    Matched MeSH terms: Antigens, Helminth/immunology
  8. Lim BH, Noordin R, Nor ZM, Rahman RA, Abdullah KA, Sinnadurai S
    Exp Parasitol, 2004 Sep-Oct;108(1-2):1-6.
    PMID: 15491542
    BmR1 recombinant antigen has previously been shown to demonstrate high sensitivity and specificity in the serological diagnosis of brugian filariasis in humans. In this study, the pattern of recognition of antibody to BmR1 during Brugia malayi infection was investigated by employing Meriones unguiculatus as the experimental model. Thirty two gerbils were infected subcutaneously with 120 L(3); and two control groups each comprising 25 animals were employed. ELISA using BmR1 was used to detect filaria-specific IgG antibodies elicited by the gerbils; using sera collected from the day 1 until day 150 post-inoculation (p.i.). The results showed that BmR1 detected B. malayi infection in gerbils harboring adult worms irrespective of the presence of circulating microfilaria, and was exemplified by positive ELISA results in nine a microfilaraemic animals that harbored live adult worms. The initial time of the antibody recognition was at day 8 p.i. and the antibody titre showed some correlation with adult worm burden.
    Matched MeSH terms: Antigens, Helminth/immunology*
  9. Khoo TK, Noordin R, Santhanam A
    Indian J Exp Biol, 2012 Apr;50(4):256-64.
    PMID: 22611913
    A rapid antibody detection test is very useful for the detection of lymphatic filariasis, especially for certification and surveillance of post-mass drug administration. panLF Rapid kit is suitable for this purpose since it can detect all species of lymphatic filaria. It is based on the detection of anti-filarial IgG4 antibodies that react with recombinant B. malayi antigens, BmR1 and BmSXP. There is an increase demand for the test due to its attributes of being rapid, sensitive and specific results, as well as its field-applicability. The main aim of this paper is to obtain high recovery and purity of recombinant antigen BmSXP via a modified method of immobilized metal affinity chromatography (IMAC). The highest product yield of 11.82 mg/g dry cell weight (DCW) was obtained when IMAC was performed using the optimized protocol of 10 mM imidazole concentration in lysis buffer, 30 mM imidazole concentration in wash buffer, and 10 column volume wash buffer containing 300 mM salt concentration. This gave a 54% protein recovery improvement over the manufacturer's protocol which recorded a product yield of only 7.68 mg/g DCW. The recovered BmSXP recombinant antigen showed good western blot reactivity, high sensitivity (31/32, 97%) and specificity (32/32, 100%) in ELISA, thus attesting to its good purity and quality.
    Matched MeSH terms: Antigens, Helminth/analysis*; Antigens, Helminth/isolation & purification
  10. Rahumatullah A, Abdul Karim IZ, Noordin R, Lim TS
    Int J Mol Sci, 2017 Nov 22;18(11).
    PMID: 29165352 DOI: 10.3390/ijms18112376
    Helminth parasite infections are significantly impacting global health, with more than two billion infections worldwide with a high morbidity rate. The complex life cycle of the nematodes has made host immune response studies against these parasites extremely difficult. In this study, we utilized two phage antibody libraries; the immune and naïve library were used to identify single chain fragment variable (scFv) clones against a specific filarial antigen (BmR1). The V-gene analysis of isolated scFv clones will help shed light on preferential VDJ gene segment usage against the filarial BmR1 antigen in healthy and infected states. The immune library showed the usage of both lambda and kappa light chains. However, the naïve library showed preferential use of the lambda family with different amino acid distributions. The binding characteristics of the scFv clones identified from this work were analyzed by immunoassay and immunoaffinity pull down of BmR1. The work highlights the antibody gene usage pattern of a naïve and immune antibody library against the same antigen as well as the robust nature of the enriched antibodies for downstream applications.
    Matched MeSH terms: Antigens, Helminth/immunology
  11. Ma A, Wang Y, Liu XL, Zhang HM, Eamsobhana P, Yong HS, et al.
    J. Helminthol., 2019 Jan;93(1):26-32.
    PMID: 29144215 DOI: 10.1017/S0022149X17001080
    Human gnathostomiasis is an emerging food-borne parasitic disease caused by nematodes of the genus Gnathostoma. Currently, serological tests are commonly applied to support clinical diagnosis. In the present study, a simple and rapid filtration-based test, dot immune-gold filtration assay (DIGFA) was developed using a partially purified antigen of Gnathostoma third-stage larvae (L3). A total of 180 serum samples were tested to evaluate the diagnostic potential of DIGFA for gnathostomiasis. The diagnostic sensitivity and specificity were 96.7% (29/30) and 100% (25/25), respectively. The cross-reactivity with sera from other helminthiasis patients ranged from 0 to 4%, with an average of 1.6% (2/125). DIGFA using a partially purified L3 antigen was not only simple and rapid, but also more accurate than standard assays for the diagnosis of human gnathostomiasis. DIGFA may represent a promising tool for application in laboratories or in the field, without requiring any instrumentation.
    Matched MeSH terms: Antigens, Helminth/immunology*; Antigens, Helminth/isolation & purification
  12. Khor BY, Lim TS, Noordin R, Choong YS
    J Mol Graph Model, 2017 09;76:543-550.
    PMID: 28811153 DOI: 10.1016/j.jmgm.2017.07.004
    De novo approach was applied to design single chain fragment variable (scFv) for BmR1, a recombinant antigen from Bm17DIII gene which is the primary antigen used for the detection of anti-BmR1 IgG4 antibodies in the diagnostic of lymphatic filariasis. Three epitopes of the BmR1 was previously predicted form an ab initio derived three-dimensional structure. A collection of energetically favourable conformations was generated via hot-spot-centric approach. This resulted in a set of three different scFv scaffolds used to compute the high shape complementary conformations via dock-and-design approach with the predicted epitopes of BmR1. A total of 4227 scFv designs were generated where 200 scFv designs produced binding energies of less than -20 R.E.U with shape complementarity higher than 0.5. We further selected the design with at least one hydrogen bond and one salt bridge with the epitope, thus resulted in a total of 10, 1 and 19 sFv designs for epitope 1, 2 and 3, respectively. The results thus showed that de novo design can be an alternative approach to yield high affinity in silico scFv designs as a starting point for antibody or specific binder discovery processes.
    Matched MeSH terms: Antigens, Helminth/immunology; Antigens, Helminth/chemistry*
  13. Norsyahida A, Rahmah N, Ahmad RM
    Lett Appl Microbiol, 2009 Nov;49(5):544-50.
    PMID: 19832937 DOI: 10.1111/j.1472-765X.2009.02694.x
    To investigate the effects of feeding and induction strategies on the production of BmR1 recombinant antigen.
    Matched MeSH terms: Antigens, Helminth/genetics; Antigens, Helminth/metabolism*
  14. Rahumatullah A, Ahmad A, Noordin R, Lim TS
    Mol Immunol, 2015 Oct;67(2 Pt B):512-23.
    PMID: 26277276 DOI: 10.1016/j.molimm.2015.07.040
    Phage display technology is an important tool for antibody generation or selection. This study describes the development of a scFv library and the subsequent analysis of identified monoclonal antibodies against BmSXP, a recombinant antigen for lymphatic filariasis. The immune library was generated from blood of lymphatic filariasis infected individuals. A TA based intermediary cloning approach was used to increase cloning efficiency for the library construction process. A diverse immune scFv library of 10(8) was generated. Six unique monoclonal antibodies were identified from the 50 isolated clones against BmSXP. Analysis of the clones showed a bias for the IgHV3 and Vκ1 (45.5%) and IgHV2 and Vκ3 (27.3%) gene family. The most favored J segment for light chain is IgKJ1 (45.5%). The most favored D and J segment for heavy chain are IgHD6-13 (75%) and IgHJ3 (47.7%). The information may suggest a predisposition of certain V genes in antibody responses against lymphatic filariasis.
    Matched MeSH terms: Antigens, Helminth/immunology
  15. Sahu PS, Parija S, Kumar D, Jayachandran S, Narayan S
    Parasite Immunol., 2014 Oct;36(10):509-21.
    PMID: 24965663 DOI: 10.1111/pim.12124
    Traditionally serum and/or CSF specimens have been used for detection of either specific antibodies or antigens as a supportive diagnosis of NCC. However, in recent days, much interest has been shown employing noninvasive specimens such as urine. In our study, we identified and compared a profile of circulating antigenic peptides of parasite origin in three different body fluids (CSF, serum and urine) obtained from confirmed NCC cases and control subjects. The circulating antigenic peptides were resolved by SDS-PAGE and subjected to immunoblotting. For confirmation of their origin as parasite somatic or excretory secretory (ES) material, immunoreactivity was tested employing affinity purified polyclonal Taenia solium metacestode anti-somatic or ES antibodies, respectively. Only lower molecular weight antigenic peptides were found circulating in urine in contrast to serum and CSF specimens. Few somatic peptides were identified to be 100% specific for NCC (19·5 kDa in all three specimens; 131, 70 kDa in CSF and serum only; 128 kDa in CSF only). Similarly, the specific ES peptides detected were 32 kDa (in all three specimens), 16·5 kDa (in serum and CSF only), and 15 kDa (urine only). A test format detecting either one or more of these specific peptides would enhance the sensitivity in diagnosis of NCC.
    Matched MeSH terms: Antigens, Helminth/analysis*; Antigens, Helminth/blood; Antigens, Helminth/cerebrospinal fluid; Antigens, Helminth/immunology; Antigens, Helminth/urine
  16. Leow CY, Willis C, Chuah C, Leow CH, Jones M
    Parasite Immunol., 2020 03;42(3):e12693.
    PMID: 31880816 DOI: 10.1111/pim.12693
    AIMS: Schistosomes infect approximately 250 million people worldwide. To date, there is no effective vaccine available for the prevention of schistosome infection in endemic regions. There remains a need to develop means to confer long-term protection of individuals against reinfection. In this study, an annexin, namely annexin B30, which is highly expressed in the tegument of Schistosoma mansoni was selected to evaluate its immunogenicity and protective efficacy in a mouse model.

    METHODS AND RESULTS: Bioinformatics analysis showed that there were three potential linear B-cell epitopes and four conformational B-cell epitopes predicted from annexin B30, respectively. Full-length annexin B30 was cloned and expressed in Escherichia coli BL21(DE3). In the presence of adjuvants, the soluble recombinant protein was evaluated for its protective efficacy in two independent vaccine trials. Immunization of CBA mice with recombinant annexin B30 formulated either in alum only or alum/CpG induced a mixed Th1/Th2 cytokine profile but no significant protection against schistosome infection was detected.

    CONCLUSION: Recombinant annexin B30 did not confer significant protection against the parasite. The molecule may not be suitable for vaccine development. However, it could be an ideal biomarker recommended for immunodiagnostics development.

    Matched MeSH terms: Antigens, Helminth/immunology*
  17. Diosdado A, Simón F, Morchón R, González-Miguel J
    Parasit Vectors, 2020 Apr 20;13(1):203.
    PMID: 32312291 DOI: 10.1186/s13071-020-04067-5
    BACKGROUND: Ascaris roundworms are the parasitic nematodes responsible for causing human and porcine ascariasis. Whereas A. lumbricoides is the most common soil-transmitted helminth infecting humans in the world, A. suum causes important economic losses in the porcine industry. The latter has been proposed as a model for the study of A. lumbricoides since both species are closely related. The third larval stage of these parasites carries out an intriguing and complex hepatopulmonary route through the bloodstream of its hosts. This allows the interaction between larvae and the physiological mechanisms of the hosts circulatory system, such as the fibrinolytic system. Parasite migration has been widely linked to the activation of this system by pathogens that are able to bind plasminogen and enhance plasmin generation. Therefore, the aim of this study was to examine the interaction between the infective third larval stage of A. suum and the host fibrinolytic system as a model of the host-Ascaris spp. relationships.

    METHODS: Infective larvae were obtained after incubating and hatching fertile eggs of A. suum in order to extract their cuticle and excretory/secretory antigens. The ability of both extracts to bind and activate plasminogen, as well as promote plasmin generation were assayed by ELISA and western blot. The location of plasminogen binding on the larval surface was revealed by immunofluorescence. The plasminogen-binding proteins from both antigenic extracts were revealed by two-dimensional electrophoresis and plasminogen-ligand blotting, and identified by mass spectrometry.

    RESULTS: Cuticle and excretory/secretory antigens from infective larvae of A. suum were able to bind plasminogen and promote plasmin generation in the presence of plasminogen activators. Plasminogen binding was located on the larval surface. Twelve plasminogen-binding proteins were identified in both antigenic extracts.

    CONCLUSIONS: To the best of our knowledge, the present results showed for the first time, the pro-fibrinolytic potential of infective larvae of Ascaris spp., which suggests a novel parasite survival mechanism by facilitating the migration through host tissues.

    Matched MeSH terms: Antigens, Helminth/metabolism*
  18. Diosdado A, Simón F, Morchón R, González-Miguel J
    Parasitology, 2020 Apr;147(5):559-565.
    PMID: 31992384 DOI: 10.1017/S0031182020000104
    Dirofilaria immitis is a parasitic nematode that survives in the circulatory system of suitable hosts for many years, causing the most severe thromboembolisms when simultaneous death of adult worms occurs. The two main mechanisms responsible for thrombus formation in mammals are the activation and aggregation of platelets and the generation of fibrin through the coagulation cascade. The aim of this work was to study the anticoagulant potential of excretory/secretory antigens from D. immitis adult worms (DiES) on the coagulation cascade of the host. Anticoagulant and inhibition assays respectively showed that DiES partially alter the coagulation cascade of the host and reduce the activity of the coagulation factor Xa, a key enzyme in the coagulation process. In addition, a D. immitis protein was identified by its similarity to the homologous serpin 6 from Brugia malayi as a possible candidate to form an inhibitory complex with FXa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectrometry. These results indicate that D. immitis could use the anticoagulant properties of its excretory/secretory antigens to control the formation of blood clots in its immediate intravascular habitat as a survival mechanism.
    Matched MeSH terms: Antigens, Helminth/metabolism; Antigens, Helminth/chemistry
  19. Fong MY, Lau YL
    Parasitol Res, 2004 Jan;92(2):173-6.
    PMID: 14655048
    A gene encoding the larval excretory-secretory antigen TES-120 of the dog ascarid worm Toxocara canis was cloned into the methylotrophic yeast Pichia pastoris. Specificity of the recombinant TES-120 antigen produced by the yeast was investigated. Forty-five human serum samples from patients infected with different()parasitic organisms, including 8 cases of toxocariasis, were tested against the recombinant antigen in immunoblot assays. Results from the assays showed that the recombinant TES-120 antigen reacted with sera from toxocariasis patients only. This highly specific recombinant TES-120 antigen can potentially be used for the development of an inexpensive serodiagnostic assay for human toxocariasis.
    Matched MeSH terms: Antigens, Helminth/genetics; Antigens, Helminth/immunology*; Antigens, Helminth/metabolism
  20. Rahumatullah A, Balachandra D, Noordin R, Baharudeen Z, Lim YY, Choong YS, et al.
    Sci Rep, 2021 01 28;11(1):2502.
    PMID: 33510342 DOI: 10.1038/s41598-021-82125-3
    Antibodies have different chemical properties capable of targeting a diverse nature of antigens. Traditionally, immune antibody libraries are perceived to be disease-specific with a skewed repertoire. The complexity during the generation of a combinatorial antibody library allows for a skewed but diverse repertoire to be generated. Strongyloides stercoralis is a parasite that causes strongyloidiasis, a potentially life-threatening disease with a complex diagnosis that impedes effective control and treatment of the disease. This study describes the isolation of monoclonal antibodies against S. stercoralis NIE recombinant protein using an immune antibody phage display library derived from lymphatic filaria-infected individuals. The isolated antibody clones showed both lambda and kappa light chains gene usage, with diverse amino acid distributions. Structural analysis showed that electropositivity and the interface area could determine the binding affinity of the clones with NIE. The successful identification of S. stercoralis antibodies from the filarial immune library highlights the breadth of antibody gene diversification in an immune antibody library that can be applied for closely related infections.
    Matched MeSH terms: Antigens, Helminth/immunology; Antigens, Helminth/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links