Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Sagara I, Dicko A, Ellis RD, Fay MP, Diawara SI, Assadou MH, et al.
    Vaccine, 2009 May 18;27(23):3090-8.
    PMID: 19428923 DOI: 10.1016/j.vaccine.2009.03.014
    A double blind, randomized, controlled Phase 2 clinical trial was conducted to assess the safety, immunogenicity, and biologic impact of the vaccine candidate Apical Membrane Antigen 1-Combination 1 (AMA1-C1), adjuvanted with Alhydrogel. Participants were healthy children 2-3 years old living in or near the village of Bancoumana, Mali. A total of 300 children received either the study vaccine or the comparator. No impact of vaccination was seen on the primary endpoint, the frequency of parasitemia measured as episodes >3000/microL/day at risk. There was a negative impact of vaccination on the hemoglobin level during clinical malaria, and mean incidence of hemoglobin <8.5 g/dL, in the direction of lower hemoglobin in the children who received AMA1-C1, although these differences were not significant after correction for multiple tests. These differences were not seen in the second year of transmission.
    Matched MeSH terms: Antigens, Protozoan/immunology
  2. Teo WH, Nurul AA, Norazmi MN
    Trop Biomed, 2012 Jun;29(2):239-53.
    PMID: 22735846 MyJurnal
    The Plasmodium falciparum serine repeat antigen (SERA) is one of the promising blood-stage malarial vaccine candidates. In this study, recombinant Mycobacterium bovis bacille Calmette-Guerin (rBCG) expressing the 22 kDa protein (SE22) from the 47 kDa Nterminal domain of serine repeat antigen (SERA), generated in favour of mycobacterium codon usage, elicited specific immune response in BALB/c mice with a mixed Th1/Th2 profile. Immunized sera containing high levels of specific IgG1 and IgG2a against the epitope (as determined by ELISA) were reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA). Furthermore, the lymphocyte proliferative response to SE22 antigen from rBCG-immunized mice was higher than that of controls. The expression of intracellular cytokines (IL-2, IL-4 and IFNγ) in CD4+- and CD8+-cells was also enhanced following in-vitro stimulation with SE22. These findings indicate that a rBCG-based vaccine candidate expressing a blood-stage antigen of P. falciparum could enhance both humoral and cellular immune responses, thus paving the way for the rational use of rBCG as a vaccine candidate against malaria.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  3. Latif BM, Jakubek EB
    Trop Biomed, 2008 Dec;25(3):225-31.
    PMID: 19287361
    Flourescent antibody test (FAT) was applied to determine the cross-reactivities of monoclonal (mAb), polyclonal (pAb) antibodies to Neospora, Toxoplasma and Cryptosporidium and antisera from cattle naturally infected with Neospora canium against antigens from a number of sources. Both mAb and pAb to Neospora reacted strongly (FAT titre up to 2560) with the homologous antigens and demonstrated weak titre (80) or no reaction with both Toxoplasma and Cryptosporidium antigens. Also mAb and pAb to Toxoplasma gondii reacted at titres of 80 - 640 with homologous antigens and at titres of 10-40 with N. caninum. No cross-reactions with either mAb or pAb antibodies to N. caninum and T. gondii were observed with Cryptosporidium parvum. The same results were observed with C. parvum mAb when tested with both N. caninum and T. gondii antigens. Sera from cattle naturally infected with N. caninum had titres ranging from 80- 640 with N. caninum antigens, and 10- 40 with T. gondii and C. parvum antigens. At low dilutions, the complete surfaces of Neospora and Toxoplasma parasites were fluorescent, while in higher dilutions only dotted fluorescence appeared on the apical complex. These results indicated the presence of cross-reactivity between Neospora and Toxoplasma but not with Cryptosporidium. Accordingly the recommended cut-off antibody titre for diagnosis of neosporosis is 80.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  4. Sheela DS, Chandramathi S, Suresh K
    Trop Biomed, 2020 Mar 01;37(1):210-217.
    PMID: 33612732
    Blastocystis sp. is an enteric protozoan parasite of humans and many animals. Blastocystis sp. subtype 3 (ST3) proves to be the highest frequency case in most populations around the world and it is further distinguished into symptomatic and asymptomatic isolates based on the clinical symptoms exhibited by infected individuals. Phenotypic and genotypic studies implicate the distinctiveness of this parasite which may describe its pathogenesis. However, the antigenic distinctiveness which describes the antibody mediated cell lysis of this parasite has not been explored. This study was aimed to identify the cross-reactivity and cytotoxicity effect between three isolates of symptomatic and asymptomatic Blastocystis sp. ST3 respectively. Antigen specificity and diversity of this parasite was performed by coculturing sera (10-fold dilution) obtained from mice immunised with Blastocystis sp. symptomatic and asymptomatic antigens and the respective Blastocystis sp. ST3 live cells through complement dependant cell cytotoxicity (CDC) assay. The results obtained has shown that, the sera (at 10-fold diluted concentration) from symptomatic and asymptomatic solubilised antigen immunised mice were able to specifically lyse the respective live parasites with an average percentage of 82% and 86% respectively. There were almost 50% crossreactivity observed between the three isolates of Blastocystis sp. ST3 from symptomatic and asymptomatic group proving high antigen diversity or rather low antigen specificity within the same group. However, there was only 17% cross-reactivity observed between the mice sera and parasitic cells of different groups (symptomatic vs asymptomatic isolates) suggesting high specificity between these two groups. We, for the first time have proven that through CDC analysis there were epitopes dissimilarities between Blastocystis sp. ST3 symptomatic and asymptomatic isolates which may allow the parasite to set up diverse immune modulations such as imbalanced Th1/Th2 responses in an infected host.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  5. Vishalkumar P, Jayaprakash NS, Desai PK, Krishnan V, Vijayalakshmi MA
    Trop Biomed, 2020 Dec 01;37(4):1050-1061.
    PMID: 33612757 DOI: 10.47665/tb.37.4.1050
    OBJECTIVE: To evaluate the sensitivity and the stability of the monoclonal antibodies (Aa3c10, b10c1), against truncated Histidine-rich protein 2 (PfHRP2), developed using smart polymer, poly N-isopropylacrylamide, as adjuvant for malarial diagnostic applications in comparison with the available commercial antibodies.

    METHODS: Two hybridoma clones (Aa3c10, b10c1) were used for the production of ascites in BALB/c mice. Purification of monoclonal antibodies from the ascites was carried out using affinity columns. The thermal stability study of monoclonal antibodies was done by storing it at 37°C and 45°C for thirty days. The stored antibodies were analyzed using SDS-PAGE and flow-through device where the antigenantibody interaction was visualized by Protein A colloidal gold solution. Sensitivity was determined by endpoint dilution ELISA and the dissociation constant by competitive ELISA. Sensitive pair optimization was done by sandwich ELISA using biotinylated antibodies. Prototype preparation for lateral flow assay had a colloidal gold-based detection system.

    RESULTS: Thermal stability experiments showed that both mAbs (Aa3c10; b10c1) are stable up to thirty days at 45°C while the commercially available mAbs were stable up to fifteen days only. Compared to commercial antibodies, the mAb Aa3c10, showed the highest sensitivity in end-point titre. In sensitive pair optimization, it was observed that the mAb, b10c1, as a detector and the mAb, Aa3c10, as a capture antibody showed the highest absorbance to detect 50pg/ml PfHRP2 antigen. The prototype formulation of lateral flow assay using the mAbs (Aa3c10; b10c1) showed good reactivity with WHO panel and no false-positive results were observed with twenty clinically negative samples and five P. vivax positive samples.

    CONCLUSIONS: The novel monoclonal antibodies (Aa3c10, b10c1) against truncated PfHRP2, could be a strong potential candidates that can be included in making RDTs with better sensitivity and stability.

    Matched MeSH terms: Antigens, Protozoan/immunology*
  6. Kano S, Onda T, Matsumoto Y, Buchachart K, Krudsood S, Looareesuwan S, et al.
    PMID: 9886125
    It was reported that a 47kDa antigenic polypeptide of Plasmodium falciparum had been strongly presented by the sera from 1) imported Japanese malaria patients with severe symptoms and 2) symptomatic and parasitemic inhabitants in endemic areas in the Sudan, Malaysia and the Philippines. In the present study, we observed the reactivity of the sera from falciparum malaria patients who had been hospitalized in the Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, and compared the antibody response against the 47kDa antigenic polypeptide according to the severity of the patients. It was observed that antibodies to this molecule were more commonly shared in sera from severer patients, although the IFAT titers against the whole P. falciparum parasite antigen were lower in the group, which suggested that this antibody against the 47kDa molecule was playing a specific role at a severe stage of the infection. Determination of the immunological features of the antigenic molecules of parasites by this type of sero-epidemiological study will provide a new assay system for evaluation of immune status of individuals in different severity and suggest a way of vaccine development.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  7. Suresh K, Mak JW, Yong HS
    PMID: 1818401
    Matched MeSH terms: Antigens, Protozoan/immunology
  8. Maspi N, Ghaffarifar F, Sharifi Z, Dalimi A, Khademi SZ
    Malays J Pathol, 2017 Dec;39(3):267-275.
    PMID: 29279589
    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (p<0.05). IFN-γ/ Interleukin (IL)-4 and IgG2a/IgG1 ratios demonstrated the highest IFN-γ and IgG2a levels in the group receiving LACK-TSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (p<0.05). In addition, there was a significant reduction in mean lesion size of LACK-TSA and TSA groups than LACK group after challenge (p<0.05). In the present study, DNA immunization promoted Th1 immune response and confirmed the previous observations on immunogenicity of LACK and TSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  9. Atique Ahmed M, Kang HJ, Quan FS
    Korean J Parasitol, 2019 Aug;57(4):445-450.
    PMID: 31533414 DOI: 10.3347/kjp.2019.57.4.445
    Human infections due to the monkey malaria parasite Plasmodium knowlesi is increasingly being reported from most Southeast Asian countries specifically Malaysia. The parasite causes severe and fatal malaria thus there is a need for urgent measures for its control. In this study, the level of polymorphisms, haplotypes and natural selection of full-length pkmsp8 in 37 clinical samples from Malaysian Borneo along with 6 lab-adapted strains were investigated. Low levels of polymorphism were observed across the full-length gene, the double epidermal growth factor (EGF) domains were mostly conserved, and non-synonymous substitutions were absent. Evidence of strong negative selection pressure in the non-EGF regions were found indicating functional constrains acting at different domains. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. This is the first study to genetically characterize the full-length msp8 gene from clinical isolates of P. knowlesi from Malaysia; however, further functional characterization would be useful for future rational vaccine design.
    Matched MeSH terms: Antigens, Protozoan/immunology
  10. Nadzirah TTI, Yik FM, Ling LY
    Korean J Parasitol, 2020 Feb;58(1):1-5.
    PMID: 32145721 DOI: 10.3347/kjp.2020.58.1.1
    Sarcocystosis was diagnosed worldwide by serodiagnostic tests utilising the whole parasite, for which the protozoa were maintained in vitro are more costly. In this study, antigenicity of Sarcocystis falcatula recombinant protein (rSfSAG4) was investigated towards the local communities of Pangkor and Tioman Islands and its seroprevalence was surveyed in these islands. A total of 348 human sera were tested using rSfSAG4 by Western blot and ELISA. High prevalence of sarcocystosis was observed in Tioman Island (80.6%) than in Pangkor Island (50.0%) by Western blot. In ELISA, the seroprevalence observed in Tioman Island was 45.9%, whereas in Pangkor Island 63.0%. In other parasitic infections, the prevalence was 34.0% by Western blot and 46.0% by ELISA. In healthy control group, 7% by Western blot and 8% by ELISA showed positivity to rSfSAG4. It is suggested SfSAG4 is a candidate antigen to measure seroprevalence of sarcocystosis.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  11. Oyong DA, Wilson DW, Barber BE, William T, Jiang J, Galinski MR, et al.
    J Infect Dis, 2019 11 06;220(12):1950-1961.
    PMID: 31419296 DOI: 10.1093/infdis/jiz407
    BACKGROUND: Complement-fixing antibodies are important mediators of protection against Plasmodium falciparum malaria. However, complement-fixing antibodies remain uncharacterized for Plasmodium vivax malaria. P. vivax merozoite surface protein 3α (PvMSP3α) is a target of acquired immunity and a potential vaccine candidate.

    METHODS: Plasma from children and adults with P. vivax malaria in Sabah, Malaysia, were collected during acute infection, 7 and 28 days after drug treatment. Complement-fixing antibodies and immunoglobulin M and G (IgM and IgG), targeting 3 distinctive regions of PvMSP3α, were measured by means of enzyme-linked immunosorbent assay.

    RESULTS: The seroprevalence of complement-fixing antibodies was highest against the PvMSP3α central region (77.6%). IgG1, IgG3, and IgM were significantly correlated with C1q fixation, and both purified IgG and IgM were capable of mediating C1q fixation to PvMSP3α. Complement-fixing antibody levels were similar between age groups, but IgM was predominant in children and IgG3 more prevalent in adults. Levels of functional antibodies increased after acute infection through 7 days after treatment but rapidly waned by day 28.

    CONCLUSION: Our study demonstrates that PvMSP3α antibodies acquired during P. vivax infection can mediate complement fixation and shows the important influence of age in shaping these specific antibody responses. Further studies are warranted to understand the role of these functional antibodies in protective immunity against P. vivax malaria.

    Matched MeSH terms: Antigens, Protozoan/immunology*
  12. Matsubayashi M, Teramoto-Kimata I, Uni S, Lillehoj HS, Matsuda H, Furuya M, et al.
    J Biol Chem, 2013 Nov 22;288(47):34111-34120.
    PMID: 24085304 DOI: 10.1074/jbc.M113.515544
    The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-β- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  13. Zainudin NS, Othman N, Muhi J, Abdu Sani AA, Noordin R
    Am J Trop Med Hyg, 2015 Dec;93(6):1268-73.
    PMID: 26392156 DOI: 10.4269/ajtmh.15-0333
    This study was performed to identify circulating Plasmodium falciparum proteins in patient serum, which may be useful as diagnostic markers. Depletion of highly abundant proteins from each pooled serum sample obtained from P. falciparum-infected patients and healthy individuals was performed using the Proteoseek Antibody-Based Albumin/IgG Removal Kit (Thermo Scientific, Rockford, IL). In analysis 1, the depleted serum was analyzed directly by NanoLC-MS/MS. In analysis 2, the depleted serum was separated by two-dimensional electrophoresis followed by western blot analysis. Subsequently, the selected band was analyzed by NanoLC-MS/MS. The result of analysis 1 revealed the presence of two mature erythrocyte surface antigen (MESA) proteins and chloroquine resistance transporter protein (PfCRT). In addition, analysis 2 revealed an antigenic 75-kDa band when the membrane was probed with purified IgG from the pooled serum obtained from P. falciparum-infected patients. MS/MS analysis of this protein band revealed fragments of P. falciparum MESA proteins. Thus, in this study, two different analyses revealed the presence of Plasmodium MESA protein in pooled serum from malaria patients; thus, this protein should be further investigated to determine its usefulness as a diagnostic marker.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  14. Foo A, Carter R, Lambros C, Graves P, Quakyi I, Targett GA, et al.
    Am J Trop Med Hyg, 1991 Jun;44(6):623-31.
    PMID: 1713424
    Monoclonal antibodies (MAbs) directed against different epitope regions on three sexual stage-specific gamete surface proteins of Plasmodium falciparum, Pfs 25, Pfs 230, and Pfs 48/45, were used to study the genetic diversity of these epitopes among fresh isolates of P. falciparum from Malaysia, using immunofluorescence microscopy (IFA). Among 45 Malaysian isolates, one epitope of Pfs 25, designated region I, showed evidence of variable reactivity with MAbs among different isolates; the Pfs 25 epitope, region II, was universally recognized by MAbs in all isolates. Two apparently distinct epitope regions of Pfs 230 were defined by MAbs, one of which was universally recognized by MAbs among the 45 isolates; the other was conserved in all but three isolates. The epitope regions of gamete-surface protein Pfs 48/45, designated regions I, IIa, IIb, IIc, III, and IV, were examined for reactivity by IFA in 33 isolates. Epitope regions I, IIb, III, and IV were conserved in all isolates; regions IIa and IIc existed in variant forms.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  15. Lee M, Davis DR, Ballou WR, Folena-Wasserman G, Lewis GE
    Am J Trop Med Hyg, 1988 Dec;39(6):535-9.
    PMID: 3061309
    A seroepidemiologic survey of Plasmodium vivax and Plasmodium falciparum transmission was conducted in 94 Orang Asli children and adults. The prevalence of malaria was 46% in this population, and infections due to P. vivax and P. falciparum occurred with equal frequency. Multi-species infection was common, particularly in children less than 10 years of age. Circumsporozoite (CS) antibodies to P. vivax were detected by ELISA, using the recombinant protein NS181V20, in sera from 53-95% of all subjects in this study. The specificity of reactivity to NS181V20 was confirmed by immunofluorescence using air-dried sporozoites. CS antibodies to P. falciparum were present in less than 50% of the population less than 30 years of age. These data support further testing of this protein as a candidate vivax vaccine.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  16. Gordon DM, Davis DR, Lee M, Lambros C, Harrison BA, Samuel R, et al.
    Am J Trop Med Hyg, 1991 Jul;45(1):49-56.
    PMID: 1867348
    Two hundred and seventy-five Orang Asli volunteers living in nine villages in the Pos Legap Valley of Perak State, peninsular Malaysia, participated in a prospective study designed to characterize the epidemiological, parasitological, and entomological characteristics of Plasmodium falciparum, P. vivax, and P. malariae malaria transmission. Prevalence rates for the three plasmodial species at initiation of the study ranged from 56% in the 0-4-year-old age group to 0% in individuals over the age of 40. Entomological surveys were conducted, enabling us to determine mosquito salivary gland-positive rates and entomological inoculation rates of 1.2 infectious mosquito bites per person per month for P. falciparum, 2.4 for P. vivax, and 0.3 for P. malariae. Cumulative incidence rates over the 16 weeks of the study, following radical cure of all volunteers, were 22.5% for P. falciparum, 12.7% for P. vivax, and 1.5% for P. malariae. The median baseline antibody titer against the immunodominant repetitive B cell epitope of P. falciparum or P. vivax circumsporozoite protein was significantly higher for volunteers who did not become parasitemic. Volunteers were selected for further study if they had evidence of being challenged with P. falciparum sporozoites during the study, based on a two-fold or greater increase in antibody titer against the immunodominant repetitive B cell epitope of the circumsporozoite protein. Resistance to infection was seen in six of 10 individuals who had high (greater than 25 OD units) baseline ELISA titers, compared with only three of 24 individuals who had low baseline ELISA titers (chi 2 P less than 0.02). A similar analysis for P. vivax did not show a significant correlation.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  17. Liew CC, Lau YL, Fong MY, Cheong FW
    Am J Trop Med Hyg, 2020 05;102(5):1068-1071.
    PMID: 32189613 DOI: 10.4269/ajtmh.19-0836
    Invasion of human erythrocytes by merozoites of Plasmodium knowlesi involves interaction between the P. knowlesi Duffy binding protein alpha region II (PkDBPαII) and Duffy antigen receptor for chemokines (DARCs) on the erythrocytes. Information is scarce on the binding level of PkDBPαII to different Duffy antigens, Fya and Fyb. This study aims to measure the binding level of two genetically distinct PkDBPαII haplotypes to Fy(a+b-) and Fy(a+b+) human erythrocytes using erythrocyte-binding assay. The binding level of PkDBPαII of Peninsular Malaysian and Malaysian Borneon haplotypes to erythrocytes was determined by counting the number of rosettes formed in the assay. Overall, the Peninsular Malaysian haplotype displayed higher binding activity than the Malaysian Borneon haplotype. Both haplotypes exhibit the same preference to Fy(a+b+) compared with Fy(a+b-), hence justifying the vital role of Fyb in the binding to PkDBPαII. Further studies are needed to investigate the P. knowlesi susceptibility on individuals with different Duffy blood groups.
    Matched MeSH terms: Antigens, Protozoan/immunology
  18. Ching XT, Fong MY, Lau YL
    Am J Trop Med Hyg, 2017 Jun;96(6):1441-1447.
    PMID: 28719288 DOI: 10.4269/ajtmh.16-0548
    AbstractToxoplasma gondii infects a broad range of warm-blooded hosts, including humans. Important clinical manifestations include encephalitis in immunocompromised patients as well as miscarriage and fetal damage during early pregnancy. Toxoplasma gondii dense granule antigen 2 and 5 (GRA2 and GRA5) are essential for parasitophorous vacuole development of the parasite. To evaluate the potential of GRA2 and GRA5 as recombinant DNA vaccine candidates, these antigens were cloned into eukaryotic expression vector (pcDNA 3.1C) and evaluated in vaccination experiments. Recombinant DNA vaccines constructed with genes encoding GRAs were validated in Chinese hamster ovary cells before evaluation using lethal challenge of the virulent T. gondii RH strain in BALB/c mice. The DNA vaccines of pcGRA2 and pcGRA5 elicited cellular-mediated immune response with significantly higher levels of interferon-gamma, interleukin-2 (IL-2), IL-4, and IL-10 (P < 0.05) compared with controls. A mixed T-helper cell 1 (Th1)/Th2 response was associated with slightly prolonged survival. These findings provide evidence that DNA vaccination with GRA2 and GRA5 is associated with Th1-like cell-mediated immune responses. It will be worthwhile to construct recombinant multiantigen combining full-length GRA2 or/and GRA5 with various antigenic proteins such as the surface antigens and rhoptry antigens to improve vaccination efficacy.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  19. Idris ZM, Chan CW, Kongere J, Hall T, Logedi J, Gitaka J, et al.
    Sci Rep, 2017 08 22;7(1):9123.
    PMID: 28831122 DOI: 10.1038/s41598-017-09585-4
    As markers of exposure anti-malaria antibody responses can help characterise heterogeneity in malaria transmission. In the present study antibody responses to Plasmodium falciparum AMA-1, MSP-119 and CSP were measured with the aim to describe transmission patterns in meso-endemic settings in Lake Victoria. Two cross-sectional surveys were conducted in Lake Victoria in January and August 2012. The study area comprised of three settings: mainland (Ungoye), large island (Mfangano) and small islands (Takawiri, Kibuogi, Ngodhe). Individuals provided a finger-blood sample to assess malaria infection by microscopy and PCR. Antibody response to P. falciparum was determined in 4,112 individuals by ELISA using eluted dried blood from filter paper. The overall seroprevalence was 64.0% for AMA-1, 39.5% for MSP-119, and 12.9% for CSP. Between settings, seroprevalences for merozoite antigens were similar between Ungoye and Mfangano, but higher when compared to the small islands. For AMA-1, the seroconversion rates (SCRs) ranged from 0.121 (Ngodhe) to 0.202 (Ungoye), and were strongly correlated to parasite prevalence. We observed heterogeneity in serological indices across study sites in Lake Victoria. These data suggest that AMA-1 and MSP-119 sero-epidemiological analysis may provide further evidence in assessing variation in malaria exposure and evaluating malaria control efforts in high endemic area.
    Matched MeSH terms: Antigens, Protozoan/immunology
  20. Muh F, Ahmed MA, Han JH, Nyunt MH, Lee SK, Lau YL, et al.
    Sci Rep, 2018 04 10;8(1):5781.
    PMID: 29636493 DOI: 10.1038/s41598-018-23728-1
    The Plasmodium falciparum apical asparagine (Asn)-rich protein (AARP) is one of malarial proteins, and it has been studied as a candidate of malaria subunit vaccine. Basic characterization of PvAARP has been performed with a focus on its immunogenicity and localization. In this study, we further analyzed the immunogenicity of PvAARP, focusing on the longevity of the antibody response, cross-species immunity and invasion inhibitory activity by using the primate malaria parasite Plasmodium knowlesi. We found that vivax malaria patient sera retained anti-PvAARP antibodies for at least one year without re-infection. Recombinant PvAARP protein was strongly recognized by knowlesi malaria patients. Antibody raised against the P. vivax and P. knowlesi AARP N-termini reacted with the apical side of the P. knowlesi merozoites and inhibited erythrocyte invasion by P. knowlesi in a concentration-dependent manner, thereby suggesting a cross-species nature of anti-PvAARP antibody against PkAARP. These results can be explained by B cell epitopes predicted in conserved surface-exposed regions of the AARP N-terminus in both species. The long-lived anti-PvAARP antibody response, cross-reactivity, and invasion inhibitory activity of anti-PvAARP support a critical role of AARP during the erythrocyte invasion and suggest that PvAARP induces long-lived cross-species protective immunity against P. vivax and P. knowlesi.
    Matched MeSH terms: Antigens, Protozoan/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links