Displaying publications 1 - 20 of 97 in total

Abstract:
Sort:
  1. Domnic G, Jeng-Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, et al.
    J Ethnopharmacol, 2021 Oct 28;279:114391.
    PMID: 34224811 DOI: 10.1016/j.jep.2021.114391
    ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa (Korth.) or kratom is a medicinal plant indigenous to Southeast Asia. The leaf of M. speciosa is used as a remedy in pain management including cancer related pain, in a similar way as opioids and cannabis. Despite its well-known analgesic effect, there is a scarce of information on the cancer-suppressing potential of M. speciosa and its active constituents.

    AIM OF THE STUDY: To assess the potential applicability of M. speciosa alkaloids (mitragynine, speciociliatine or paynantheine) as chemosensitizers for cisplatin in Nasopharyngeal carcinoma (NPC) cell lines.

    MATERIALS AND METHODS: The cytotoxic effects of the extracts, fractions and compounds were determined by conducting in vitro cytotoxicity assays. Based on the cytotoxic screening, the alkaloid extract of M. speciosa exhibited potent inhibitory effect on the NPC cell line NPC/HK1, and therefore, was chosen for further fractionation and purification. NPC cell lines NPC/HK1 and C666-1 were treated with combinations of cisplatin and M. speciosa alkaloids combinations in 2D monolayer culture. The effect of cisplatin and mitragynine as a combination on cell migration was tested using in vitro wound healing and spheroid invasion assays.

    RESULTS: In our bioassay guided isolation, both methanolic and alkaloid extracts showed mild to moderate cytotoxic effect against the NPC/HK1 cell line. Both NPC cell lines (NPC/HK1 and C666-1) were insensitive to single agent and combination treatments of the M. speciosa alkaloids. However, mitragynine and speciociliatine sensitized the NPC/HK1 and C666-1 cells to cisplatin at ~4- and >5-fold, respectively in 2D monolayer culture. The combination of mitragynine and cisplatin also significantly inhibited cell migration of the NPC cell lines. Similarly, the combination also of mitragynine and cisplatin inhibited growth and invasion of NPC/HK1 spheroids in a dose-dependent manner. In addition, the spheroids did not rapidly develop resistance to the drug combinations at higher concentrations over 10 days.

    CONCLUSION: Our data indicate that both mitragynine and speciociliatine could be potential chemosensitizers for cisplatin. Further elucidation focusing on the drug mechanistic studies and in vivo studies are necessary to support delineate the therapeutic applicability of M. speciosa alkaloids for NPC treatment.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  2. Al-Ziftawi NH, Shafie AA, Mohamed Ibrahim MI
    Expert Rev Pharmacoecon Outcomes Res, 2021 Aug;21(4):655-666.
    PMID: 32657174 DOI: 10.1080/14737167.2020.1794826
    BACKGROUND: Pharmacoeconomic evaluation is important for breast-cancer medications due to their high costs. To our knowledge, no systematic literature reviews of pharmacoeconomic studies for breast-cancer medication use are present in developing-countries.

    OBJECTIVES: To systematically review the existing cost-effectiveness evaluations of breast-cancer medication in developing-countries.

    METHODOLOGY: A systematic literature search was performed in PubMed, EMBASE, SCOPUS, and EconLit. Two researchers determined the final articles, extracted data, and evaluated their quality using the Quality of Health-Economic Studies (QHES) tool. The interclass-correlation-coefficient (ICC) was calculated to assess interrater-reliability. Data were summarized descriptively.

    RESULTS: Fourteen pharmacoeconomic studies published from 2009 to 2019 were included. Thirteen used patient-life-years as their effectiveness unit, of which 10 used quality-adjusted life-years. Most of the evaluations focused on trastuzumab as a single agent or on regimens containing trastuzumab (n = 10). The conclusion of cost-effectiveness analysis varied among the studies. All the studies were of high quality (QHES score >75). Interrater reliability between the two reviewers was high (ICC = 0.76).

    CONCLUSION: In many studies included in the review, the use of breast-cancer drugs in developing countries was not cost-effective. Yet, more pharmacoeconomic evaluations for the use of recently approved agents in different disease stages are needed in developing countries.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  3. Dinh TN, Parat MO, Ong YS, Khaw KY
    Pharmacol Res, 2021 07;169:105666.
    PMID: 33989764 DOI: 10.1016/j.phrs.2021.105666
    Benzyl isothiocyanate (BITC) is one of the common isothiocyanates found in cruciferous vegetables such as broccoli, cabbage or watercress. Preclinical studies report of its effectiveness in the prevention and treatment against several cancers. This review aims to report and discuss findings on anticancer activities of BITC and its modes of action against 14 types of cancer. A literature search was conducted using the keywords "BITC" and "anticancer" from PubMed, Google Scholar and CINAHL Plus to obtain relevant research articles. This review highlights the anticancer efficacy of BITC through modulation of various signaling pathways involved in apoptosis, cell proliferation, cell cycle arrest, metastasis, angiogenesis, autophagy and the effects of BITC in combination with other drugs. With the available pharmacology evidence, we conclude that further studies are needed to validate its effectiveness in humans for further development and translation into prophylaxis or therapy by promoting optimal therapeutic effects and minimizing toxicity in cancer treatment.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  4. Hama M, Ishima Y, Chuang VTG, Ando H, Shimizu T, Ishida T
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19736-19744.
    PMID: 33881292 DOI: 10.1021/acsami.1c03065
    Abraxane, an albumin-bound paclitaxel nanoparticle formulation, is superior to conventional paclitaxel preparations because it has better efficacy against unresectable pancreatic cancer. Previous reports suggest that this better efficacy of Abraxane than conventional paclitaxel preparation is probably due to its transport through Gp60, an albumin receptor on the surface of vascular endothelial cells. The increased tumor accumulation of Abraxane is also caused by the secreted protein acid and rich in cysteine in the tumor stroma. However, the uptake mechanism of Abraxane remains poorly understood. In this study, we demonstrated that the delivery of Abraxane occurred via different receptor pathways from that of endogenous albumin. Our results showed that the uptake of endogenous albumin was inhibited by a Gp60 pathway inhibitor in the process of endocytosis through endothelial cells or tumor cells. In contrast, the uptake of Abraxane-derived HSA was less affected by the Gp60 pathway inhibitor but significantly reduced by denatured albumin receptor inhibitors. In conclusion, these data indicate that Abraxane-derived HSA was taken up into endothelial cells or tumor cells by a mechanism different from normal endogenous albumin. These new data on distinct cellular transport pathways of denatured albumin via gp family proteins different from those of innate albumin shed light on the mechanisms of tumor delivery and antitumor activity of Abraxane and provide new scientific rationale for the development of a novel albumin drug delivery strategy via a denatured albumin receptor.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  5. Chiu HI, Lim V
    Int J Nanomedicine, 2021;16:2995-3020.
    PMID: 33911862 DOI: 10.2147/IJN.S302238
    PURPOSE: In chemotherapy, oral administration of drug is limited due to lack of drug specificity for localized colon cancer cells. The inability of drugs to differentiate cancer cells from normal cells induces side effects. Colonic targeting with polymeric nanoparticulate drug delivery offers high potential strategies for delivering hydrophobic drugs and fewer side effects to the target site. Disulfide cross-linked polymers have recently acquired high significance due to their potential to degrade in reducing colon conditions while resisting the upper gastrointestinal tract's hostile environment. The goal of this project is, therefore, to develop pH-sensitive and redox-responsive fluorescein-labeled wheat germ agglutinin (fWGA)-mounted disulfide cross-linked alginate nanoparticles (fDTP2) directly targeting docetaxel (DTX) in colon cancer cells.

    METHODS: fDTP2 was prepared by mounting fWGA on DTX-loaded nanoparticles (DTP2) using the two-step carbodiimide method. Morphology of fDTP2 was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) study was carried out to determine the mean diameter, polydispersity index (PDI) and zeta potential of fDTP2. Cellular uptake efficiency was examined using fluorescence microplate reader. Biocompatibility and active internalization of fDTP2 were conducted on HT-29.

    RESULTS: fDTP2 was found to exhibit a DTX loading efficiency of 19.3%. SEM and TEM tests revealed spherical nanoparticles. The in vitro DTX release test showed a cumulative release of 54.7%. From the DLS study, fDTP2 reported a 277.7 nm mean diameter with PDI below 0.35 and -1.0 mV zeta potential. HT-29 which was fDTP2-treated demonstrated lower viability than L929 with a half maximal inhibitory concentration (IC50) of 34.7 µg/mL. HT-29 (33.4%) internalized fDTP2 efficiently at 2 h incubation. The study on HT-29 active internalization of nanoparticles through fluorescence and confocal imaging indicated such.

    CONCLUSION: In short, fDTP2 demonstrated promise as a colonic drug delivery DTX transporter.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  6. Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ
    Sci Rep, 2020 12 10;10(1):21704.
    PMID: 33303818 DOI: 10.1038/s41598-020-78601-x
    Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  7. Barkat HA, Das SS, Barkat MA, Beg S, Hadi HA
    Future Oncol, 2020 Dec;16(35):2959-2979.
    PMID: 32805124 DOI: 10.2217/fon-2020-0198
    Cancer is one of the leading causes of death worldwide. Regardless of advances in understanding the molecular mechanics of cancer, its treatment is still lacking and the death rates for many forms of the disease remain the same as six decades ago. Although a variety of therapeutic agents and strategies have been reported, these therapies often failed to provide efficient therapy to patients as a consequence of the inability to deliver right and adequate chemotherapeutic agents to the right place. However, the situation has started to revolutionize substantially with the advent of novel 'targeted' nanocarrier-based cancer therapies. Such therapies hold great potential in cancer management as they are biocompatible, tailored to specific needs, tolerated and deliver enough drugs at the targeted site. Their use also enhances the delivery of chemotherapeutics by improving biodistribution, lowering toxicity, inhibiting degradation and increasing cellular uptake. However, in some instances, nonselective targeting is not enough and the inclusion of a ligand moiety is required to achieve tumor targeting and enhanced drug accumulation at the tumor site. This contemporary review outlines the targeting potential of nanocarriers, highlighting the essentiality of nanoparticles, tumor-associated molecular signaling pathways, and various biological and pathophysiological barriers.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  8. Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, et al.
    Drug Discov Today, 2020 12;25(12):2227-2244.
    PMID: 33011342 DOI: 10.1016/j.drudis.2020.09.031
    A tumor serves as a major avenue in drug development owing to its complexity. Conventional therapies against tumors possess limitations such as suboptimal therapeutic efficacy and extreme side effects. These display poor pharmacokinetics and lack specific targeting, with non-specific distribution resulting in systemic toxicity. Therefore, nanocarriers targeted against cancers are increasingly being explored. Nanomedicine aids in maintaining a balance between efficacy and toxicity by specifically accumulating in tumors. Nanotherapeutics possess advantages such as increased solubility of chemotherapeutics, encapsulation of multiple drugs and improved biodistribution, and can ensure tumor-directed drug delivery and release via the approaches of passive targeting and active targeting. This review aims to offer a general overview of the current advances in tumor-targeting nanocarriers for clinical and diagnostic use.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  9. Gan BK, Rullah K, Yong CY, Ho KL, Omar AR, Alitheen NB, et al.
    Sci Rep, 2020 Oct 08;10(1):16867.
    PMID: 33033330 DOI: 10.1038/s41598-020-73967-4
    Chemotherapy is widely used in cancer treatments. However, non-specific distribution of chemotherapeutic agents to healthy tissues and normal cells in the human body always leads to adverse side effects and disappointing therapeutic outcomes. Therefore, the main aim of this study was to develop a targeted drug delivery system based on the hepatitis B virus-like nanoparticle (VLNP) for specific delivery of 5-fluorouracil-1-acetic acid (5-FA) to cancer cells expressing epithelial growth factor receptor (EGFR). 5-FA was synthesized from 5-fluorouracil (5-FU), and it was found to be less toxic than the latter in cancer cells expressing different levels of EGFR. The cytotoxicity of 5-FA increased significantly after being conjugated on the VLNP. A cell penetrating peptide (CPP) of EGFR was displayed on the VLNP via the nanoglue concept, for targeted delivery of 5-FA to A431, HT29 and HeLa cells. The results showed that the VLNP displaying the CPP and harboring 5-FA internalized the cancer cells and killed them in an EGFR-dependent manner. This study demonstrated that the VLNP can be used to deliver chemically modified 5-FU derivatives to cancer cells overexpressing EGFR, expanding the applications of the VLNP in targeted delivery of chemotherapeutic agents to cancer cells overexpressing this transmembrane receptor.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  10. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Rajak H
    Future Oncol, 2020 Oct;16(30):2457-2469.
    PMID: 32815411 DOI: 10.2217/fon-2020-0385
    HDAC inhibitors (HDACi) play an essential role in various cellular processes, such as differentiation and transcriptional regulation of key genes and cytostatic factors, cell cycle arrest and apoptosis that facilitates the targeting of epigenome of eukaryotic cells. In the majority of cancers, only a handful of patients receive optimal benefit from chemotherapeutics. Additionally, there is emerging interest in the use of HDACi to modulate the effects of ionizing radiations. The use of HDACi with radiotherapy, with the goal of reaching dissimilar, often distinct pathways or multiple biological targets, with the expectation of synergistic effects, reduced toxicity and diminished intrinsic and acquired resistance, conveys an approach of increasing interest. In this review, the clinical potential of HDACi in combination with radiotherapy is described as an efficient synergy for cancer treatment will be overviewed.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  11. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  12. Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, et al.
    Int J Pharm, 2020 Jul 30;585:119556.
    PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556
    In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  13. Lee DW, Kang IH, Ismail F
    Med J Malaysia, 2020 07;75(4):338-341.
    PMID: 32723991
    OBJECTIVE: Three-weekly docetaxel causes a high rate of febrile neutropenia, especially in the Asian population. Two-weekly docetaxel has been shown to reduce rate of febrile neutropenia in castrate-resistant prostate cancer patients. We conducted a preliminary study to investigate the safety of two-weekly docetaxel in advanced breast cancer patients.

    METHODS: We recruited 10 patients with advanced breast cancer with ECOG (Eastern Cooperative Oncology Group) performance status score of zero to two, who needed chemotherapy in the first or second-line setting to receive two-weekly docetaxel for 8 cycles. The primary endpoint was safety and secondary endpoints were response rate and progression free survival.

    RESULTS: The most reported adverse events were haematological (anaemia 100% and neutropenia 90%). The febrile neutropenia rate was 10%. The overall response rate was 20%. The median progression free survival was 5.0 months.

    CONCLUSION: Two-weekly docetaxel may be a reasonable alternative treatment regimen for patients with advanced breast cancer in the first or second-line setting. This regimen is yet to be compared with standard 3-weekly schedule in a phase 3 randomised clinical trial.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  14. Shindi O, Kanesan J, Kendall G, Ramanathan A
    Comput Methods Programs Biomed, 2020 Jun;189:105327.
    PMID: 31978808 DOI: 10.1016/j.cmpb.2020.105327
    BACKGROUND AND OBJECTIVES: In cancer therapy optimization, an optimal amount of drug is determined to not only reduce the tumor size but also to maintain the level of chemo toxicity in the patient's body. The increase in the number of objectives and constraints further burdens the optimization problem. The objective of the present work is to solve a Constrained Multi- Objective Optimization Problem (CMOOP) of the Cancer-Chemotherapy. This optimization results in optimal drug schedule through the minimization of the tumor size and the drug concentration by ensuring the patient's health level during dosing within an acceptable level.

    METHODS: This paper presents two hybrid methodologies that combines optimal control theory with multi-objective swarm and evolutionary algorithms and compares the performance of these methodologies with multi-objective swarm intelligence algorithms such as MOEAD, MODE, MOPSO and M-MOPSO. The hybrid and conventional methodologies are compared by addressing CMOOP.

    RESULTS: The minimized tumor and drug concentration results obtained by the hybrid methodologies demonstrate that they are not only superior to pure swarm intelligence or evolutionary algorithm methodologies but also consumes far less computational time. Further, Second Order Sufficient Condition (SSC) is also used to verify and validate the optimality condition of the constrained multi-objective problem.

    CONCLUSION: The proposed methodologies reduce chemo-medicine administration while maintaining effective tumor killing. This will be helpful for oncologist to discover and find the optimum dose schedule of the chemotherapy that reduces the tumor cells while maintaining the patients' health at a safe level.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  15. Renninger M, Fahmy O, Schubert T, Schmid MA, Hassan F, Stenzl A, et al.
    World J Urol, 2020 Feb;38(2):397-406.
    PMID: 31030231 DOI: 10.1007/s00345-019-02780-0
    PURPOSE: To investigate whether hexaminolevulinate-based (HAL) bladder tumor resection (TURBT) impacts on outcomes of patients with primary non-muscle-invasive bladder cancer (NMIBC) who were eventually treated with radical cystectomy (RC).

    METHODS: A total of 131 consecutive patients exhibiting NMIBC at primary diagnosis were retrospectively investigated whether they had undergone any HAL-guided TURBT prior to RC. Uni- and multivariable analyses were used to evaluate the impact of HAL-TURBT on cancer-specific (CSS) and overall survival (OS). The median follow-up was 38 months (IQR 13-56).

    RESULTS: Of the 131 patients, 69 (52.7%) were managed with HAL- and 62 (47.3%) with white light (WL)-TURBT only prior to RC. HAL-TURBT was associated with a higher number of TURBTs prior to RC (p = 0.002) and administration of intravesical chemotherapy (p = 0.043). A trend towards a higher rate of tumor-associated immune cell infiltrates in RC specimens (p = 0.07) and a lower utilization rate of post-operative systemic chemotherapy (p = 0.10) was noted for patients who were treated with HAL-TURBT. The 5-year CSS/OS was 90.9%/74.5% for the HAL-group and 73.8%/55.8% for the WL-group (p = 0.042/0.038). In multivariable analysis, lymph node tumor involvement (p = 0.007), positive surgical margins (p = 0.001) and performance of WL-TURBT only (p = 0.040) were independent predictors for cancer-specific death.

    CONCLUSIONS: The present data suggest that the resection of NMIBC under HAL exerts a beneficial impact on outcomes of patients who will need to undergo RC during their course of disease. This finding may be due to improved risk stratification as the resection under HAL may allow more patients to be treated timely and adequately.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  16. Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ
    Int J Nanomedicine, 2020;15:1437-1456.
    PMID: 32184597 DOI: 10.2147/IJN.S236927
    The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  17. Tatit NS, Kevin P
    Med J Malaysia, 2019 12;74(6):504-508.
    PMID: 31929476
    INTRODUCTION: Choriocarcinoma is malignant cancer originating from placental trophoblast. The incidence of this cancer is estimated at 0.57-1.1 per 1000 births in the United States of America, Australia, Europe, and New Zealand. The rate is much higher in South East Asia and Japan with two occurrences per a thousand births. Telomerase activity is an important part of the apoptotic process. Increased telomerase activity will result in cellular immortality and poor prognosis in cancer. Vitamin A possess an essential role in cell proliferation and differentiation. One of the active metabolites of vitamin A is All-Trans Retinoic Acid (ATRA).

    METHODS: In this study, we examined the role of ATRA against telomerase activity in choriocarcinoma cell. This cell was derived from BeWo cell line (ATCC CCL-98) and were given different doses of ATRA.

    RESULTS: From this study, Choriocarcinoma cell that was given ATRA in dosage of 50μg/ml inhibit telomerase activity by extending the cycle time of 39.51±0.09, compared to the control group with a cycle time of 37.62±0.43. Cycle length change consistently with higher dose of ATRA.

    CONCLUSION: This study has proven that ATRA could inhibit telomerase activity by lengthening the cycle. Changes in the increase of ATRA doses in this experimental test need to be studied further on experimental animals, either administered as a single agent or as an addition to standard treatment of trophoblastic disease.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  18. Matsusaka K, Ishima Y, Maeda H, Kinoshita R, Ichimizu S, Taguchi K, et al.
    J Pharm Sci, 2019 11;108(11):3592-3598.
    PMID: 31288036 DOI: 10.1016/j.xphs.2019.07.002
    Nanosize plasma proteins could be used as a biomimetic drug delivery system (DDS) for cancer treatment when loaded with anticancer drugs based on the fact that plasma proteins can serve as a source of nutrients for cancer cells. This prompted us to investigate the potential of α1-acid glycoprotein (AGP) for this role because it is a nanosize plasma protein and binds a variety of anticancer agents. Pharmacokinetic analyses indicated that AGP is distributed more extensively in tumor tissue than human serum albumin, which was already established as a cancer DDS carrier. AGP is possibly being incorporated into tumor cells via endocytosis pathways. Moreover, a synthetic AGP-derived peptide which possesses a high ability to form an α-helix, as deduced from the primary structure of AGP, was also taken up by the tumor cells. AGP loaded with anticancer agents, such as paclitaxel or nitric oxide, efficiently induced tumor cell death. These results suggest that AGP has the potential to be a novel DDS carrier for anticancer agents.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  19. Wakatsuki M, Kato S, Ohno T, Banu PA, Hoang NC, Yadamsuren E, et al.
    Int J Radiat Oncol Biol Phys, 2019 09 01;105(1):183-189.
    PMID: 31125594 DOI: 10.1016/j.ijrobp.2019.04.039
    PURPOSE: This multi-institutional observational study conducted among 11 countries in East and Southeast Asia aimed to assess the clinical outcomes of prophylactic extended-field concurrent chemoradiation therapy using weekly cisplatin for patients with locally advanced cervical cancer.

    METHODS AND MATERIALS: Between October 2007 and May 2016, 106 patients with untreated squamous cell carcinoma of the cervix were enrolled in the present study. Radiation therapy consisted of pelvic irradiation (total dose, 50 Gy in 25 fractions including central shielding), prophylactic paraortic regional irradiation (36-40 Gy in 20 fractions), and either high- or low-dose-rate intracavitary brachytherapy (ICBT) according to institutional practice. The planned point A dose was 21 to 28 Gy in 3 to 4 fractions for high-dose-rate ICBT and 40 to 41 Gy in 1 to 2 fractions for low-dose-rate ICBT. Five cycles of weekly cisplatin (40 mg/m2) were administered during the radiation therapy course.

    RESULTS: A total of 106 patients were enrolled. Of these, 9 had major protocol violations and 2 did not receive treatment because of worsened general condition. Thus, 95 patients were evaluable. The median follow-up was 56 months. Of the 95 patients, 76 (80%) received 4 or 5 cycles of chemotherapy. Acute grade 3 leukopenia was observed in 20 of the patients (21%), and late grade 3 gastrointestinal toxicity was observed in 3%. The 2-year local control, progression-free survival, and overall survival rate for all patients were 96%, 78%, and 90%, respectively.

    CONCLUSIONS: The results indicated that prophylactic extended-field concurrent chemoradiation therapy using weekly cisplatin is feasible and effective for patients with locally advanced cervical cancer in East and Southeast Asia.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  20. Iwata H, Masuda N, Kim SB, Inoue K, Rai Y, Fujita T, et al.
    Future Oncol, 2019 Jul;15(21):2489-2501.
    PMID: 31140297 DOI: 10.2217/fon-2019-0143
    Aim: To evaluate the efficacy and safety of neratinib as extended adjuvant therapy in patients from Asia based on exploratory analyses of the Phase III ExteNET trial. Patients & methods: A total of 2840 women with early stage HER2-positive breast cancer were randomly assigned to neratinib 240 mg/day or placebo for 1 year after trastuzumab-based adjuvant therapy. Results: A total of 341 patients were from Asia (neratinib, n = 165; placebo, n = 176). 2-year invasive disease-free survival rates were 92.8 and 90.8% with neratinib and placebo, respectively (HR: 0.70; 95% CI: 0.31-1.55), and 5-year rates were 91.9 and 87.2%, respectively (HR: 0.57; 95% CI: 0.27-1.13). Diarrhea was the most common adverse event with neratinib. Conclusion: Extended adjuvant therapy with neratinib reduces disease recurrences in Asian women with HER2-positive breast cancer. Trial registration: Clinicaltrials.gov NCT00878709.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links