Displaying publications 1 - 20 of 268 in total

Abstract:
Sort:
  1. Pettit GR, Tan R, Melody N, Kielty JM, Pettit RK, Herald DL, et al.
    Bioorg Med Chem, 1999 May;7(5):895-9.
    PMID: 10400343
    A Montana soil actinomycete, Streptomyces anulatus, produced (1 x 10(-2)% yield) a new cancer cell growth inhibitory cyclooctadepsipeptide named montanastatin (1) accompanied by the potent anticancer antibiotic valinomycin (2) in very high (5.1%) yields. Valinomycin but not montanastatin inhibited growth of a number of pathogenic bacteria and fungi. Interpretation of high-field (500 MHz) NMR and high-resolution FAB mass spectral data allowed assignment of the structure cyclo-(D-Val-L-Lac-L-Val-D-Hiv) to montanastatin. Valinomycin (2) was also isolated from actinomycetes cultured from a tree branch and animal feces collected in Malaysia. Streptomyces exfoliatus, isolated from the tree branch, was found to contain valinomycin in 1.6% yield, while the fecal isolate, S. anulatus, gave valinomycin in 0.9% yield.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  2. Tarafder MT, Kasbollah A, Saravanan N, Crouse KA, Ali AM, Tin Oo K
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):85-91.
    PMID: 12186762
    Eight selective nitrogen-sulfur donor ligands have been synthesized from the condensation of S-methyldithiocarbazate (SMDTC) with aldehydes and ketones with a view to evaluating their antimicrobial and cytotoxic activities, and also to correlate the biological properties with the structure of the ligands. The compounds were all characterized by elemental analyses and other physicochemical techniques. SMDTC and the Schiff bases were screened for antimicrobial and cytotoxic activities. SMDTC showed very large inhibition zones (24-44 mm) against bacteria and fungi with a minimum inhibitory concentration (MIC) of 390-25,000 and 1562-6250 microg ml(-1), against different bacteria and fungi, respectively. Streptomycin and nystatin were used as the internal standards against bacteria and fungi, respectively. SMDTC along with its Schiff bases with pyridine-2-carboxaldehyde, acetylacetone and 2,3-butanedione were strongly antifungal and the MIC values were comparable to nystatin. Most of the Schiff bases were strongly cytotoxic. In particular, those with pyridine-2-carboxaldehyde and 2,3-butanedione have CD(50) values of 5.5, 1.9-2.0 microg ml(-1), respectively, against leukemic cells, while against colon cancer cells, the values were 3.7 and 2.0 microg ml(-1), respectively. The glyoxal Schiff base was strongly active only against leukemic cell with CD(50) value of 4.0 microg ml(-1). The present findings have been compared with standard drugs.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  3. Tan ML, Sulaiman SF, Najimuddin N, Samian MR, Muhammad TS
    J Ethnopharmacol, 2005 Jan 4;96(1-2):287-94.
    PMID: 15588681
    Currently, breast cancer is the leading cause of cancer-related death in women. Therefore, there is an urgent need to develop alternative therapeutic measures against this deadly disease. Here, we report the cytotoxicity activity and the mechanism of cell death exhibited by the methanol extract prepared from Pereskia bleo (Kunth) DC. (Cactaceae) plant against human breast carcinoma cell line, T-47D. In vitro cytotoxicity screening of methanol extract of Pereskia bleo plant indicated the presence of cytotoxicity activity of the extract against T-47D cells with EC50 of 2.0 microg/ml. T-47D cell death elicited by the extract was found to be apoptotic in nature based a clear indication of DNA fragmentation which is a hallmark of apoptosis. In addition, ultrastructural analysis also revealed apoptotic characteristics (the presence of chromatin margination and apoptotic bodies) in the extract-treated cells. RT-PCR analysis showed the mRNA expression levels of c-myc, and caspase 3 were markedly increased in the cells treated with the plant extract. However, p53 expression was only slightly increased as compared to caspase 3 and c-myc. Thus, the results from this study strongly suggest that the methanol extract of Pereskia bleo may contain bioactive compound(s) that caused breast carcinoma, T-47D cell death by apoptosis mechanism via the activation of caspase-3 and c-myc pathways.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  4. Kambara H, Yamada T, Tsujioka M, Matsunaga S, Tanaka R, Ali HI, et al.
    Chem Biodivers, 2006 Dec;3(12):1301-6.
    PMID: 17193244
    As a part of our chemical studies on Malaysian medicinal plants, five Malaysian plant species were evaluated by cytotoxicity assays using P388 murine leukemia cells. Since Acalypha siamensis exhibited the strongest growth inhibition, its constituents were studied as the object of search for bioactive materials. A novel tetraterpene, acalyphaser A (1), was isolated in the course of the purification. Its structure was elucidated on the basis of 1D- and 2D-NMR techniques, and mass spectrometry.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  5. Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS, et al.
    Phytochemistry, 2007 Mar;68(6):904-12.
    PMID: 17234223
    The plant Andrographis paniculata found throughout Southeast Asia contains Andrographolide 1, a diterpenoid lactone, which has antitumour activities against in vitro and in vivo breast cancer models. In the present study, we report on the synthesis of andrographolide derivatives, 3,19-isopropylideneandrographolide (2), 14-acetyl-3,19-isopropylideneandrographolide (3) and 14-acetylandrographolide (4), and their in vitro antitumour activities against a 2-cell line panel consisting of MCF-7 (breast cancer cell line) and HCT-116 (colon cancer cell line). Compounds 2 and 4 were also screened at the US National Cancer Institute (NCI) for their activities against a panel of 60 human cancer cell lines derived from nine cancer types. Compound 2 was found to be selective towards leukaemia and colon cancer cells, and compound 4 was selective towards leukaemia, ovarian and renal cancer cells at all the dose-response parameters. Compounds 2 and 4 showed non-specific phase of the cell cycle arrest in MCF-7 cells treated at different intervals with different concentrations. NCI's COMPARE and SOM mechanistic analyses indicated that the anticancer activities of these new class of compounds were not similar to that of standard anticancer agents, suggesting novel mechanism(s) of action.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  6. Majid AM, Smythe G, Denny WA, Wakelin LP
    Mol. Pharmacol., 2007 Apr;71(4):1165-78.
    PMID: 17251328
    Nitrogen mustard alkylating agents are important cancer drugs. Much interest has been focused on redirecting their covalent adducts from the N7 atoms of guanine in the major groove of DNA to the N3 atoms of adenine in the minor groove by attaching mustard groups to AT-selective minor groove binding ligands. Here we describe the use of electrospray ionization and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry to study the structure of the DNA complexes of two minor groove binding polybenzamide mustards, alkamin and alkamini; the former is a bis-half-mustard in which reactive groups are disposed at each end of the ligand, and the latter is its monofunctional analog. Alkamin is potently cytotoxic and active in experimental mouse tumor models, whereas alkamini is not. We have studied their interaction with the DNA dodecamer d(CGCGAATTCGCG)(2), designated A2T2, and we provide a detailed analysis of the observed DNA-ligand adduct ions and their fragmentation products. We find that alkamini alkylates A2T2 at guanine G4 and adenines A5 and A6 in a manner consistent with covalent attack on purine N3 atoms from the minor groove of the AT tract. Alkamin also forms monofunctional adducts at G4 and both adenines in which the second mustard arm is hydrolyzed but, in addition, forms a variety of interstrand cross-links between adenines A5/A6 and A5'/A6', an interstrand cross-link between G4 and A6', and an intrastrand cross-link between G4 and A6. We conclude that the marked cytotoxicity of alkamin and its experimental antitumor activity could be the consequence of its ability to cross-link cellular DNA at AT tract sequences.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  7. Ng CH, Kong KC, Von ST, Balraj P, Jensen P, Thirthagiri E, et al.
    Dalton Trans, 2008 Jan 28.
    PMID: 18185860 DOI: 10.1039/b709269e
    A series of ternary metal(ii) complexes {M(phen)(edda); 1a (Cu), 1b (Co), 1c (Zn), 1d (Ni); H(2)edda = N,N(')-ethylenediaminediacetic acid} of N,N'-ethylene-bridged diglycine and 1,10-phenanthroline were synthesized and characterized by elemental analysis, FTIR, UV-visible spectroscopy and magnetic susceptibility measurement. The interaction of these complexes with DNA was investigated using CD and EPR spectroscopy. MTT assay results of 1a-1c , screened on MCF-7 cancer cell lines, show that synergy between the metal and ligands results in significant enhancement of their antiproliferative properties. Preliminary results from apoptosis and cell cycle analyses with flow cytometry are reported. seems to be able to induce cell cycle arrest at G(0)/G(1). The crystal structure of 1a is also included.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  8. Jada SR, Matthews C, Saad MS, Hamzah AS, Lajis NH, Stevens MF, et al.
    Br J Pharmacol, 2008 Nov;155(5):641-54.
    PMID: 18806812 DOI: 10.1038/bjp.2008.368
    BACKGROUND AND PURPOSE: Andrographolide, the major phytoconstituent of Andrographis paniculata, was previously shown by us to have activity against breast cancer. This led to synthesis of new andrographolide analogues to find compounds with better activity than the parent compound. Selected benzylidene derivatives were investigated for their mechanisms of action by studying their effects on the cell cycle progression and cell death.
    EXPERIMENTAL APPROACH: Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays were utilized in assessing the in vitro growth inhibition and cytotoxicity of compounds. Flow cytometry was used to analyse the cell cycle distribution of control and treated cells. CDK1 and CDK4 levels were determined by western blotting. Apoptotic cell death was assessed by fluorescence microscopy and flow cytometry.
    KEY RESULTS: Compounds, in nanomolar to micromolar concentrations, exhibited growth inhibition and cytotoxicity in MCF-7 (breast) and HCT-116 (colon) cancer cells. In the NCI screen, 3,19-(2-bromobenzylidene) andrographolide (SRJ09) and 3,19-(3-chloro-4-fluorobenzylidene) andrographolide (SRJ23) showed greater cytotoxic potency and selectivity than andrographolide. SRJ09 and SRJ23 induced G(1) arrest and apoptosis in MCF-7 and HCT-116 cells, respectively. SRJ09 downregulated CDK4 but not CDK1 level in MCF-7 cells. Apoptosis induced by SRJ09 and SRJ23 in HCT-116 cells was confirmed by annexin V-FITC/PI flow cytometry analysis.
    CONCLUSION AND IMPLICATIONS: The new benzylidene derivatives of andrographolide are potential anticancer agents. SRJ09 emerged as the lead compound in this study, exhibiting anticancer activity by downregulating CDK4 to promote a G(1) phase cell cycle arrest, coupled with induction of apoptosis.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  9. Manikam SD, Manikam ST, Stanslas J
    J Pharm Pharmacol, 2009 Jan;61(1):69-78.
    PMID: 19126299 DOI: 10.1211/jpp/61.01.0010
    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2).
    Matched MeSH terms: Antineoplastic Agents/chemistry
  10. Lim SH, Wu L, Burgess K, Lee HB
    Anticancer Drugs, 2009 Jul;20(6):461-8.
    PMID: 19387338 DOI: 10.1097/CAD.0b013e32832b7bee
    Conventional cytotoxic anticancer drugs that target all rapidly dividing cells are nonselective in their mechanism of action, because they disrupt essential components that are crucial to both malignant and proliferating normal cells. Instead, targeting cellular functions that are distinctly different between normal and cancer cells may provide a basis for selective killing of tumor cells. One such strategy that is still largely unexplored is to utilize the relatively higher negative mitochondrial membrane potential in carcinoma cells compared with adjacent normal epithelial cells to enhance accumulation and retention of cytotoxic lipophilic cations in the former. In this study, the anticancer activities of a new class of rosamines with cyclic amine substituents and their structure-activity relationships were investigated. From an in-vitro cell growth inhibition assay, 14 of the rosamines inhibited the growth of human leukemia HL-60 cells by 50% at micromolar or lower concentrations. Derivatives containing hydrophilic substituents had less potent activity, whereas aryl substitution at the meso position conferred extra activity with thiofuran and para-iodo aryl substitutions being the most potent. In addition, both compounds were at least 10-fold more cytotoxic than rhodamine 123 against a panel of cell lines of different tissue origin and similar to rhodamine 123, exhibited more cytotoxicity against cancer cells compared with immortalized normal epithelial cells of the same organ type. In subsequent experiments, the para-iodo aryl substituted rosamine was found to localize exclusively within the mitochondria and induced apoptosis as the major mode of cell death. Our results suggest that these compounds offer potential for the design of mitochondria-targeting agents that either directly kill or deliver cytotoxic drugs to selectively kill cancer cells.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  11. Seng HL, Von ST, Tan KW, Maah MJ, Ng SW, Rahman RN, et al.
    Biometals, 2010 Feb;23(1):99-118.
    PMID: 19787298 DOI: 10.1007/s10534-009-9271-y
    Crystal structure analysis of the zinc complex establishes it as a distorted octahedral complex, bis(3-methylpicolinato-kappa(2) N,O)(2)(1,10-phenanthroline-kappa(2) N,N)-zinc(II) pentahydrate, [Zn(3-Me-pic)(2)(phen)]x5H(2)O. The trans-configuration of carbonyl oxygen atoms of the carboxylate moieties and orientation of the two planar picolinate ligands above and before the phen ligand plane seems to confer DNA sequence recognition to the complex. It cannot cleave DNA under hydrolytic condition but can slightly be activated by hydrogen peroxide or sodium ascorbate. Circular Dichroism and Fluorescence spectroscopic analysis of its interaction with various duplex polynucleotides reveals its binding mode as mainly intercalation. It shows distinct DNA sequence binding selectivity and the order of decreasing selectivity is ATAT > AATT > CGCG. Docking studies lead to the same conclusion on this sequence selectivity. It binds strongly with G-quadruplex with human tolemeric sequence 5'-AG(3)(T(2)AG(3))(3)-3', can inhibit topoisomerase I efficiently and is cytotoxic against MCF-7 cell line.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  12. Ee GC, Lim CM, Rahmani M, Shaari K, Bong CF
    Molecules, 2010 Apr;15(4):2398-404.
    PMID: 20428051 DOI: 10.3390/molecules15042398
    Pellitorine (1), which was isolated from the roots of Piper nigrum, showed strong cytotoxic activities against HL60 and MCT-7 cell lines. Microbial transformation of piperine (2) gave a new compound 5-[3,4-(methylenedioxy)phenyl]-pent-2-ene piperidine (3). Two other alkaloids were also found from Piper nigrum. They are (E)-1-[3',4'-(methylenedioxy)cinnamoyl]piperidine (4) and 2,4-tetradecadienoic acid isobutyl amide (5). These compounds were isolated using chromatographic methods and their structures were elucidated using MS, IR and NMR techniques.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  13. Haque QM, Mohamad NF, Helaluddin AB, Saeed M
    Pak J Pharm Sci, 2010 Oct;23(4):393-7.
    PMID: 20884452
    The cytotoxicity of cell-free culture filtrates of 31 isolates of Vibrio cholerae O1 and O139, 5 reference strains and 26 clinical isolates, was tested on Madin Darby Bovine Kidney (MDBK) cells and Vero cells. The 3-[4,5-dimethylthiazol-2-y]-2, 5-diphenyltetrazolium bromide (MTT) test was used to detect the effect of the filtrates on the proliferation and viability of cultured cell populations. The filtrates were prepared from serial ten-fold dilutions of inoculated AKI and APW broth media with and without the addition of polymyxin B. The APW culture filtrates of both V. cholerae O1 and O139 with and without added polymyxin B showed greater toxicity to MDBK cells as compared to AKI filtrates. The cytotoxicity of AKI-grown V. cholerae O139 to MDBK cells was greater than that of V. cholerae O1 grown in the same medium. The cytotoxicity of APW filtrates on Vero cells was low and only noted when polymyxin was added to the medium.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  14. Selvaduray KR, Radhakrishnan AK, Kutty MK, Nesaretnam K
    J Interferon Cytokine Res, 2010 Dec;30(12):909-16.
    PMID: 21121862 DOI: 10.1089/jir.2010.0021
    Several mechanisms have been postulated for the anticancer effects of tocotrienols. In this study, for the first time, the anticancer effect of tocotrienols is linked to increased expression of interleukin-24 (IL-24) mRNA, a cytokine reported to have antitumor effects in many cancer models. Tocotrienol isomers (α-T3, γ-T3, and δ-T3) and tocotrienol-rich fraction (TRF) inhibited the growth of the 4T1 murine mammary cancer cells (P  γ-T3 > TRF > α-T3 > α-T, which was similar to their antiproliferative effects. The IL-24 mRNA levels in tumor tissues of BALB/c mice supplemented with TRF increased 2-fold when compared with control mice. Increased levels of IL-24 have been associated with inhibition of tumor growth and angiogenesis. Treatment of 4T1 cells with TRF and δ-T3 significantly decreased IL-8 and vascular endothelial growth factor mRNA levels. Hence, we report that tocotrienols have potent antiangiogenic and antitumor effects that is associated with increased levels of IL-24 mRNA.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  15. Najim N, Bathich Y, Zain MM, Hamzah AS, Shaameri Z
    Molecules, 2010 Dec 17;15(12):9340-53.
    PMID: 21169884 DOI: 10.3390/molecules15129340
    The aim of this study was to investigate the in vitro cellular activity of novel spiroisoxazoline type compounds against normal and cancer cell lines from lung tissue (Hs888Lu), neuron-phenotypic cells (SH-SY5Y), neuroblastoma (SH-SY5Y), human histiocytic lymphoma (U937), lung cancer (A549), and leukaemia (HL-60). Our bioassay program revealed that the spiroisoxazoline type compounds show cytotoxicity only in lymphoma cell lines, which is in contrast with the pyrrolidine precursor of these spiroisoxazoline compounds, where significant cytotoxicity is seen in all normal and cancer cell lines. These data suggest a tumour-specific mechanism of action. In addition these data also show that spiroisoxazoline compounds are non-toxic in the human neuronphenotypic neuroblastoma SH-SY5Y cell line, and furthermore that they might protect cells from neurodegenerative disease.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  16. Khoo BY, Chua SL, Balaram P
    Int J Mol Sci, 2010;11(5):2188-99.
    PMID: 20559509 DOI: 10.3390/ijms11052188
    Chrysin is a natural flavonoid currently under investigation due to its important biological anti-cancer properties. In most of the cancer cells tested, chrysin has shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells. Moreover, structure-activity relationships have revealed that the chemical structure of chrysin meets the key structural requirements of flavonoids for potent cytotoxicity in leukemia cells. It is possible that combination therapy or modified chrysin could be more potent than single-agent use or administration of unmodified chrysin. This study may help to develop ways of improving the effectiveness of chrysin in the treatment of leukemia and other human cancers in vitro.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  17. Ahmad FB, Ghaffari Moghaddam M, Basri M, Abdul Rahman MB
    Biosci Biotechnol Biochem, 2010;74(5):1025-9.
    PMID: 20460723
    An easy and efficient strategy to prepare betulinic acid esters with various anhydrides was used by the enzymatic synthesis method. It involves lipase-catalyzed acylation of betulinic acid with anhydrides as acylating agents in organic solvent. Lipase from Candida antarctica immobilized on an acrylic resin (Novozym 435) was employed as a biocatalyst. Several 3-O-acyl-betulinic acid derivatives were successfully obtained by this procedure. The anticancer activity of betulinic acid and its 3-O-acylated derivatives were then evaluated in vitro against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. 3-O-glutaryl-betulinic acid, 3-O-acetyl-betulinic acid, and 3-O-succinyl-betulinic acid showed IC(50)<10 microg/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In an ovarian cancer cell line, all betulinic acid derivatives prepared showed weaker cytotoxicity than betulinic acid.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  18. Chin LF, Kong SM, Seng HL, Khoo KS, Vikneswaran R, Teoh SG, et al.
    J Inorg Biochem, 2011 Mar;105(3):339-47.
    PMID: 21421121 DOI: 10.1016/j.jinorgbio.2010.11.018
    The synthesis and characterization of two cobalt(II) complexes, Co(phen)(ma)Cl 1 and Co(ma)(2)(phen) 2, (phen=1,10-phenanthroline, ma(-)=maltolate or 2-methyl-4-oxo-4H-pyran-3-olate) are reported herein. The complexes have been characterized by FTIR, CHN analysis, fluorescence spectroscopy, UV-visible spectroscopy, conductivity measurement and X-ray crystallography. The number of chelated maltolate ligands seems to influence their DNA recognition, topoisomerase I inhibition and antiproliferative properties.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  19. Ng WK, Yazan LS, Ismail M
    Toxicol In Vitro, 2011 Oct;25(7):1392-8.
    PMID: 21609759 DOI: 10.1016/j.tiv.2011.04.030
    Thymoquinone (TQ), the active constituent of Nigella sativa or black cumin exhibited cytotoxic effects in several cancer cell lines. In this study, the cytotoxicity of TQ in human cervical squamous carcinoma cells (SiHa) was investigated. TQ was cytotoxic towards SiHa cells with IC50 values of 10.67 ± 0.12 and 9.33 ± 0.19 μg/mL as determined by MTT assay and trypan blue dye exclusion test, respectively, after 72 h of incubation. TQ was more cytotoxic towards SiHa cells compared to cisplatin. Interestingly, TQ was less cytotoxic towards the normal cells (3T3-L1 and Vero). Cell cycle analysis performed by flowcytometer showed a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Apoptosis induction by TQ was further confirmed by Annexin V/PI and AO/PI staining. Significant elevation of p53 and down-regulation of the anti-apoptotic Bcl-2 protein was found in the treated cells, without any changes in the expression of the pro-apoptotic Bax protein. In conclusion, thymoquinone from N. sativa was more potent than cisplatin in elimination of SiHa cells via apoptosis with down-regulation of Bcl-2 protein.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  20. Khaledi H, Alhadi AA, Yehye WA, Ali HM, Abdulla MA, Hassandarvish P
    Arch Pharm (Weinheim), 2011 Nov;344(11):703-9.
    PMID: 21953995 DOI: 10.1002/ardp.201000223
    A new series of gallic hydrazones containing an indole moiety was synthesized through the reaction of gallic hydrazide and different indole carboxaldehydes. Their antioxidant activities were determined on DPPH radical scavenging and inhibition of lipid peroxidation. The in-vitro cytotoxic activities of the compounds were evaluated against HCT-116 (human colon cancer cell line) and MCF-7 (estrogen-dependent human breast cancer cell line) by the MTT method. An attempt to correlate the biological results with their structural characteristics has been done. A limited positive structure activity relationship was found between cytotoxic and antioxidant activities.
    Matched MeSH terms: Antineoplastic Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links