Displaying publications 1 - 20 of 269 in total

Abstract:
Sort:
  1. Phan CS, Kamada T, Kobayashi K, Hamada T, Vairappan CS
    Nat Prod Res, 2018 Jan;32(2):202-207.
    PMID: 28691521 DOI: 10.1080/14786419.2017.1346638
    A new xenicane diterpenoid, 15-deoxy-isoxeniolide-A (1) along with four known compounds 9-deoxy-isoxeniolide-A (2), isoxeniolide-A (3), xeniolide-A (4) and coraxeniolide-B (5) were isolated from the Bornean soft coral Xenia sp. The structures of these metabolites were elucidated on the basis of spectral analysis, NMR and HRESIMS. Compound 5 showed cytotoxic activity against ATL cell line, S1T.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  2. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2019;19(13):1080-1092.
    PMID: 30306865 DOI: 10.2174/1389557518666181009151008
    BACKGROUND: Increased rate of mortality due to the development of resistance to currently available antimicrobial and anticancer agents initiated the need to develop new chemical entities for the treatment of microbial infections and cancer.

    OBJECTIVE: The present study was aimed to synthesize and evaluate antimicrobial and anticancer activities of Schiff bases of 2-mercaptobenzimidazole.

    METHODS: The Schiff bases of 2-mercaptobenzimidazole were synthesized from 4-(2-(1H-benzo[d]- imidazol-2-ylthio)acetamido)benzohydrazide. The synthesized compounds were evaluated for antimicrobial and anticancer activities by tube dilution method and Sulforhodamine-B (SRB) assay, respectively.

    RESULTS: Compounds 8 (MICpa, an = 2.41, 1.20 µM/ml), 10 (MICse, sa = 2.50 µM/ml), 20 (MICec = 2.34 µM/ml) and 25 (MICca = 1.46 µM/ml) showed significant antimicrobial activity against tested bacterial and fungal strains and compounds 20 (IC50 = 8 µg/ml) and 23 (IC50 = 7 µg/ml) exhibited significant anticancer activity.

    CONCLUSION: In general, the synthesized derivatives exhibited moderate antimicrobial and anticancer activities. Compounds 8 and 25 having high antifungal potential among the synthesized compounds may be taken as lead molecules for the development of novel antifungal agents.

    Matched MeSH terms: Antineoplastic Agents/chemistry
  3. Zulkifli NI, Muhamad M, Mohamad Zain NN, Tan WN, Yahaya N, Bustami Y, et al.
    Molecules, 2020 Sep 22;25(18).
    PMID: 32971740 DOI: 10.3390/molecules25184332
    A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5-30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  4. Viswanathan G, Hsu YH, Voon SH, Imae T, Siriviriyanun A, Lee HB, et al.
    Macromol Biosci, 2016 06;16(6):882-95.
    PMID: 26900760 DOI: 10.1002/mabi.201500435
    Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71 D3 )-based micelles effectively encapsulate the doxorubicin (DOX) with a high drug-loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296 D1 ) vesicles. DOX released from the resultant P71 D3 /DOX micelles is approximately 1.3-fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71 D3 /DOX micelles also enhance drug potency in breast cancer MDA-MB-231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy-dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  5. Wong SK, Wong SP, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2019 07 26;82(7):1902-1907.
    PMID: 31241923 DOI: 10.1021/acs.jnatprod.9b00255
    Three new alkaloids were isolated from the bark extract of the Malayan Kopsia arborea, viz., arbophyllidine (1), an unusual pentacyclic, monoterpenoid indole characterized by an absence of oxygen atoms and incorporating a new carbon-nitrogen skeleton, and arbophyllinines A (2) and B (3), two pentacyclic corynanthean alkaloids incorporating a hydroxyethyl-substituted tetrahydrofuranone ring. The structures of the alkaloids were deduced based on analysis of the MS and NMR data and confirmed by X-ray diffraction analyses. The absolute configuration of arbophyllidine (1) was established based on experimental and calculated ECD data, while that of arbophyllinine A was based on X-ray diffraction analysis (Cu Kα). A reasonable biosynthetic route to arbophyllidine (1) from a pericine precursor is presented. Arbophyllidine (1) showed pronounced in vitro growth inhibitory activity against the HT-29 human cancer cell line with IC50 6.2 μM.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  6. Aljabali AAA, Alzoubi L, Hamzat Y, Alqudah A, Obeid MA, Al Zoubi MS, et al.
    Comb Chem High Throughput Screen, 2021;24(10):1557-1571.
    PMID: 32928083 DOI: 10.2174/1386207323666200914110012
    BACKGROUND: Virus nanoparticles have been extensively studied over the past decades for theranostics applications. Viruses are well-characterized, naturally occurring nanoparticles that can be produced in high quantity with a high degree of similarity in both structure and composition.

    OBJECTIVES: The plant virus Cowpea Mosaic Virus (CPMV) has been innovatively used as a nanoscaffold. Utilization of the internal cavity of empty Virus-Like Particles (VLPs) for the inclusion of therapeutics within the capsid has opened many opportunities in drug delivery and imaging applications.

    METHODS: The encapsidation of magnetic materials and anticancer drugs was achieved. SuperscriptCPMV denotes molecules attached to the external surface of CPMV and CPMVSubscript denotes molecules within the interior of the capsid.

    RESULTS: Here, the generation of novel VLPs incorporating iron-platinum nanoparticles TCPMVFePt and cisplatin (Cis) (TCPMVCis) is reported. TCPMVCis exhibited a cytotoxic IC50 of TCPMVCis on both A549 and MDA-MB-231 cell lines of 1.8 μM and 3.9 μM, respectively after 72 hours of incubation. The TCPMVFePt were prepared as potential MRI contrast agents.

    CONCLUSION: Cisplatin loaded VLP (TCPMVCis) is shown to enhance cisplatin cytotoxicity in cancer cell lines with its potency increased by 2.3-folds.

    Matched MeSH terms: Antineoplastic Agents/chemistry
  7. Kalantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim R, Bin Ariff A, Izadiyan Z, et al.
    Molecules, 2017 Sep 30;22(10).
    PMID: 28974019 DOI: 10.3390/molecules22101645
    Zerumbone (ZER) is a phytochemical isolated from the subtropical Zingiberaceae family and as a natural compound it has different biomedical properties such as antioxidant, anti-inflammatory anti-proliferative activity. ZER also has effects on angiogenesis and acts as an antitumor drug in the treatment of cancer, showing selective toxicity toward various cancer cell lines. Several techniques also have been established for extraction of ZER from the rhizomes of ginger. This review paper is an overview of recent research about different extraction methods and their efficiencies, in vivo and vitro investigations of ZER and also its prominent chemopreventive properties and treatment mechanisms. Most of the studies mentioned in this review paper may be useful use as a knowledge summary to explain ZER extraction and anticancer activities, which will show a way for the development of strategies in the treatment of malignancies using ZER.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  8. Abdullah MA, Mohd Faudzi SM, Nasir NM
    Mini Rev Med Chem, 2021;21(9):1058-1070.
    PMID: 33272171 DOI: 10.2174/1389557520999201203213957
    Medicinal chemists have continuously shown interest in new curcuminoid derivatives, diarylpentadienones, owing to their enhanced stability feature and easy preparation using a one-pot synthesis. Thus far, methods such as Claisen-Schmidt condensation and Julia- Kocienski olefination have been utilised for the synthesis of these compounds. Diarylpentadienones possess a high potential as a chemical source for designing and developing new and effective drugs for the treatment of diseases, including inflammation, cancer, and malaria. In brief, this review article focuses on the broad pharmacological applications and the summary of the structure-activity relationship of molecules, which can be employed to further explore the structure of diarylpentadienone. The current methodological developments towards the synthesis of diarylpentadienones are also discussed.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  9. Ahmad B, Rehman MU, Amin I, Arif A, Rasool S, Bhat SA, et al.
    ScientificWorldJournal, 2015;2015:816364.
    PMID: 26106644 DOI: 10.1155/2015/816364
    Humans have been using natural products for medicinal use for ages. Natural products of therapeutic importance are compounds derived from plants, animals, or any microorganism. Ginger is also one of the most commonly used condiments and a natural drug in vogue. It is a traditional medicine, having some active ingredients used for the treatment of numerous diseases. During recent research on ginger, various ingredients like zingerone, shogaol, and paradol have been obtained from it. Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) is a nontoxic and inexpensive compound with varied pharmacological activities. It is the least pungent component of Zingiber officinale. Zingerone is absent in fresh ginger but cooking or heating transforms gingerol to zingerone. Zingerone closely related to vanillin from vanilla and eugenol from clove. Zingerone has potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic, and so forth properties. Besides, it displays the property of enhancing growth and immune stimulation. It behaves as appetite stimulant, anxiolytic, antithrombotic, radiation protective, and antimicrobial. Also, it inhibits the reactive nitrogen species which are important in causing Alzheimer's disease and many other disorders. This review is written to shed light on the various pharmacological properties of zingerone and its role in alleviating numerous human and animal diseases.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  10. Ishak DH, Ooi KK, Ang KP, Akim AM, Cheah YK, Nordin N, et al.
    J Inorg Biochem, 2014 Jan;130:38-51.
    PMID: 24176918 DOI: 10.1016/j.jinorgbio.2013.09.018
    The compound with R=CH2CH3 in Bi(S2CNR2)3 (1) is highly cytotoxic against a range of human carcinoma, whereas that with R=CH2CH2OH (2) is considerably less so. Both 1 and 2 induce apoptosis in HepG2 cells with some evidence for necrosis induced by 2. Based on DNA fragmentation, caspase activities and human apoptosis PCR-array analysis, both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. While both compounds activate mitochondrial and FAS apoptotic pathways, compound 1 was also found to induce another death receptor-dependent pathway by induction of CD40, CD40L and TNF-R1 (p55). Further, 1 highly expressed DAPK1, a tumour suppressor, with concomitant down-regulation of XIAP and NF-κB. Cell cycle arrest at the S and G2/M phases correlates with the inhibition of the growth of HepG2 cells. The cell invasion rate of 2 is 10-fold higher than that of 1, a finding correlated with the down-regulation of survivin and XIAP expression by 1. Compounds 1 and 2 interact with DNA through different binding motifs with 1 interacting with AT- or TA-specific sites followed by inhibition of restriction enzyme digestion; 2 did not interfere with any of the studied restriction enzymes.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  11. Bharkavi C, Vivek Kumar S, Ashraf Ali M, Osman H, Muthusubramanian S, Perumal S
    Bioorg Med Chem, 2016 11 15;24(22):5873-5883.
    PMID: 27687968 DOI: 10.1016/j.bmc.2016.09.044
    A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC50 <1.56μM) and 6l (IC50=2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC50 values of 1.10 and 1.16μmol/L respectively.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  12. Shafiu Kamba A, Ismail M, Tengku Ibrahim TA, Zakaria ZA
    Biomed Res Int, 2013;2013:587451.
    PMID: 24324966 DOI: 10.1155/2013/587451
    The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO₃/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO₃/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO₃/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO₃ nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  13. Abubakar MB, Abdullah WZ, Sulaiman SA, Suen AB
    Int J Mol Sci, 2012;13(11):15054-73.
    PMID: 23203111 DOI: 10.3390/ijms131115054
    Hematologic malignancies constitute about 9% of all new cases of cancers as reported via the GLOBOCAN series by International Agency for Research on Cancer (IARC) in 2008. So far, the conventional therapeutic and surgical approaches to cancer therapy have not been able to curtail the rising incidence of cancers, including hematological malignancies, worldwide. The last decade has witnessed great research interest in biological activities of phenolic compounds that include anticancer, anti-oxidation and anti-inflammation, among other things. A large number of anticancer agents combat cancer through cell cycle arrest, induction of apoptosis and differentiation, as well as through inhibition of cell growth and proliferation, or a combination of two or more of these mechanisms. Various phenolic compounds from different sources have been reported to be promising anticancer agents by acting through one of these mechanisms. Honey, which has a long history of human consumption both for medicinal and nutritional uses, contains a variety of phenolic compounds such as flavonoids, phenolic acids, coumarins and tannins. This paper presents a review on the molecular mechanisms of the anti-leukemic activity of various phenolic compounds on cell cycle, cell growth and proliferation and apoptosis, and it advocates that more studies should be conducted to determine the potential role of honey in both chemoprevention and chemotherapy in leukemia.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  14. Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, et al.
    Carbohydr Polym, 2020 Dec 15;250:116800.
    PMID: 33049807 DOI: 10.1016/j.carbpol.2020.116800
    Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  15. Wsoo MA, Shahir S, Mohd Bohari SP, Nayan NHM, Razak SIA
    Carbohydr Res, 2020 May;491:107978.
    PMID: 32163784 DOI: 10.1016/j.carres.2020.107978
    Cellulose acetate (CA) is a remarkable biomaterial most extensively used in biomedical applications due to their properties. This review highlighted the synthesis and chemical structure of CA polymer as well as focused on the mechanical, chemical, thermal, biocompatible, and biodegradable properties of electrospun CA nanofibers. These properties are essential in the evaluation of the CA nanofibers and provide information as a reference for the further utilization and improvement of CA nanofibers. Moreover, we have summarized the use of electrospun CA nanofibers in the drug delivery system as a carrier for drugs and classify them according to the drug class, including anti-inflammatory, anticancer, antioxidant, antimicrobial agents, vitamins and amino acids. Our review has been concluded that CA nanofibers cannot wholly be biodegraded within the human body due to the absence of cellulase enzyme but degraded by microorganisms. Hence, the biodegradation of CA nanofibers in vivo has addressed as a critical challenge.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  16. Kambara H, Yamada T, Tsujioka M, Matsunaga S, Tanaka R, Ali HI, et al.
    Chem Biodivers, 2006 Dec;3(12):1301-6.
    PMID: 17193244
    As a part of our chemical studies on Malaysian medicinal plants, five Malaysian plant species were evaluated by cytotoxicity assays using P388 murine leukemia cells. Since Acalypha siamensis exhibited the strongest growth inhibition, its constituents were studied as the object of search for bioactive materials. A novel tetraterpene, acalyphaser A (1), was isolated in the course of the purification. Its structure was elucidated on the basis of 1D- and 2D-NMR techniques, and mass spectrometry.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  17. Geetha Bai R, Muthoosamy K, Shipton FN, Manickam S
    Ultrason Sonochem, 2017 May;36:129-138.
    PMID: 28069192 DOI: 10.1016/j.ultsonch.2016.11.021
    Graphene is one of the highly explored nanomaterials due to its unique and extraordinary properties. In this study, by utilizing a hydrothermal reduction method, graphene oxide (GO) was successfully converted to reduced graphene oxide (RGO) without using any toxic reducing agents. Following this, with the use of ultrasonic cavitation, profoundly stable few layer thick RGO nanodispersion was generated without employing any stabilizers or surfactants. During ultrasonication, shockwaves from the collapse of bubbles cause a higher dispersing energy to the graphene nanosheets which surpass the forces of Van der Waal's and π-π stacking and thus pave the way to form a stable aqueous nanodispersion of graphene. Ultrasonication systems with different power intensity have been employed to determine the optimum conditions for obtaining the most stable RGO dispersion. The optimised conditions of ultrasonic treatments led to the development of a very stable reduced graphene oxide (RGO) aqueous dispersion. The stability was observed for two years and was analyzed by using Zetasizer by measuring the particle size and zeta potential at regular intervals and found to have exceptional stability. The excellent stability at physiological pH promotes its utilization in nano drug delivery application as a carrier for Paclitaxel (Ptx), an anticancer drug. The in vitro cytotoxicity analysis of Ptx loaded RGO nanodispersion by MTT assay performed on the cell lines revealed the potential of the nanodispersion as a suitable drug carrier. Studies on normal lung cells, MRC-5 and nasopharyngeal cancer cells, HK-1 supported the biocompatibility of RGO-Ptx towards normal cell line. This investigation shows the potential of exceptionally stable RGO-Ptx nanodispersion in nano drug delivery applications.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  18. Arulnathan SB, Leong KH, Ariffin A, Kareem HS, Cheah KKH
    Anticancer Agents Med Chem, 2020;20(9):1072-1086.
    PMID: 32188392 DOI: 10.2174/1871520620666200318100051
    BACKGROUND: Oxadiazoles, triazoles, and their respective precursors have been shown to exhibit various pharmacological properties, namely antitumour activities. Cytotoxic activity was reported for these compounds in various cancer cell lines.

    AIM AND OBJECTIVES: In this study, we aim at investigating the mechanism of apoptosis by N-(4-chlorophenyl)-2-(4- (3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide, a triazole precursor, henceforth termed compound P7a, in breast cancer cell line, MCF-7. We first screen a series of analogues containing (3,4,5-trimethoxybenzyloxy) phenyl moiety in breast cancer cell lines (MCF-7 and MDA-MB-231) to select the most cytotoxic compound and demonstrate a dose- and time-dependent cytotoxicity. Then, we unravel the mechanism of apoptosis of P7a in MCF-7 as well as its ability to cause cell cycle arrest.

    METHODS: Synthesis was performed as previously described by Kareem and co-workers. Cytotoxicity of analogues containing (3,4,5-trimethoxybenzyloxy)phenyl moiety against MCF-7 and MDA-MB-231 cell lines was evaluated using the MTS assay. Flow cytometric analyses was done using Annexin V/PI staining, JC-1 staining and ROS assay. The activity of caspases using a chemoluminescence assay and western blot analysis was conducted to study the apoptotic pathway induced by the compound in MCF-7 cells. Lastly, cell cycle analysis was conducted using flow cytometry.

    RESULTS: Upon 48 hours of treatment, compound P7a inhibited the proliferation of human breast cancer cells with IC50 values of 178.92 ± 12.51μM and 33.75 ± 1.20μM for MDA-MB-231 and MCF-7, respectively. Additionally, compound P7a showed selectivity towards the cancer cell line, MCF-7 compared to the normal breast cell line, hTERT-HME1, an advantage against current anticancer drugs (tamoxifen and vinblastine). Flow cytometric analyses using different assays indicated that compound P7a significantly increased the proportion of apoptotic cells, increased mitochondria membrane permeabilisation and caused generation of ROS in MCF-7. In addition, cell cycle analysis showed that cell proliferation was arrested at the G1 phase in the MCF-7 cell line. Furthermore, upon treatment, the MCF-7 cell line showed increased activity of caspase-3/7, and caspase-9. Lastly, the western blot analysis showed the up-regulation of pro-apoptotic proteins along with up-regulation of caspase-7 and caspase-9, indicating that an intrinsic pathway of apoptosis was induced.

    CONCLUSION: The results suggest that compound P7a could be a potential chemotherapeutic agent for breast cancer.

    Matched MeSH terms: Antineoplastic Agents/chemistry
  19. Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A
    Naunyn Schmiedebergs Arch Pharmacol, 2020 03;393(3):405-417.
    PMID: 31641820 DOI: 10.1007/s00210-019-01730-2
    The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  20. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY
    Mar Drugs, 2020 Jun 19;18(6).
    PMID: 32575468 DOI: 10.3390/md18060323
    Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
    Matched MeSH terms: Antineoplastic Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links