Displaying publications 1 - 20 of 225 in total

Abstract:
Sort:
  1. Maulidiani M, Mediani A, Abas F, Park YS, Park YK, Kim YM, et al.
    Talanta, 2018 Jul 01;184:277-286.
    PMID: 29674043 DOI: 10.1016/j.talanta.2018.02.084
    Persimmon (Diospyros kaki L.) is one of the most important fruits that has been consumed for its medicinal properties due to the presence of some active metabolites, particularly polyphenols and carotenoids. Previously described methods, including HPLC, were limited in the determination of metabolites in different persimmon varieties. The present study shows the evaluation and the differences among persimmon polar and non-polar extracts by 1H NMR-based metabolomics approach. The hierarchical clustering analysis (HCA) based on score values of principal component analysis (PCA) model was used to analyze the important compounds in investigated fruits. The 1H NMR spectrum of persimmon chloroform (CDCl3) extracts showed different types of compounds as compared to polar methanol-water (CD3OD-D2O) ones. Persimmons growing in Israel were clustered different from those growing in Korea with the abundance of phenolic compounds (gallic, caffeic and protocathecuic acids), carotenoids (β-cryptoxanthin, lutein, and zeaxanthin), amino acids (alanine), maltose, uridine, and fatty acids (myristic and palmitoleic acids). Glucose, choline and formic acid were more prominent in persimmon growing in Korea. In CD3OD-D2O and CDCl3 persimmon extracts, 43 metabolites were identified. The metabolic differences were shown as well on the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. The presented methods can be widely used for quantitation of multiple compounds in many plant and biological samples especially in vegetables and fruits.
    Matched MeSH terms: Antioxidants/metabolism*
  2. Ibrahim MH, Jaafar HZ
    Molecules, 2013 Jul 05;18(7):7957-76.
    PMID: 23884129 DOI: 10.3390/molecules18077957
    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.
    Matched MeSH terms: Antioxidants/metabolism*
  3. Hajrezaie M, Golbabapour S, Hassandarvish P, Gwaram NS, A Hadi AH, Mohd Ali H, et al.
    PLoS One, 2012;7(12):e51537.
    PMID: 23251568 DOI: 10.1371/journal.pone.0051537
    BACKGROUND: Copper is an essential element in various metabolisms. The investigation was carried out to evaluate acute gastroprotective effects of the Copper (II) complex against ethanol-induced superficial hemorrhagic mucosal lesions in rats.

    METHODOLOGY/PRINCIPAL FINDINGS: Rats were divided into 7 groups. Groups 1 and 2 were orally administered with Tween 20 (10% v/v). Group 3 was orally administered with 20 mg/kg omeprazole (10% Tween 20). Groups 4-7 received 10, 20, 40, and 80 mg/kg of the complex (10% Tween 20), respectively. Tween 20 (10% v/v) was given orally to group 1 and absolute ethanol was given orally to groups 2-7, respectively. Rats were sacrificed after 1 h. Group 2 exhibited severe superficial hemorrhagic mucosal lesions. Gastric wall mucus was significantly preserved by the pre-treatment complex. The results showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE(2)) activities and a decrease in malondialdehyde (MDA) level. Histology showed marked reduction of hemorrhagic mucosal lesions in groups 4-7. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. PAS staining of groups 4-7 showed intense stain uptake of gastric mucosa. The acute toxicity revealed the non-toxic nature of the compound.

    CONCLUSIONS/SIGNIFICANCE: The gastroprotective effect of the Copper (II) complex may possibly be due to preservation of gastric wall mucus; increase in PGE(2) synthesis; GSH, SOD, and NO up-regulation of Hsp70 protein; decrease in MDA level; and down-regulation of Bax protein.

    Matched MeSH terms: Antioxidants/metabolism
  4. Al Batran R, Al-Bayaty F, Al-Obaidi MM, Abdulla MA
    Biomed Res Int, 2013;2013:594012.
    PMID: 23844365 DOI: 10.1155/2013/594012
    The aim of the current study is to evaluate the effect of andrographolide on hyperlipidemia induced by Porphyromonas gingivalis in rats. Thirty male Sprague Dawley (SD) rats were divided into five groups as follows: group 1 (vehicle) and four experimental groups (groups 2, 3, 4, and 5) were challenged orally with P. gingivalis ATCC 33277 (0.2 mL of 1.5 ×10(12) bacterial cells/mL in 2% carboxymethylcellulose (CMC) with phosphate-buffered saline (PBS)) five times a week for one month to induce hyperlipidemia. Then, group 3 received a standard oral treatment with simvastatin 100 mg/kg, and groups 4 and 5 received oral treatment with andrographolide 20 mg/kg and 10 mg/kg, respectively, for another month. The results showed that total cholesterol (TC), low-density lipoprotein (LDL-C), and triglycerides (TG) were reduced significantly in groups treated with andrographolide. The malondialdehyde (MDA) level was low in treated groups, while antioxidant enzymes, superoxide dismutase (SOD), and glutathione peroxidase (GPx) were significantly increased in these groups (P < 0.05). Liver tissues of the groups treated with andrographolide reduce the accumulation of lipid droplets in hepatic tissue cells. An acute toxicity test did not show any toxicological symptoms in rats.
    Matched MeSH terms: Antioxidants/metabolism
  5. Ho CW, Lazim A, Fazry S, Hussain Zaki UKH, Massa S, Lim SJ
    J Sci Food Agric, 2020 Feb;100(3):1012-1021.
    PMID: 31646636 DOI: 10.1002/jsfa.10103
    BACKGROUND: Wines are produced via the alcoholic fermentation of suitable substrates, usually sugar (sugar cane, grapes) and carbohydrates (wheat, grain). However, conventional alcoholic fermentation is limited by the inhibition of yeast by ethanol produced, usually at approximately 13-14%. Aside from that, soursop fruit is a very nutritious fruit, although it is highly perishable, and thus produces a lot of wastage. Therefore, the present study aimed to produce fermented soursop juice (soursop wine), using combination of two starter cultures, namely mushroom (Pleurotus pulmonarius) and yeast (Saccharomyces cerevisiae), as well as to determine the effects of fermentation on the physicochemical and antioxidant activities of fermented soursop juice. Optimisation of four factors (pH, temperature, time and culture ratio) using response surface methodology were performed to maximise ethanol production.

    RESULTS: The optimised values for alcoholic fermentation were pH 4.99, 28.29 °C, 131 h and a 0.42 culture ratio (42:58, P. pulmonarius mycelia:S. cerevisiae) with a predicted ethanol concentration of 22.25%. Through a verification test, soursop wine with 22.29 ± 0.52% ethanol was produced. The antioxidant activities (1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power) showed a significant (P 

    Matched MeSH terms: Antioxidants/metabolism
  6. Pandurangan AK, Ismail S, Saadatdoust Z, Esa NM
    Oxid Med Cell Longev, 2015;2015:605208.
    PMID: 26075036 DOI: 10.1155/2015/605208
    The objective of this study is to evaluate the effect of allicin (10 mg/kg body weight, orally) in an experimental murine model of UC by administering 2.5% dextran sodium sulfate (DSS) in drinking water to BALB/c mice. DSS-induced mice presented reduced body weight, which was improved by allicin administration. We noted increases in CD68 expression, myeloperoxidase (MPO) activities, and Malonaldehyde (MDA) and mRNA levels of proinflammatory cytokines, such as tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and IL-17, and decrease in the activities of enzymic antioxidants such as superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR), and Glutathione peroxidase (GPx) in DSS-induced mice. However, allicin treatment significantly decreased CD68, MPO, MDA, and proinflammatory cytokines and increased the enzymic antioxidants significantly (P < 0.05). In addition, allicin was capable of reducing the activation and nuclear accumulation of signal transducer and activator of transcription 3 (STAT3), thereby preventing degradation of the inhibitory protein IκB and inducing inhibition of the nuclear translocation of nuclear factor (NF)-κB-p65 in the colonic mucosa. These findings suggest that allicin exerts clinically useful anti-inflammatory effects mediated through the suppression of the NF-κB and IL-6/p-STAT3(Y705) pathways.
    Matched MeSH terms: Antioxidants/metabolism
  7. Ait Abderrahim L, Taibi K, Boussaid M, Al-Shara B, Ait Abderrahim N, Ait Abderrahim S
    Toxicon, 2021 Sep;200:30-37.
    PMID: 34217748 DOI: 10.1016/j.toxicon.2021.06.018
    Microcystins (MCs) are hepatotoxic cyanotoxins implicated in several incidents of human and animal toxicity. Microcystin-(Lysine, Arginine) or MC-LR is the most toxic and encountered variant of MCs where oxidative stress plays a key role in its toxicity. This study investigated the oxidative damages induced in the liver and heart of Balb/C mice by an intraperitoneal injected acute dose of MC-LR. Thereafter, the potential protective effect of garlic (Allium sativum) extract supplementation against such damages was assessed through the evaluation of oxidative stress and cytotoxicity markers. Lipid peroxidation (LPO), carbonyl content (CC), glutathione content (GSH), alkaline phosphatase activity (ALP), lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH) activities were measured. Results showed important oxidative damages in hepatic and cardiac cells of mice injected with the toxin. However, these damages have been significantly reduced in mice supplemented with garlic extract. Thus, this study demonstrated for the first time the effective use of garlic as an antioxidant agent against oxidative damages induced by MC-LR. As well, this study supports the use of garlic as a potential remedy against pathologies related to toxic agents.
    Matched MeSH terms: Antioxidants/metabolism
  8. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    ScientificWorldJournal, 2014;2014:360290.
    PMID: 24683336 DOI: 10.1155/2014/360290
    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μ mol/mol) and four levels of light intensity (225, 500, 625, and 900 μ mol/m(2)/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μ mol/mol + light intensity at 225 μ mol/m(2)/s. Meanwhile, at 400 μ mol/mol CO2 + 900 μ mol/m(2)/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μ mol/mol the photosynthesis, stomatal conductance, f v /f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition.
    Matched MeSH terms: Antioxidants/metabolism*
  9. Indran M, Rokiah P, Chan SP, Kuppusamy UR
    Med J Malaysia, 2004 Jun;59(2):166-70.
    PMID: 15559165 MyJurnal
    The present study was designed to explore the relationship between lipid peroxidation and antioxidant enzymes in young Malaysian insulin dependant diabetes mellitus (IDDM) patients. Indicative parameters of lipid peroxidation, activities of antioxidant enzymes and diabetes parameters were evaluated in single blood samples from 30 young type 1 diabetic patients and 30 healthy control subjects. Antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were significantly decreased while plasma malondialdehyde (MDA), an indicator for lipid peroxidation was significantly increased in IDDM patients compared to control subjects. Positive correlations between HbA1c and MDA; fasting blood glucose (FBG) and MDA and negative correlations between HbA1c and SOD; MDA and SOD were observed in these patients. No significant correlation existed between HbA1c and fasting blood glucose, GPx or CAT in the diabetic patients. The strong correlations found between lipid peroxidation, antioxidant enzymes and diabetes parameters confirms the existence of oxidative stress in our IDDM patients.
    Matched MeSH terms: Antioxidants/metabolism*
  10. Chiroma AA, Khaza'ai H, Abd Hamid R, Chang SK, Zakaria ZA, Zainal Z
    PLoS One, 2020;15(11):e0241112.
    PMID: 33232330 DOI: 10.1371/journal.pone.0241112
    Natural α-tocopherol (α-TCP), but not tocotrienol, is preferentially retained in the human body. α-Tocopherol transfer protein (α-TTP) is responsible for binding α-TCP for cellular uptake and has high affinity and specificity for α-TCP but not α-tocotrienol. The purpose of this study was to examine the modification of α-TTP together with other related vitamin E-binding genes (i.e., TTPA, SEC14L2, and PI-TPNA) in regulating vitamin E uptake in neuronal cells at rest and under oxidative stress. Oxidative stress was induced with H2O2 for an hour which was followed by supplementation with different ratios of α-TCP and tocotrienol-rich fraction (TRF) for four hours. The cellular levels of vitamin E were quantified to determine bioavailability at cellular levels. The expression levels of TTPA, SEC14L2, and PI-TPNA genes in 0% α-TCP were found to be positively correlated with the levels of vitamin E in resting neuronal cells. In addition, the regulation of all the above-mentioned genes affect the distribution of vitamin E in the neuronal cells. It was observed that, increased levels of α-TCP secretion occur under oxidative stress. Thus, our results showed that in conclusion vitamin E-binding proteins may be modified in the absence of α-TCP to produce tocotrienols (TCT), as a source of vitamin E. The current study suggests that the expression levels of vitamin E transport proteins may influence the cellular concentrations of vitamin E levels in the neuronal cells.
    Matched MeSH terms: Antioxidants/metabolism
  11. Akowuah GA, Zhari I, Mariam A
    Food Chem Toxicol, 2008 Dec;46(12):3616-20.
    PMID: 18824206 DOI: 10.1016/j.fct.2008.09.008
    A simple high-performance liquid chromatography (HPLC) method was developed to determine the content of andrographolide (AP) and 14-deoxy-11,12-dideoxyandrographolide (DIAP) in a pooled urine of rat obtained within 24h after an oral dose of Andrographis paniculata leaf extract at 1g/kg body weight. Cumulative urinary excretion of AP and DIAP in 24h after oral administration of the extract was 0.88% and 1.61% of oral dose administered, respectively. The extract showed significant reduction (p<0.05) of MDA levels and elevation of total antioxidant status in rat urine samples collected in 24 after oral administration.
    Matched MeSH terms: Antioxidants/metabolism*
  12. Koh PH, Mokhtar RA, Iqbal M
    Redox Rep., 2011;16(3):134-43.
    PMID: 21801496 DOI: 10.1179/1351000211Y.0000000003
    Andrographis paniculata (hempedu bumi) is a plant that possesses many medicinal values in treating several diseases and for health care maintenance. However, its hepatoprotective activity and mechanism of action have not been fully investigated. Therefore, this study aimed to evaluate the hepatoprotective effects of A. paniculata and its mechanism of action in rats. Carbon tetrachloride (CCl(4)) challenge of rats at a dose of 1.2 ml/kg body weight-induced oxidative stress in the liver. This was evidenced by augmentation in lipid peroxidation, which was accompanied by a decrease in the activities of antioxidant enzymes and depletion in the level of reduced glutathione (P < 0.05). Parrallel to these changes, CCl(4) challenge too, enhanced hepatic damage as evidenced by sharp increase in serum transaminases (e.g. alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) (P < 0.05). Additionally, the impairment of liver function corresponded to histolopathological changes. However, most of these changes were reversed in a dose-dependent fashion by pre-treatment of animals with A. paniculata (P < 0.05). The ability of A. paniculata to scavenge the 2,2-Diphenyl-2-picrylhydrazyl radical was determined through its EC(50) value. The EC(50) value of A. paniculata was 583.60 ± 4.25 µg/ml. In addition, A. paniculata was found to contain 65.37 ± 1.20 mg/g total phenolics expressed as gallic acid equivalent. From these studies, it is concluded that A. paniculata could be used as a hepatoprotective agent and possesses the potential to treat or prevent degenerative diseases where oxidative stress is implicated.
    Matched MeSH terms: Antioxidants/metabolism
  13. Almaimani G, Jabbar AAJ, Ibrahim IAA, Alzahrani AR, Bamagous GA, Almaimani RA, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(3):4439-4452.
    PMID: 38103135 DOI: 10.1007/s11356-023-31349-z
    Herbal medicine is one of the most common fields explored for combating colon cancers, and Pimpinella anisum L. seeds (PAS) have been utilized widely as medicinal agents because of their increased essential oil (trans-anethole) contents. In this essence, our study investigates the toxic effect and chemoprotective potentials of PAS against azoxymethane (AOM)-induced colon cancer in rats. The toxicity trial for PAS conducted by clustering fifteen rats into three groups (five rats each): A, normal control had 10% Tween 20; B, ingested with 2 g/kg PAS; and C, supplemented with 4 g/kg PAS. The in vivo cancer trial was performed by using 30 rats (Sprague-Dawley) that were randomly adapted in five steel cages (six rats each): group A, normal controls received two subcutaneous injections of normal saline 0.09% and ingested orally 10% Tween 20; groups B-E, rats received two injections of 15 mg/kg of azoxymethane (AOM) subcutaneously in 2 weeks and treated orally with 10% Tween 20 (group B) or intraperitoneal injection of 5-fluorouracil (35 mg/kg) (group C), or orally given 200 mg/kg PAS (group D) and 400 mg/kg PAS (group E) for 8 weeks. After the scarification of rats, the colon tissues were dissected for gross and histopathological evaluations. The acute toxicity trial showed the absence of any toxic signs in rats even after 14 days of ingesting 4 g/kg of PAS. The chemoprotective experiment revealed significant inhibitory potentials (65.93%) of PAS (400 mg/kg) against aberrant crypto foci incidence that could be correlated with its positive modulation of the immunohistochemically proteins represented by a significant up-regulation of the Bax protein and a decrease of the Bcl-2 protein expressions in colon tissues. Furthermore, PAS-treated rats had notably lower oxidative stress in colon tissues evidenced by decreased MDA levels and increased antiradical defense enzymes (SOD, CAT, and GPx). The outcomes suggest 400 mg/kg PAS as a viable additive for the development of potential pharmaceuticals against colorectal cancer.
    Matched MeSH terms: Antioxidants/metabolism
  14. Md Roduan MR, Hamid RA, Sulaiman H, Mohtarrudin N
    Biomed Pharmacother, 2017 Oct;94:481-488.
    PMID: 28779710 DOI: 10.1016/j.biopha.2017.07.133
    Annona muricata, locally known as soursop has been reported to exhibit antiproliferative activities against various cancer cell lines. In this current study, we have investigated the antitumor promotion of various fractions of Annona muricata leaves (AML); hexane (AMLH), dichloromethane (AMLD) and methanol (AMLM) fraction respectively on 7, 12-dimethylbenz[α]anthracene (DMBA) induced and 12-0-tetradecaboylphorbol-13-acetate (TPA) promoted skin tumorigenesis in mice via morphological assessment, biochemical analysis and histopathological evaluation. The results of the study revealed significant inhibition in tumor incidence, tumor burden and tumor volume in the groups received AMLH and AMLD, respectively, and suppressive effects in group received AMLM compared with carcinogen control group at week 21. Superoxide dismutase, catalase, and lipid peroxidation levels were returned to near normal by administration of AML to DMBA/TPA-induced mice. The above findings were supported by histopathological studies, in which the extensive epidermal hyperplasia in carcinogen control group was restored to normal in AML treated groups. Whilst, annonacin, a major annaonaceous acetogenin was found to be the highest in AMLH and AMLD. From the present study, it can be inferred that AML supressed DMBA/TPA-induced skin tumor and this antitumor-promoting activity may be linked to the antioxidant/free radical-scavenging constituents of the extract and annonacin contained in the extracts.
    Matched MeSH terms: Antioxidants/metabolism*
  15. Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH
    Plant Cell Rep, 2004 Jul;22(12):951-8.
    PMID: 15067428
    The effects of medium strategies [maintenance (M), intermediary (G), and production (P) medium] on cell growth, anthraquinone (AQ) production, hydrogen peroxide (H2O2) level, lipid peroxidation, and antioxidant vitamins in Morinda elliptica cell suspension cultures were investigated. These were compared with third-stage leaf and 1-month-old callus culture. With P medium strategy, cell growth at 49 g l(-1), intracellular AQ content at 42 mg g(-1) DW, and H2O2 level at 9 micromol g(-1) FW medium were the highest as compared to the others. However, the extent of lipid peroxidation at 40.4 nmol g(-1) FW and total carotenoids at 13.3 mg g(-1) FW for cultures in P medium were comparable to that in the leaf, which had registered sevenfold lower AQ and 2.2-fold lower H2O2 levels. Vitamin C content at 30-120 microg g(-1) FW in all culture systems was almost half the leaf content. On the other hand, vitamin E content was around 400-500 microg g(-1) FW in 7-day-old cultures from all medium strategies and reduced to 50-150 microg g(-1) FW on day 14 and 21; as compared to 60 microg g(-1) FW in callus and 200 microg g(-1) FW in the leaf. This study suggests that medium strategies and cell growth phase in cell culture could influence the competition between primary and secondary metabolism, oxidative stresses and antioxidative measures. When compared with the leaf metabolism, these activities are dynamic depending on the types and availability of antioxidants.
    Matched MeSH terms: Antioxidants/metabolism*
  16. Nordin N, Salama SM, Golbabapour S, Hajrezaie M, Hassandarvish P, Kamalidehghan B, et al.
    PLoS One, 2014;9(11):e111925.
    PMID: 25379712 DOI: 10.1371/journal.pone.0111925
    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.
    Matched MeSH terms: Antioxidants/metabolism
  17. Md Nasir NL, Kamsani NE, Mohtarrudin N, Othman F, Md Tohid SF, Zakaria ZA
    Pharm Biol, 2017 Dec;55(1):2102-2109.
    PMID: 28872373 DOI: 10.1080/13880209.2017.1371769
    CONTEXT: Leaves of Muntingia calabura (Elaeocarpaceae) are widely used in traditional medical practice; scientific findings show various pharmacological activities. However, its anticancer effect has not been investigated thoroughly yet.

    OBJECTIVE: The objective of this study is to study the chemoprevention effects of MEMCL against azoxymethane (AOM)-induced colon cancer and to examine the involvement of endogenous antioxidants Materials and methods: Male Sprague-Dawley rats, divided into five groups (n = 7), were injected intraperitoneally once weekly for 2 weeks with 15 mg/kg AOM, except for the normal group (received saline). The animals were then administered orally for 8 weeks with 8% Tween-80 (vehicle; normal group), 8% Tween-80 (vehicle; cancer group) or, 50, 250 or 500 mg/kg MEMC. After treatments, colon samples were collected from each rat for the histopathological analysis, quantification of aberrant crypt foci formed and determination of colon antioxidant levels. MEMC was also subjected to HPLC analysis.

    RESULTS: The extract exerted significant (p 

    Matched MeSH terms: Antioxidants/metabolism*
  18. Seyedan A, Alshawsh MA, Alshagga MA, Mohamed Z
    Planta Med, 2017 May;83(8):684-692.
    PMID: 27992939 DOI: 10.1055/s-0042-121754
    The present study investigated the antiobesity and lipid lowering effects of an ethanolic extract of leaves obtained from Orthosiphon stamineus (200 and 400 mg/kg) and its major compound (rosmarinic acid, 10 mg/kg) in obese mice (C57BL/6) induced by a high-fat diet. Continuous supplementation with O. stamineus extract (200 and 400 mg/kg) for 8 weeks significantly decreased body weight gain (p 
    Matched MeSH terms: Antioxidants/metabolism
  19. Sahebi M, Hanafi MM, Mohidin H, Rafii MY, Azizi P, Idris AS, et al.
    Biomed Res Int, 2018;2018:1494157.
    PMID: 29721500 DOI: 10.1155/2018/1494157
    Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.
    Matched MeSH terms: Antioxidants/metabolism*
  20. Abdullah A, Mohd Murshid N, Makpol S
    Mol Neurobiol, 2020 Dec;57(12):5193-5207.
    PMID: 32865663 DOI: 10.1007/s12035-020-02083-1
    In the human body, cell division and metabolism are expected to transpire uneventfully for approximately 25 years. Then, secondary metabolism and cell damage products accumulate, and ageing phenotypes are acquired, causing the progression of disease. Among these age-related diseases, neurodegenerative diseases have attracted considerable attention because of their irreversibility, the absence of effective treatment and their relationship with social and economic pressures. Mechanistic (formerly mammalian) target of rapamycin (mTOR), sirtuin (SIRT) and insulin/insulin growth factor 1 (IGF1) signalling pathways are among the most important pathways in ageing-associated conditions, such as neurodegeneration. These longevity-related pathways are associated with a diversity of various processes, including metabolism, cognition, stress reaction and brain plasticity. In this review, we discuss the roles of sirtuin and mTOR in ageing and neurodegeneration, with an emphasis on their regulation of autophagy, apoptosis and mitochondrial energy metabolism. The intervention of neurodegeneration using potential antioxidants, including vitamins, phytochemicals, resveratrol, herbals, curcumin, coenzyme Q10 and minerals, specifically aimed at retaining mitochondrial function in the treatment of Alzheimer's disease, Parkinson's disease and Huntington's disease is highlighted.
    Matched MeSH terms: Antioxidants/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links