Displaying publications 1 - 20 of 645 in total

Abstract:
Sort:
  1. Jubri Z, Rahim NB, Aan GJ
    Clinics (Sao Paulo), 2013 Nov;68(11):1446-54.
    PMID: 24270958 DOI: 10.6061/clinics/2013(11)11
    This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats.
    Matched MeSH terms: Antioxidants/pharmacology*
  2. Erejuwa OO, Sulaiman SA, Ab Wahab MS
    Molecules, 2012 Apr 12;17(4):4400-23.
    PMID: 22499188 DOI: 10.3390/molecules17044400
    The global prevalence of chronic diseases such as diabetes mellitus, hypertension, atherosclerosis, cancer and Alzheimer's disease is on the rise. These diseases, which constitute the major causes of death globally, are associated with oxidative stress. Oxidative stress is defined as an "imbalance between oxidants and antioxidants in favor of the oxidants, potentially leading to damage". Individuals with chronic diseases are more susceptible to oxidative stress and damage because they have elevated levels of oxidants and/or reduced antioxidants. This, therefore, necessitates supplementation with antioxidants so as to delay, prevent or remove oxidative damage. Honey is a natural substance with many medicinal effects such as antibacterial, hepatoprotective, hypoglycemic, reproductive, antihypertensive and antioxidant effects. This review presents findings that indicate honey may ameliorate oxidative stress in the gastrointestinal tract (GIT), liver, pancreas, kidney, reproductive organs and plasma/serum. Besides, the review highlights data that demonstrate the synergistic antioxidant effect of honey and antidiabetic drugs in the pancreas, kidney and serum of diabetic rats. These data suggest that honey, administered alone or in combination with conventional therapy, might be a novel antioxidant in the management of chronic diseases commonly associated with oxidative stress. In view of the fact that the majority of these data emanate from animal studies, there is an urgent need to investigate this antioxidant effect of honey in human subjects with chronic or degenerative diseases.
    Matched MeSH terms: Antioxidants/pharmacology*
  3. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
    Matched MeSH terms: Antioxidants/pharmacology
  4. Hellal K, Maulidiani M, Ismail IS, Tan CP, Abas F
    Molecules, 2020 Mar 10;25(5).
    PMID: 32164186 DOI: 10.3390/molecules25051247
    Claims of effective therapy against diabetes using plants including Peganum harmala L., Zygophyllum album, Anacyclus valentinus L., Ammodaucus leucotrichus, Lupinus albus, and Marrubium vulgare in Algerian empirical medicine prompted our interest in evaluating their antidiabetic activity by screening their free radical scavenging (DPPH), α-glucosidase, and nitric oxide (NO) inhibitory activities as well as the total phenolic content (TPC). Extracts of the selected plants were prepared using different ratios of ethanol (0, 50, 80, and 100%). In this study, 100%, and 80% ethanol extracts of L. albus were found to be the most potent, in inhibiting α-glucosidase activity with IC50 values of 6.45 and 8.66 μg/mL, respectively. The 100% ethanol extract of A. leucotrichus exhibited the highest free radical scavenging activity with an IC50 value of 26.26 μg/mL. Moreover, the highest TPC of 612.84 μg GAE/mg extract was observed in M. vulgare, extracted with 80% ethanol. Metabolite profiling of the active extract was conducted using 1H-NMR metabolomics. Partial least square analysis (PLS) was used to assess the relationship between the α-glucosidase inhibitory activity of L. albus and the metabolites identified in the extract. Based on the PLS model, isoflavonoids (lupinoisoflavone G, lupisoflavone, lupinoisolone C), amino acids (asparagine and thiamine), and several fatty acids (stearic acid and oleic acid) were identified as metabolites that contributed to the inhibition of α-glucosidase activity. The results of this study have clearly strengthened the traditional claim of the antihyperglycemic effects of L. albus.
    Matched MeSH terms: Antioxidants/pharmacology
  5. Lay MM, Karsani SA, Banisalam B, Mohajer S, Abd Malek SN
    Biomed Res Int, 2014;2014:410184.
    PMID: 24818141 DOI: 10.1155/2014/410184
    In recent years, the utilization of certain medicinal plants as therapeutic agents has drastically increased. Phaleria macrocarpa (Scheff.) Boerl is frequently used in traditional medicine. The present investigation was undertaken with the purpose of developing pharmacopoeial standards for this species. Nutritional values such as ash, fiber, protein, fat, and carbohydrate contents were investigated, and phytochemical screenings with different reagents showed the presence of flavonoids, glycosides, saponin glycosides, phenolic compounds, steroids, tannins, and terpenoids. Our results also revealed that the water fraction had the highest antioxidant activity compared to the methanol extract and other fractions. The methanol and the fractionated extracts (hexane, chloroform, ethyl acetate, and water) of P. macrocarpa seeds were also investigated for their cytotoxic effects on selected human cancer cells lines (MCF-7, HT-29, MDA-MB231, Ca Ski, and SKOV-3) and a normal human fibroblast lung cell line (MRC-5). Information from this study can be applied for future pharmacological and therapeutic evaluations of the species, and may assist in the standardization for quality, purity, and sample identification. To the best of our knowledge, this is the first report on the phytochemical screening and cytotoxic effect of the crude and fractionated extracts of P. macrocarpa seeds on selected cells lines.
    Matched MeSH terms: Antioxidants/pharmacology*
  6. Lay MM, Karsani SA, Mohajer S, Abd Malek SN
    PMID: 24885709 DOI: 10.1186/1472-6882-14-152
    The edible fruits of Phaleria macrocarpa (Scheff.) Boerl are widely used in traditional medicine in Indonesia. It is used to treat a variety of medical conditions such as - cancer, diabetes mellitus, allergies, liver and heart diseases, kidney failure, blood diseases, high blood pressure, stroke, various skin diseases, itching, aches, and flu. Therefore, it is of great interest to determine the biochemical and cytotoxic properties of the fruit extracts.
    Matched MeSH terms: Antioxidants/pharmacology
  7. Norhaizan ME, Ng SK, Norashareena MS, Abdah MA
    Malays J Nutr, 2011 Dec;17(3):367-75.
    PMID: 22655458 MyJurnal
    Phytic acid (PA) has been shown to have positive nutritional benefits. There are also claims that it is able to prevent cancer through its antioxidant capability. This study investigated antioxidant activity and cytotoxic effect of PA extracted from rice bran against selected cancer cell lines (i.e. ovarian, breast and liver cancer).
    Matched MeSH terms: Antioxidants/pharmacology*
  8. Sidahmed HMA, Vadivelu J, Loke MF, Arbab IA, Abdul B, Sukari MA, et al.
    Phytomedicine, 2019 Mar 01;55:31-39.
    PMID: 30668441 DOI: 10.1016/j.phymed.2018.06.036
    BACKGROUND: Clausena excavata Burm.f. (Rutaceae) has been used for the treatment of stomach disorders including peptic ulcer.

    PURPOSE: In this study, we aimed to investigate dentatin isolated from C. excavata Burm.f., for anti-ulcer activity against ethanol ulcer model in rats.

    METHODS: Gastric acid output, ulcer index, serum profile, histological evaluation using Hematoxylin and eosin (HE), periodic acid Schiff base stainings and immunohistochemical localization for heat shock proteins 70 (HSP70) were all investigated. Possible involvement of reduced glutathione (GSH), lipid peroxidation, prostaglandin E2 (PGE2), superoxide dismutase (SOD) enzymes, radical scavenging, and anti-Helicobacter pylori activity were investigated.

    RESULTS: Dentatin showed anti-secretory activity against the pylorus ligature model and protected the gastric mucosa from ethanol ulceration, as revealed by the improved macroscopic and histological appearance. Dentatin significantly increased the gastric homogenate content of PGE2 GSH and SOD. Dentatin inhibited the lipid peroxidation as revealed by the reduced gastric content of malondialdehyde (MDA). Moreover, dentatin up-regulated HSP70 expression. However, dentatin showed insignificant anti-H. pylori activity.

    CONCLUSION: Dentatin possesses gastro-protective activity, which could be attributed to the anti-secretory, mucus production, anti-oxidant, and HSP70 activities.

    Matched MeSH terms: Antioxidants/pharmacology*
  9. Karimi E, Mehrabanjoubani P, Keshavarzian M, Oskoueian E, Jaafar HZ, Abdolzadeh A
    J Sci Food Agric, 2014 Aug;94(11):2324-30.
    PMID: 24415452 DOI: 10.1002/jsfa.6567
    Plant foods are rich sources of bioactive compounds that can act as antioxidants to prevent heart disease, reduce inflammation, reduce the incidence of cancers and diabetes. This study aimed to determine the phenolics and flavonoids profiling in three varieties of rice straw and five varieties of the seed husk of Iranian rice using high-performance liquid chromatography (HPLC). Furthermore, the antioxidant activities of the extracts were evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and nitric oxide assays.
    Matched MeSH terms: Antioxidants/pharmacology*
  10. Lim CY, Mat Junit S, Abdulla MA, Abdul Aziz A
    PLoS One, 2013;8(7):e70058.
    PMID: 23894592 DOI: 10.1371/journal.pone.0070058
    BACKGROUND: Tamarindus indica (T. indica) is a medicinal plant with many biological activities including anti-diabetic, hypolipidaemic and anti-bacterial activities. A recent study demonstrated the hypolipidaemic effect of T. indica fruit pulp in hamsters. However, the biochemical and molecular mechanisms responsible for these effects have not been fully elucidated. Hence, the aims of this study were to evaluate the antioxidant activities and potential hypocholesterolaemic properties of T. indica, using in vitro and in vivo approaches.

    METHODOLOGY/PRINCIPAL FINDINGS: The in vitro study demonstrated that T. indica fruit pulp had significant amount of phenolic (244.9 ± 10.1 mg GAE/extract) and flavonoid (93.9 ± 2.6 mg RE/g extract) content and possessed antioxidant activities. In the in vivo study, hamsters fed with high-cholesterol diet for ten weeks showed elevated serum triglyceride, total cholesterol, HDL-C and LDL-C levels. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters significantly lowered serum triglyceride, total cholesterol and LDL-C levels but had no effect on the HDL-C level. The lipid-lowering effect was accompanied with significant increase in the expression of Apo A1, Abcg5 and LDL receptor genes and significant decrease in the expression of HMG-CoA reductase and Mtp genes. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters also protected against oxidative damage by increasing hepatic antioxidant enzymes, antioxidant activities and preventing hepatic lipid peroxidation.

    CONCLUSION/SIGNIFICANCE: It is postulated that tamarind fruit pulp exerts its hypocholesterolaemic effect by increasing cholesterol efflux, enhancing LDL-C uptake and clearance, suppressing triglyceride accumulation and inhibiting cholesterol biosynthesis. T. indica fruit pulp has potential antioxidative effects and is potentially protective against diet-induced hypercholesterolaemia.

    Matched MeSH terms: Antioxidants/pharmacology*
  11. Khor BH, Tiong HC, Tan SC, Wong SK, Chin KY, Karupaiah T, et al.
    PLoS One, 2021;16(7):e0255205.
    PMID: 34297765 DOI: 10.1371/journal.pone.0255205
    Studies investigating the effects of tocotrienols on inflammation and oxidative stress have yielded inconsistent results. This systematic review and meta-analysis aimed to evaluate the effects of tocotrienols supplementation on inflammatory and oxidative stress biomarkers. We searched PubMed, Scopus, and Cochrane Central Register of Controlled Trials from inception until 13 July 2020 to identify randomized controlled trials supplementing tocotrienols and reporting circulating inflammatory or oxidative stress outcomes. Weighted mean difference (WMD) and corresponding 95% confidence interval (CI) were determined by pooling eligible studies. Nineteen studies were included for qualitative analysis, and 13 studies were included for the meta-analyses. A significant reduction in C-reactive protein levels (WMD: -0.52 mg/L, 95% CI: -0.73, -0.32, p < 0.001) following tocotrienols supplementation was observed, but this finding was attributed to a single study using δ-tocotrienols, not mixed tocotrienols. There were no effects on interleukin-6 (WMD: 0.03 pg/mL, 95% CI: -1.51, 1.58, p = 0.966), tumor necrosis factor-alpha (WMD: -0.28 pg/mL, 95% CI: -1.24, 0.68, p = 0.571), and malondialdehyde (WMD: -0.42 μmol/L, 95% CI: -1.05, 0.21, p = 0.189). A subgroup analysis suggested that tocotrienols at 400 mg/day might reduce malondialdehyde levels (WMD: -0.90 μmol/L, 95% CI: -1.20, -0.59, p < 0.001). Future well-designed studies are warranted to confirm the effects of tocotrienols on inflammatory and oxidative stress biomarkers, particularly on different types and dosages of supplementation. PROSPERO registration number: CRD42020198241.
    Matched MeSH terms: Antioxidants/pharmacology*
  12. Hamid A, Ibrahim FW, Ming TH, Nasrom MN, Eusoff N, Husain K, et al.
    BMC Complement Altern Med, 2018 Mar 20;18(1):101.
    PMID: 29558939 DOI: 10.1186/s12906-018-2161-5
    BACKGROUND: Zingiber zerumbet (L.) Smith belongs to the Zingiberaceae family that is widely distributed throughout the tropics, particularly in Southeast Asia. It is locally known as 'Lempoyang' and traditionally used to treat fever, constipation and to relieve pain. It is also known to possess antioxidant and anti-inflammatory activities. Based on these antioxidant and anti-inflammatory activities, this study was conducted to investigate the effects of ethyl-acetate extract of Z. zerumbet rhizomes against ethanol-induced brain damage in male Wistar rats.

    METHOD: Twenty-four male Wistar rats were divided into four groups which consist of normal, 1.8 g/kg ethanol (40% v/v), 200 mg/kg Z. zerumbet extract plus ethanol and 400 mg/kg Z. zerumbet plus ethanol. The extract of Z. zerumbet was given once daily by oral gavage, 30 min prior to ethanol exposure via intraperitoneal route for 14 consecutive days. The rats were then sacrificed. Blood and brain homogenate were subjected to biochemical tests and part of the brain tissue was sectioned for histological analysis.

    RESULT: Treatment with ethyl-acetate Z. zerumbet extract at 200 mg/kg and 400 mg/kg significantly reduced the level of malondialdehyde (MDA) and protein carbonyl (p 

    Matched MeSH terms: Antioxidants/pharmacology*
  13. Suhaimi SH, Hasham R, Hafiz Idris MK, Ismail HF, Mohd Ariffin NH, Abdul Majid FA
    Molecules, 2019 Nov 18;24(22).
    PMID: 31752230 DOI: 10.3390/molecules24224183
    Primarily, optimization of ultrasonic-assisted extraction (UAE) conditions of Orthospihon stamineus was evaluated and verified using a central composite design (CCD) based on three factors including extraction time (minutes), ultrasound amplitude (A), and solvent concentration (%). The response surface methodology (RSM) was performed to develop an extraction method with maximum yield and high rosmarinic acid content. The optimal UAE conditions were as follows: extraction time 21 min, ultrasound amplitudes 62 A, and solvent composition 70% ethanol in water. The crude extract was further fractionated using solid-phase extraction (SPE), where six sequential fractions that varied in polarity (0-100% Acetonitrile in water) were obtained. Next, the six fractions were evaluated for their antioxidant and anti-cancer properties. This study found that Fraction 2 (F2) contained the highest rosmarinic acid content and showed the strongest antioxidant activity. Additionally, F2 showed an anti-proliferative effect against prostate cancer (DU145) with no harmful effect on normal cells.
    Matched MeSH terms: Antioxidants/pharmacology
  14. Sazwi NN, Nalina T, Abdul Rahim ZH
    PMID: 24330738 DOI: 10.1186/1472-6882-13-351
    Betel quid chewing is a popular habit in Southeast Asia. It is believed that chewing betel quid could reduce stress, strengthen teeth and maintain oral hygiene. The aim of this study was to investigate the antioxidant and cytoprotective activities of each of the ingredients of betel quid and compared with betel quid itself (with and without calcium hydroxide). The correlation of their cytoprotective and antioxidant activities with phenolic content was also determined.
    Matched MeSH terms: Antioxidants/pharmacology*
  15. Jalal TK, Ahmed IA, Mikail M, Momand L, Draman S, Isa ML, et al.
    Appl Biochem Biotechnol, 2015 Apr;175(7):3231-43.
    PMID: 25649443 DOI: 10.1007/s12010-015-1499-0
    Artocarpus altilis (breadfruit) pulp, peel and whole fruit were extracted with various solvents such as hexane, dichloromethane (DCM) and methanol. The antioxidant activity of these extracts were examined using the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test. IC50 was 55 ± 5.89 μg/ml for the pulp part of methanol extract. In the β-carotene bleaching assay, the antioxidant activity was 90.02 ± 1.51 % for the positive control (Trolox) and 88.34 ± 1.31 % for the pulp part of the fruit methanol extract. The total phenolic content of the crude extracts was determined using the Folin-Ciocalteu procedure; methanol pulp part demonstrated the highest phenol content value of 781 ± 52.97 mg GAE/g of dry sample. While the total flavonoid content was determined using the aluminium chloride colorimetric assay, the highest value of 6213.33 ± 142.22 mg QE/g was indicated by pulp part of the fruit methanol extract. The antimicrobial activity of the crude extracts was tested using disc diffusion method against pathogenic microorganisms: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia and Candida albicans. Methanol extract of pulp part was recorded to have the highest zone of inhibition against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) and MBC/minimal fungicidal concentration (MFC) for the extracts were also determined using the microdilution method ranging from 4000 to 63 μg/ml against pathogenic microbes. The MBC/MFC values varied from 250 to 4000 μg/ml. A correlation between antioxidant activity assays, antimicrobial activity and phenolic content was established. The results shows that the various parts of A. altilis fruit extracts promising antioxidant activities have potential bioactivities due to high content of phenolic compounds.
    Matched MeSH terms: Antioxidants/pharmacology*
  16. Jalal TK, Khan AYF, Natto HA, Abdull Rasad MSB, Arifin Kaderi M, Mohammad M, et al.
    Nutr Cancer, 2019;71(5):792-805.
    PMID: 30614285 DOI: 10.1080/01635581.2018.1516790
    Nine phenolic compounds were identified and quantified in Artocarpus altilia fruit. One of the main compounds was quercetin, which is the major class of flavonoids has been identified and quantified in pulp part of A. altilis fruit of methanol extract. The aim of this study was to evaluate in vitro cytotoxic assay. Inhibitory concentration 50% concentration was determined using trypan blue exclusion assay. Apoptosis induction and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell cycle-related regulatory genes were assessed by RT-qPCR study of the methanol extract of pulp part on human lung carcinoma (A549) cell line. A significant increase of cells at G2/M phases was detected (P 
    Matched MeSH terms: Antioxidants/pharmacology
  17. Abrahim NN, Kanthimathi MS, Abdul-Aziz A
    BMC Complement Altern Med, 2012 Nov 15;12:220.
    PMID: 23153283 DOI: 10.1186/1472-6882-12-220
    BACKGROUND: Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7.

    METHODS: The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells.

    RESULTS: Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase.

    CONCLUSIONS: Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment.

    Matched MeSH terms: Antioxidants/pharmacology*
  18. Ramdas P, Radhakrishnan AK, Abdu Sani AA, Abdul-Rahman PS
    Nutr Cancer, 2019;71(8):1263-1271.
    PMID: 31084432 DOI: 10.1080/01635581.2019.1607407
    Tocotrienols (T3), a family of vitamin E, are reported to possess potent anti-cancer effects but the molecular mechanisms behind these effects still remain unclear. The aim of this study was to investigate how T3 exert anti-cancer effects on MDA-MB-231 human breast cancer cells. The MDA-MB-231 cells were chosen for this study as they are triple-negative and highly metastatic cells, which form aggressive tumors in experimental models. The MDA-MB-231 cells were treated with varying concentrations (0-20 µg mL-1) of gamma (γ) or delta (δ) T3 and the secretome profiles of these cells treated with half maximal inhibitory concentration (IC50) of γT3 (5.8 µg mL-1) or δT3 (4.0 µg mL-1) were determined using label-free quantitative proteomic strategy. A total of 103, 174 and 141 proteins were identified with ProteinLynx Global Server (PLGS) score of more than 200 and above 25% sequence coverage in the untreated control and T3-treated cell culture supernatant respectively. A total of 18 proteins were dysregulated between untreated control and T3 (δT3 or γT3) treated conditions. The results showed that T3 treatment downregulated the exogenous Cathepsin D and Serpine1 proteins but upregulated Profilin-1 protein, which play a key role in breast cancer in the MDA-MB-231 cells. These findings strongly suggest that T3 may induce differential expression of secreted proteins involved in the cytoskeletal regulation of RHO GTPase signaling pathway.
    Matched MeSH terms: Antioxidants/pharmacology
  19. Abd Hamid H, Mutazah R, Yusoff MM, Abd Karim NA, Abdull Razis AF
    Food Chem Toxicol, 2017 Oct;108(Pt B):451-457.
    PMID: 27725206 DOI: 10.1016/j.fct.2016.10.004
    Rhodomyrtus tomentosa (Aiton) Hassk. has a wide spectrum of pharmacological effects and has been used to treat wounds, colic diarrhoea, heartburns, abscesses and gynaecopathy. The potential antiproliferative activities of R. tomentosa extracts from different solvents were evaluated in vitro on HepG2, MCF-7 and HT 29 cell lines while antioxidant activity was monitored by radical scavenging assay (DPPH), copper reducing antioxidant capacity (CUPRAC) and β-carotene bleaching assay. Extracts from R. tomentosa show the viability of the cells in concentration-dependent manner. According to the IC50 obtained, the ethyl acetate extracts showed significant antiproliferative activity on HepG2 (IC50 11.47 ± 0.280 μg/mL), MCF-7 (IC50 2.68 ± 0.529 μg/mL) and HT 29 (IC50 16.18 ± 0.538 μg/mL) after 72 h of treatment. Bioassay guided fractionation of the ethyl acetate extract led to the isolation of lupeol. Methanol extracts show significant antioxidant activities in DPPH (EC50 110.25 ± 0.005 μg/ml), CUPRAC (EC50 53.84 ± 0.004) and β-carotene bleaching (EC50 58.62 ± 0.001) due to the presence of high total flavonoid and total phenolic content which were 110.822 ± 0.017 mg butylated hydroxytoluene (BHT)/g and 190.467 ± 0.009 mg gallic acid (GAE)/g respectively. Taken together, the results extracts show the R. tomentosa as a potential source of antioxidant and antiproliferative efficacy.
    Matched MeSH terms: Antioxidants/pharmacology*
  20. Abdulwanis Mohamed Z, Mohamed Eliaser E, Mazzon E, Rollin P, Cheng Lian Ee G, Abdull Razis AF
    Molecules, 2019 Aug 27;24(17).
    PMID: 31461914 DOI: 10.3390/molecules24173109
    Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases.
    Matched MeSH terms: Antioxidants/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links