Displaying publications 1 - 20 of 569 in total

Abstract:
Sort:
  1. Inayat-Hussain SH, Osman AB, Din LB, Ali AM, Snowden RT, MacFarlane M, et al.
    FEBS Lett., 1999 Aug 13;456(3):379-83.
    PMID: 10462048
    Goniothalamin, a plant styrylpyrone derivative isolated from Goniothalamus andersonii, induced apoptosis in Jurkat T-cells as assessed by the externalisation of phosphatidylserine. Immunoblotting showed processing of caspases-3 and -7 with the appearance of their catalytically active large subunits of 17 and 19 kDa, respectively. Activation of these caspases was further evidenced by detection of poly(ADP-ribose) polymerase cleavage (PARP). Pre-treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) blocked apoptosis and the resultant cleavage of these caspases and PARP. Our results demonstrate that activation of at least two effector caspases is a key feature of goniothalamin-induced apoptosis in Jurkat T-cells.
    Matched MeSH terms: Apoptosis/drug effects*
  2. Inayat-Hussain SH, Cohen GM, Cain K
    Cell Biol Toxicol, 1999;15(6):381-7.
    PMID: 10811533
    There is now a wealth of information regarding the apoptotic mode of cell death and its importance in toxicological studies in many mammalian organs including the liver. In this study, we investigated the modulatory effects of the heavy metal Zn2+ on transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in primary rat hepatocytes. Apoptosis induced by TGF-beta1 (1 ng/ml) in hepatocytes was accompanied by nuclear condensation as assessed morphologically by staining with Hoechst 33258 and DNA cleavage as detected biochemically by in situ end-labeling, field inversion and conventional gel electrophoresis. Pretreatment with 100 micromol/L Zn2+ abrogated the nuclear condensation, in situ end-labeling, and DNA laddering in TGF-beta1-treated hepatocytes. Surprisingly, Zn2+ did not inhibit the formation of high-molecular-weight DNA fragments (30-50 kbp to 250-300 kbp). These data provide evidence that Zn2+ exerts its effects on the endonucleases that act downstream in the execution phase of TGF-beta1-induced apoptosis in hepatocytes.
    Matched MeSH terms: Apoptosis/drug effects
  3. Inayat-Hussain SH, McGuinness SM, Johansson R, Lundstrom J, Ross D
    Chem Biol Interact, 2000 Aug 15;128(1):51-63.
    PMID: 10996300
    The hydroquinone and catechol like metabolites, NCQ344 and NCQ436 respectively, of the antipsychotic remoxipride have recently been demonstrated to induce apoptosis in myeloperoxidase (MPO)-rich human bone marrow progenitor and HL-60 cells [S.M. McGuinness, R. Johansson, J. Lundstrom, D. Ross, Induction of apoptosis by remoxipride metabolites in HL-60 and CD34+/CD19- human bone marrow progenitor cells: potential relevance to remoxipride-induced aplastic anemia, Chem. Biol. Interact. 121 (1999) 253-265]. In the present study, we determined the molecular mechanisms of apoptosis induced by these remoxipride metabolites in HL-60 cells. Our results show that apoptosis was accompanied by phosphatidylserine (PS) exposure, activation of caspases-9, -3, -7 and DNA cleavage. In HL-60 cells treated with the hydroquinone NCQ344 and catechol NCQ436, the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp. fluoromethyl ketone (Z-VAD.FMK) blocked DNA cleavage and activation of caspases-9, -3/-7. In addition, PS exposure was significantly but not completely inhibited by Z-VAD.FMK. These results demonstrate that although Z-VAD.FMK inhibitable caspases are necessary for maximal apoptosis induced by NCQ344 and NCQ436, additional caspase-independent processes may orchestrate changes leading to PS exposure during apoptosis induced by the remoxipride polyphenolic metabolites.
    Matched MeSH terms: Apoptosis/drug effects*
  4. Inayat-Hussain SH, Osman AB, Din LB, Taniguchi N
    Toxicol Lett, 2002 May 28;131(3):153-9.
    PMID: 11992734
    Plant styryl-lactone derivatives isolated from Goniothalamus sp. are potential compounds for cancer chemotherapy. In this study, we have examined the mechanisms of apoptosis induced by altholactone, a stryl-lactone isolated from the Malaysian plant G. malayanus on human HL-60 promyelocytic leukemia cells. Flow cytometric analysis of the externalization of phosphatidylserine (PS) using the annexin V/PI method on altholactone treated HL-60 cells showed a concentration-dependent increase of apoptosis from concentrations ranging from 10.8 (2.5 microg/ml) to 172.4 microM (40 microg/ml). Pre-treatment with the antioxidant N-acetylcysteine (1 mM) completely abrogated apoptosis induced by altholactone, suggesting for the involvement of oxidative stress. Further flow cytometric assessment of the level of intracellular peroxides using the fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) confirmed that altholactone induced an increase in cellular oxidative stress in HL-60 cells which was suppressed by N-acetylcysteine. In summary, our results demonstrate for the first time that altholactone induced apoptosis in HL-60 cells occurs via oxidative stress.
    Matched MeSH terms: Apoptosis/drug effects*
  5. Shafee N, AbuBakar S
    FEBS Lett., 2002 Jul 31;524(1-3):20-4.
    PMID: 12135735
    Dengue virus type 2 (DENV-2) infection induced apoptotic cellular DNA fragmentation in Vero cells within 8 days of infection. The addition of high concentrations of extracellular Zn(2+) but not Ca(2+), Mg(2+) or Mn(2+) to the cell culture medium hastened the detection of apoptosis to within 4 h after infection. No apoptotic cellular DNA fragmentation was detected in the cell culture treated with Zn(2+) alone or infected with heat- or ultraviolet light-inactivated DENV-2 in the presence of Zn(2+). These results suggest that (i) apoptosis is induced in African green monkey kidney cells infected with live DENV-2 and (ii) the addition of high extracellular Zn(2+) accelerates detection of apoptosis in the DENV-2-infected cells.
    Matched MeSH terms: Apoptosis/drug effects*
  6. Chien AL, Pihie AH
    J. Biochem. Mol. Biol., 2003 May 31;36(3):269-74.
    PMID: 12787481
    In the fight against cancer, novel chemotherapeutic agents are constantly being sought to complement existing drugs. Various studies have presented evidence that the apoptosis that is induced by these anticancer agents is implicated in tumor regression, and Bcl-2 family genes play a part in apoptosis following treatment with various stimuli. Here, we present data that a styrylpyrone derivative (SPD) that is extracted from the plant Goniothalamus sp. showed cytotoxic effects on the human breast cancer cell line MCF-7. SPD significantly increased apoptosis in MCF-7 cells, as visualized by phase contrast microscopy and evaluated by the Tdt-mediated dUTP nick end-labeling assay and nuclear morphology. Western blotting and immunostaining revealed up-regulation of the proapoptotic Bax protein expression. SPD, however, did not affect the expression of the anti-apoptotic protein, Bcl-2. These results, therefore, suggest SPD as a potent cytotoxic agent on MCF-7 cells by inducing apoptosis through the modulation of Bax levels.
    Matched MeSH terms: Apoptosis/drug effects*
  7. Inayat-Hussain SH, Rajab NF, Roslie H, Hussin AA, Ali AM, Annuar BO
    Med J Malaysia, 2004 May;59 Suppl B:176-7.
    PMID: 15468875
    Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.
    Matched MeSH terms: Apoptosis/drug effects
  8. Khor TO, Gul YA, Ithnin H, Seow HF
    Cancer Lett, 2004 Jul 16;210(2):139-50.
    PMID: 15183529
    The enhancement of cell proliferation and promotion of cell survival via the inhibition of apoptosis is thought to be the key to the initiation and progression of cancers. The phosphatidylinositol-3 kinase (PI3K)/Akt is an important survival signal pathway that has been shown to be crucial in the regulation of balance between pro-apoptotic and survival (anti-apoptotic) signal. In this study, the expression of phosphorylated Akt at Thr308 and Ser473, BCL-2-antagonist of cell death (BAD) at Ser136 and glycogen synthase kinase-3beta (GSK-3beta) at Ser9 in 47 paraffin-embedded human colorectal carcinoma (CRC) tissues were determined by immunohistochemical staining in order to dissect the alterations in the signal transduction pathways in CRC. Our results showed that there was a significant increase in the expression of these biomolecules in CRC tissues compared to the apparently normal adjacent tissues. The frequency of increased expression in tumor colonic mucosa were as follows: p-Akt1/2/3 (Thr308) = 16/47 (34%); p-Akt1 (Ser473) = 21/47 (44.7%); phospho-BAD (p-BAD) Ser136 = 27/47 (57.4%) and phospho-GSK-3beta (p-GSK-3beta) = 21/47 (44.7%). Analysis of the total p-Akt1 (Ser473), p-Akt1/2/3 (Thr308), p-GSK-3beta (Ser9) and p-BAD (Ser136) score found that there was a statistically significant relationship with each other. A statistically significant positive linear relationship was found between total p-Akt (Ser473) score and total p-GSK-3beta (Ser9) score as well as with total p-BAD (Ser136) score. On the other hand, total p-Akt1/2/3 (Thr308) scores had a statistically significant positive linear relationship with p-GSK-3beta (Ser9) only. The Akt targets, p-GSK-3beta (Ser9) and p-BAD (Ser136) were positively correlated to each other. There was no significant correlation between clinico-pathological data with total p-Akt1 (Ser473), p-Akt1/2/3 (Thr308), p-GSK-3beta (Ser9) and p-BAD (Ser136) score except for age. The total scores of p-GSK-3beta were found to be higher in patients in the age group of greater than 60. This is the first report of p-Akt1/2/3 (Thr308) and p-BAD (Ser136) expression in primary colorectal tumor tissue. Our data further supports the role of PI3K/Akt signaling pathways in the pathogenesis of CRC and contributes to the identification of target molecules in the signal transduction pathway for cancer therapy.
    Matched MeSH terms: Apoptosis/drug effects*
  9. Har CH, Keong CK
    Asia Pac J Clin Nutr, 2005;14(4):374-80.
    PMID: 16326644
    The effects of tocotrienols on murine liver cell viability and their apoptotic events were studied over a dose range of 0-32 microg mL(-1). Normal murine liver cells (BNL CL.2) and murine liver cancer cells (BNL 1ME A.7R.1) were treated with tocotrienols (T(3)), alpha tocopherol (alpha-T) and the chemo drug, Doxorubicin (Doxo, as a positive control). Cell viability assay showed that T(3) significantly (P < or = 0.05) lowered the percentage of BNL 1ME A.7R.1 cell viability in a dose-responsive manner (8-16 microg mL(-1)), whereas T did not show any significant (P>0.05) inhibition in cell viability with increasing treatment doses of 0-16 microg mL(-1). The IC(50) for tocotrienols were 9.8, 8.9, 8.1, 9.7, 8.1 and 9.3 microg mL(-1) at 12, 24, 36, 48, 60 and 72 hours respectively. Early apoptosis was detected 6 hours following T(3) treatment of BNL 1ME A.7R.1 liver cancer cells, using Annexin V-FITC fluorescence microscopy assay for apoptosis, but none were observed for the non-treated liver cancer cells at the average IC(50) of 8.98 microg mL(-1) tocotrienols for liver cancer cells. Several apoptotic bodies were detected in BNL 1ME A.7R.1 liver cancer cells at 6 hours post-treatment with tocotrienols (8.98 microg mL(-1)) using Acridine Orange/Propidium Iodide fluorescence assay. However, only a couple of apoptotic bodies were seen in the non-treated liver cancer cells and the BNL CL.2 normal liver cells. Some mitotic bodies were also observed in the T(3)-treated BNL 1ME A.7R.1 liver cancer cells but were not seen in the untreated BNL 1ME A.7R.1 cells and the BNL CL.2 liver cells. Following T(3)-treatment (8.98 microg mL(-1)) of the BNL 1ME A.7R.1 liver cancer cells, 24.62%, 25.53% and 44.90% of the cells showed elevated active caspase 3 activity at 9, 12 and 24 hours treatment period, respectively. DNA laddering studies indicated DNA fragmentation occurred in the T(3)-treated liver cancer cells, BNL 1ME A.7R.1 but not in non-treated liver cancer cells and the T(3)-treated and non-treated normal liver cells. These results suggest that tocotrienols were able to reduce the cell viability in the murine liver cancer cells at a dose of 8-32 microg mL(-1) and that this decrease in percentage cell viability may be due to apoptosis.
    Matched MeSH terms: Apoptosis/drug effects*
  10. Ismail N, Pihie AH, Nallapan M
    Anticancer Res, 2005 May-Jun;25(3B):2221-7.
    PMID: 16158967
    Xanthorrhizol is a sesquiterpenoid compound extracted from Curcuma xanthorrhiza, which is known locally as Temulawak. Traditionally, C. xanthorrhiza was found to have antibacterial, anticancer and anti-inflammatory activity. The rhizome has also been used to treat inflammation in postpartum uterine bleeding. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the cervical cancer cell line HeLa with an EC50 value of 6.16 microg/ml. Xanthorrhizol significantly increased apoptosis in HeLa cells, as evaluated by the Tdt-mediated dUTP nick end-labelling (TUNEL) assay and nuclear morphology by Hoechst 33258 staining. Western blot analysis, which was further confirmed by the immunostaining results, implied an up-regulation of tumor suppressor protein p53 and the pro-apoptotic protein Bax, following the treatment with xanthorrhizol. Xanthorrhizol, however, did not affect the expression of the anti-apoptotic protein, Bcl-2 and the viral oncoprotein, E6. Hence, xanthorrhizol is a promising antiproliferative and anticancer agent which induces p53 and Bax-dependent apoptosis in HeLa cervical cancer cells.
    Matched MeSH terms: Apoptosis/drug effects*
  11. Tee TT, Azimahtol HL
    Anticancer Res, 2005 May-Jun;25(3B):2205-13.
    PMID: 16158965
    Extracts of the plant Eurycoma longifolia have been shown to possess cytotoxic, antimalarial, anti-ulcer, antipyretic and plant growth inhibition activities. The present study investigated the effects of extracts and their chromatographic fractions from the root of E. longifolia on the growth of a human breast cancer cell line, MCF-7. Our data indicated that E. longifolia extracts and fractions exert a direct antiproliferative activity on MCF-7. The bioassay-guided root fractionation resulted in the isolation of three active fractions, F5, F6 and F7, which displayed IC50 values of (6.17+/-0.38) microg/ml, (4.40+/-0.42) microg/ml and (20.00+/-0.08) microg/ml, respectively. The resultant from F7 purification, F16, exhibited a higher cytotoxic activity towards MCF-7, (IC50=15.23+/-0.66 microg/ml) and a certain degree of selectivity against a normal breast cell line, MCF-10A (IC50=66.31-0.47 microg/ml). F16 significantly increased apoptosis in MCF-7 cells, as evaluated by the Tdt-mediated dUTP nick end labelling assay and nuclear morphology. Western blotting revealed down-regulation of the anti-apoptotic Bcl-2 protein expression. F16, however, did not affect the expression of the pro-apoptotic protein, Bax. These results, therefore, suggest that F16 has antiproliferative effects on MCF-7 cells by inducing apoptosis through the modulation of Bcl-2 protein levels.
    Matched MeSH terms: Apoptosis/drug effects*
  12. Chan KM, Rajab NF, Ishak MH, Ali AM, Yusoff K, Din LB, et al.
    Chem Biol Interact, 2006 Feb 1;159(2):129-40.
    PMID: 16297902
    Restenosis represents a major impediment to the success of coronary angioplasty. Abnormal proliferation of vascular smooth muscle cells (VSMCs) has been shown to be an important process in the pathogenesis of restenosis. A number of agents, particularly rapamycin and paclitaxel, have been shown to impact on this process. This study was carried out to determine the mechanisms of cytotoxicity of goniothalamin (GN) on VSMCs. Results from MTT cytotoxicity assay showed that the IC(50) for GN was 4.4 microg/ml (22 microM), which was lower compared to the clinically used rapamycin (IC(50) of 25 microg/ml [27.346 microM]). This was achieved primarily via apoptosis where up to 25.83 +/- 0.44% of apoptotic cells were detected after 72 h treatment with GN. In addition, GN demonstrated similar effects as rapamycin in inhibiting VSMCs proliferation using bromodeoxyuridine (BrdU) cell proliferation assay after 72 h treatment at IC(50) concentration (p > 0.05). In order to understand the mechanisms of GN, DNA damage detection using comet assay was determined at 2h post-treatment with GN. Our results showed that there was a concentration-dependent increase in DNA damage in VSMCs prior to cytotoxicity. Moreover, GN effects were comparable to rapamycin. In conclusion, our data show that GN initially induces DNA damage which subsequently leads to cytotoxicity primarily via apoptosis in VSMCs.
    Matched MeSH terms: Apoptosis/drug effects*
  13. Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W
    J Neurol Sci, 2006 Apr 15;243(1-2):5-12.
    PMID: 16442562
    Oxidative stress is thought to be one of the factors that cause neurodegeneration and that this can be inhibited by antioxidants. Since astrocytes support the survival of central nervous system (CNS) neurons, we compared the effect of alpha-tocopherol and gamma-tocotrienol in minimizing the cytotoxic damage induced by H(2)O(2), a pro-oxidant. Primary astrocyte cultures were pretreated with either alpha-tocopherol or gamma-tocotrienol for 1 h before incubation with 100 microM H(2)O(2) for 24 h. Cell viability was then assessed using the MTS assay while apoptosis was determined using a commercial ELISA kit as well as by fluorescent staining of live and apoptotic cells. The uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes were also determined using HPLC. Results showed that gamma-tocotrienol is toxic at concentrations >200 microM but protects against H(2)O(2) induced cell loss and apoptosis in a dose dependent manner up to 100 microM. alpha-Tocopherol was not cytotoxic in the concentration range tested (up to 750 microM), reduced apoptosis to the same degree as that of gamma-tocotrienol but was less effective in maintaining the viable cell number. Since the uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes is similar, this may reflect the roles of these 2 vitamin E subfamilies in inhibiting apoptosis and stimulating proliferation in astrocytes.
    Matched MeSH terms: Apoptosis/drug effects*
  14. Lee HB, Ho AS, Teo SH
    Cancer Chemother Pharmacol, 2006 Jul;58(1):91-8.
    PMID: 16211395
    Given that p53 is a tumor suppressor that plays a central role in the cellular response to DNA damage and that more than 50% of all cancers have mutated p53, the wider utility of photodynamic therapy (PDT) in the treatment of cancer will depend on an understanding of whether p53 status modulates response to PDT. In this study, we investigated the photosensitivity of isogenic cell lines that differ only in their p53 status to PDT using hypericin as the photosensitizer.
    Matched MeSH terms: Apoptosis/drug effects
  15. Cheah YH, Azimahtol HL, Abdullah NR
    Anticancer Res, 2006 Nov-Dec;26(6B):4527-34.
    PMID: 17201174
    Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhiza Roxb (Zingiberaceae). Xanthorrhizol was tested for a variety of important pharmacological activities including antioxidant and anti-inflammatory activities. An antiproliferation assay using the MTT method indicated that xanthorrhizol inhibited the proliferation of the human breast cancer cell line, MCF-7, with an EC50 value of 1.71 microg/ml. Three parameters including annexin-V binding assay, Hoechst 33258 staining and accumulation of sub-G1 population in DNA histogram confirmed the apoptosis induction in response to xanthorrhizol treatment. Western-blotting revealed down-regulation of the anti-apoptotic bcl-2 protein expression. However, xanthorrhizol did not affect the expression of the pro-apoptotic protein, bax, at a concentration of 1 microg/ml, 2.5 microg/ml and 5 microg/ml. The level of p53 was greatly increased, whilst PARP-1 was cleaved to 85 kDa subunits, following the treatment with xanthorrhizol at a dose-dependent manner. These results, thereby, suggest that xanthorrhizol has antiproliferative effects on MCF-7 cells by inducing apoptosis through the modulation of bcl-2, p53 and PARP-1 protein levels.
    Matched MeSH terms: Apoptosis/drug effects*
  16. Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH
    J Biomed Mater Res A, 2007 May;81(2):317-25.
    PMID: 17120221
    Among the various biomaterials available for tissue engineering and therapeutic applications, microbial polyhydroxyalkanoates offer the most diverse range of thermal and mechanical properties. In this study, the biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB); containing 50 mol % of 4-hydroxybutyrate] copolymer produced by Delftia acidovorans was evaluated. The cytotoxicity, mode of cell death, and genotoxicity of P(3HB-co-4HB) extract against V79 and L929 fibroblast cells were assessed using MTT assay, acridine orange/propidium iodide staining, and alkaline comet assay, respectively. Our results demonstrate that P(3HB-co-4HB) treated on both cell lines were comparable with clinically-used Polyglactin 910, where more than 60% of viable cells were observed following 72-h treatment at 200 mg/mL. Further morphological investigation on the mode of cell death showed an increase in apoptotic cells in a time-dependent manner in both cell lines. On the other hand, P(3HB-co-4HB) at 200 mg/mL showed no genotoxic effects as determined by alkaline comet assay following 72-h treatment. In conclusion, our study indicated that P(3HB-co-4HB) compounds showed good biocompatibility in fibroblast cells suggesting that it has potential to be used for future medical applications.
    Matched MeSH terms: Apoptosis/drug effects
  17. Tee TT, Cheah YH, Hawariah LP
    Anticancer Res, 2007 Sep-Oct;27(5A):3425-30.
    PMID: 17970090
    F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.
    Matched MeSH terms: Apoptosis/drug effects*
  18. Handayani T, Sakinah S, Nallappan M, Pihie AH
    Anticancer Res, 2007 Mar-Apr;27(2):965-71.
    PMID: 17465228
    Xanthorrhizol is a sesquiterpenoid compound extracted from the rhizome of Curcuma xanthorrhiza. This study investigated the antiproliferative effect and the mechanism of action of xanthorrhizol on human hepatoma cells, HepG2, and the mode of cell death. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the HepG2 cells with a 50% inhibition of cell growth (IC50) value of 4.17 +/- 0.053 microg/ml. The antiproliferative activity of xanthorrhizol was due to apoptosis induced in the HepG2 cells and not necrosis, which was confirmed by the Tdt-mediated dUTP nick end labeling (TUNEL) assay. The xanthorrhizol-treated HepG2 cells showed typical apoptotic morphology such as DNA fragmentation, cell shrinkage and elongated lamellipodia. The apoptosis mediated by xanthorrhizol in the HepG2 cells was associated with the activation of tumor suppressor p53 and down-regulation of antiapoptotic Bcl-2 protein expression, but not Bax. The levels of Bcl-2 protein expression decreased 24-h after treatment with xanthorrhizol and remained lower than controls throughout the experiment, resulting in a shift in the Bax to Bcl-2 ratio thus favouring apoptosis. The processing of the initiator procaspase-9 was detected. Caspase-3 was also found to be activated, but not caspase-7. Xanthorrhizol exerts antiproliferative effects on HepG2 cells by inducing apoptosis via the mitochondrial pathway.
    Matched MeSH terms: Apoptosis/drug effects*
  19. Ande SR, Fussi H, Knauer H, Murkovic M, Ghisla S, Fröhlich KU, et al.
    Yeast, 2008 May;25(5):349-57.
    PMID: 18437704 DOI: 10.1002/yea.1592
    Here we report for the first time that L-amino acid oxidase (LAAO), a major component of snake venom, induces apoptosis in yeast. The causative agent for induction of apoptosis has been shown to be hydrogen peroxide, produced by the enzymatic activity of LAAO. However, the addition of catalase, a specific hydrogen peroxide scavenger, does not prevent cell demise completely. Intriguingly, depletion of leucine from the medium by LAAO and the interaction of LAAO with yeast cells are shown to be the major factors responsible for cell demise in the presence of catalase.
    Matched MeSH terms: Apoptosis/drug effects*
  20. Lai CS, Mas RH, Nair NK, Majid MI, Mansor SM, Navaratnam V
    J Ethnopharmacol, 2008 Jun 19;118(1):14-20.
    PMID: 18436400 DOI: 10.1016/j.jep.2008.02.034
    Typhonium flagelliforme (Lodd.) Blume (Araceae) is a Malaysian plant used locally to combat cancer. In order to evaluate its antiproliferative activity in vitro and to possibly identify the active chemical constituents, a bioactivity guided study was conducted on the extracts of this plant.
    Matched MeSH terms: Apoptosis/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links