Displaying publications 1 - 20 of 161 in total

Abstract:
Sort:
  1. Jamei M, Ahmadianfar I, Karbasi M, Jawad AH, Farooque AA, Yaseen ZM
    J Environ Manage, 2021 Dec 15;300:113774.
    PMID: 34560461 DOI: 10.1016/j.jenvman.2021.113774
    The concentration of soluble salts in surface water and rivers such as sodium, sulfate, chloride, magnesium ions, etc., plays an important role in the water salinity. Therefore, accurate determination of the distribution pattern of these ions can improve better management of drinking water resources and human health. The main goal of this research is to establish two novel wavelet-complementary intelligence paradigms so-called wavelet least square support vector machine coupled with improved simulated annealing (W-LSSVM-ISA) and the wavelet extended Kalman filter integrated with artificial neural network (W-EKF- ANN) for accurate forecasting of the monthly), magnesium (Mg+2), and sulfate (SO4-2) indices at Maroon River, in Southwest of Iran. The monthly River flow (Q), electrical conductivity (EC), Mg+2, and SO4-2 data recorded at Tange-Takab station for the period 1980-2016. Some preprocessing procedures consisting of specifying the number of lag times and decomposition of the existing original signals into multi-resolution sub-series using three mother wavelets were performed to develop predictive models. In addition, the best subset regression analysis was designed to separately assess the best selective combinations for Mg+2 and SO4-2. The statistical metrics and authoritative validation approaches showed that both complementary paradigms yielded promising accuracy compared with standalone artificial intelligence (AI) models. Furthermore, the results demonstrated that W-LSSVM-ISA-C1 (correlation coefficient (R) = 0.9521, root mean square error (RMSE) = 0.2637 mg/l, and Kling-Gupta efficiency (KGE) = 0.9361) and W-LSSVM-ISA-C4 (R = 0.9673, RMSE = 0.5534 mg/l and KGE = 0.9437), using Dmey mother that outperformed the W-EKF-ANN for predicting Mg+2 and SO4-2, respectively.
    Matched MeSH terms: Artificial Intelligence*
  2. Rahman MM, Khatun F, Uzzaman A, Sami SI, Bhuiyan MA, Kiong TS
    Int J Health Serv, 2021 10;51(4):446-461.
    PMID: 33999732 DOI: 10.1177/00207314211017469
    The novel coronavirus disease (COVID-19) has spread over 219 countries of the globe as a pandemic, creating alarming impacts on health care, socioeconomic environments, and international relationships. The principal objective of the study is to provide the current technological aspects of artificial intelligence (AI) and other relevant technologies and their implications for confronting COVID-19 and preventing the pandemic's dreadful effects. This article presents AI approaches that have significant contributions in the fields of health care, then highlights and categorizes their applications in confronting COVID-19, such as detection and diagnosis, data analysis and treatment procedures, research and drug development, social control and services, and the prediction of outbreaks. The study addresses the link between the technologies and the epidemics as well as the potential impacts of technology in health care with the introduction of machine learning and natural language processing tools. It is expected that this comprehensive study will support researchers in modeling health care systems and drive further studies in advanced technologies. Finally, we propose future directions in research and conclude that persuasive AI strategies, probabilistic models, and supervised learning are required to tackle future pandemic challenges.
    Matched MeSH terms: Artificial Intelligence
  3. Usmani RSA, Pillai TR, Hashem IAT, Marjani M, Shaharudin R, Latif MT
    Environ Sci Pollut Res Int, 2021 Oct;28(40):56759-56771.
    PMID: 34075501 DOI: 10.1007/s11356-021-14305-7
    Air pollution has a serious and adverse effect on human health, and it has become a risk to human welfare and health throughout the globe. One of the major effects of air pollution on health is hospitalizations associated with air pollution. Recently, the estimation and prediction of air pollution-based hospitalization is carried out using artificial intelligence (AI) and machine learning (ML) techniques, i.e., deep learning and long short-term memory (LSTM). However, there is ample room for improvement in the available applied methodologies to estimate and predict air pollution-based hospital admissions. In this paper, we present the modeling and analysis of air pollution and cardiorespiratory hospitalization. This study aims to investigate the association between cardiorespiratory hospitalization and air pollution, and predict cardiorespiratory hospitalization based on air pollution using the artificial intelligence (AI) techniques. We propose the enhanced long short-term memory (ELSTM) model and provide a comparison with other AI techniques, i.e., LSTM, DL, and vector autoregressive (VAR). This study was conducted at seven study locations in Klang Valley, Malaysia. The utilized dataset contains the data from January 2006 to December 2016 for five study locations, i.e., Klang (KLN), Shah Alam (SA), Putrajaya (PUJ), Petaling Jaya (PJ), and Cheras, Kuala Lumpur (CKL). The dataset for Banting contains data from April 2010 to December 2016, and the data for Batu Muda, Kuala Lumpur, contains data from January 2009 to December 2016. The prediction results show that the ELSTM model performed significantly better than other models in all study locations, with the best RMSE scores in Klang study location (ELSTM: 0.002, LSTM: 0.013, DL: 0.006, VAR: 0.066). The results also indicated that the proposed ELSTM model was able to detect and predict the trends of monthly hospitalization significantly better than the LSTM and other models in the study. Hence, we can conclude that we can utilize AI techniques to accurately predict cardiorespiratory hospitalization based on air pollution in Klang Valley, Malaysia.
    Matched MeSH terms: Artificial Intelligence
  4. Tiyasha T, Tung TM, Bhagat SK, Tan ML, Jawad AH, Mohtar WHMW, et al.
    Mar Pollut Bull, 2021 Sep;170:112639.
    PMID: 34273614 DOI: 10.1016/j.marpolbul.2021.112639
    Dissolved oxygen (DO) is an important indicator of river health for environmental engineers and ecological scientists to understand the state of river health. This study aims to evaluate the reliability of four feature selector algorithms i.e., Boruta, genetic algorithm (GA), multivariate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost) to select the best suited predictor of the applied water quality (WQ) parameters; and compare four tree-based predictive models, namely, random forest (RF), conditional random forests (cForest), RANdom forest GEneRator (Ranger), and XGBoost to predict the changes of dissolved oxygen (DO) in the Klang River, Malaysia. The total features including 15 WQ parameters from monitoring site data and 7 hydrological components from remote sensing data. All predictive models performed well as per the features selected by the algorithms XGBoost and MARS in terms applied statistical evaluators. Besides, the best performance noted in case of XGBoost predictive model among all applied predictive models when the feature selected by MARS and XGBoost algorithms, with the coefficient of determination (R2) values of 0.84 and 0.85, respectively, nonetheless the marginal performance came up by Boruta-XGBoost model on in this scenario.
    Matched MeSH terms: Artificial Intelligence*
  5. Gatellier L, Ong SK, Matsuda T, Ramlee N, Lau FN, Yusak S, et al.
    Asian Pac J Cancer Prev, 2021 Sep 01;22(9):2945-2950.
    PMID: 34582666 DOI: 10.31557/APJCP.2021.22.9.2945
    The COVID-pandemic has shown significant impact on cancer care from early detection, management plan to clinical outcomes of cancer patients. The Asian National Cancer Centres Alliance (ANCCA) has put together the 9 "Ps" as guidelines for cancer programs to better prepare for the next pandemic. The 9 "Ps" are Priority, Protocols and Processes, Patients, People, Personal Protective Equipments (PPEs), Pharmaceuticals, Places, Preparedness, and Politics. Priority: to maintain cancer care as a key priority in the health system response even during a global infectious disease pandemic. Protocol and processes: to develop a set of Standard Operating Procedures (SOPs) and have relevant expertise to man the Disease Outbreak Response (DORS) Taskforce before an outbreak. Patients: to prioritize patient safety in the event of an outbreak and the need to reschedule cancer management plan, supported by tele-consultation and use of artificial intelligence technology. People: to have business continuity planning to support surge capacity. PPEs and Pharmaceuticals: to develop plan for stockpiles management, build local manufacturing capacity and disseminate information on proper use and reduce wastage. Places: to design and build cancer care facilities to cater for the need of triaging, infection control, isolation and segregation. Preparedness: to invest early on manpower building and technology innovations through multisectoral and international collaborations. Politics: to ensure leadership which bring trust, cohesion and solidarity for successful response to pandemic and mitigate negative impact on the healthcare system.
    Matched MeSH terms: Artificial Intelligence
  6. Tang MCS, Teoh SS, Ibrahim H, Embong Z
    Sensors (Basel), 2021 Aug 06;21(16).
    PMID: 34450766 DOI: 10.3390/s21165327
    Proliferative Diabetic Retinopathy (PDR) is a severe retinal disease that threatens diabetic patients. It is characterized by neovascularization in the retina and the optic disk. PDR clinical features contain highly intense retinal neovascularization and fibrous spreads, leading to visual distortion if not controlled. Different image processing techniques have been proposed to detect and diagnose neovascularization from fundus images. Recently, deep learning methods are getting popular in neovascularization detection due to artificial intelligence advancement in biomedical image processing. This paper presents a semantic segmentation convolutional neural network architecture for neovascularization detection. First, image pre-processing steps were applied to enhance the fundus images. Then, the images were divided into small patches, forming a training set, a validation set, and a testing set. A semantic segmentation convolutional neural network was designed and trained to detect the neovascularization regions on the images. Finally, the network was tested using the testing set for performance evaluation. The proposed model is entirely automated in detecting and localizing neovascularization lesions, which is not possible with previously published methods. Evaluation results showed that the model could achieve accuracy, sensitivity, specificity, precision, Jaccard similarity, and Dice similarity of 0.9948, 0.8772, 0.9976, 0.8696, 0.7643, and 0.8466, respectively. We demonstrated that this model could outperform other convolutional neural network models in neovascularization detection.
    Matched MeSH terms: Artificial Intelligence
  7. Burki TK
    Lancet Haematol, 2021 Aug;8(8):e551.
    PMID: 34329575 DOI: 10.1016/S2352-3026(21)00215-5
    Matched MeSH terms: Artificial Intelligence
  8. Ke B, Nguyen H, Bui XN, Bui HB, Choi Y, Zhou J, et al.
    Chemosphere, 2021 Aug;276:130204.
    PMID: 34088091 DOI: 10.1016/j.chemosphere.2021.130204
    Heavy metals in water and wastewater are taken into account as one of the most hazardous environmental issues that significantly impact human health. The use of biochar systems with different materials helped significantly remove heavy metals in the water, especially wastewater treatment systems. Nevertheless, heavy metal's sorption efficiency on the biochar systems is highly dependent on the biochar characteristics, metal sources, and environmental conditions. Therefore, this study implicates the feasibility of biochar systems in the heavy metal sorption in water/wastewater and the use of artificial intelligence (AI) models in investigating efficiency sorption of heavy metal on biochar. Accordingly, this work investigated and proposed 20 artificial intelligent models for forecasting the sorption efficiency of heavy metal onto biochar based on five machine learning algorithms and bagging technique (BA). Accordingly, support vector machine (SVM), random forest (RF), artificial neural network (ANN), M5Tree, and Gaussian process (GP) algorithms were used as the key algorithms for the aim of this study. Subsequently, the individual models were bagged with each other to generate new ensemble models. Finally, 20 intelligent models were developed and evaluated, including SVM, RF, M5Tree, GP, ANN, BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN. Of those, the hybrid models (i.e., BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN) are introduced as the novelty of this study for estimating the heavy metal's sorption efficiency on the biochar systems. Also, the biochar characteristics, metal sources, and environmental conditions were comprehensively assessed and used, and they are considered as a novelty of the study as well. For this aim, a dataset of sorption efficiency of heavy metal was collected and processed with 353 experimental tests. Various performance indexes were applied to evaluate the models, such as RMSE, R2, MAE, color intensity, Taylor diagram, box and whiskers plots. This study's findings revealed that AI models could predict heavy metal's sorption efficiency onto biochar with high reliability, and the efficiency of the ensemble models is higher than those of individual models. The results also reported that the SVM-ANN ensemble model is the most superior model among 20 developed models. The predictive model proposed that heavy metal's efficiency sorption on biochar can be accurately forecasted and early warning for the water pollution by heavy metal.
    Matched MeSH terms: Artificial Intelligence*
  9. Bhagat SK, Pyrgaki K, Salih SQ, Tiyasha T, Beyaztas U, Shahid S, et al.
    Chemosphere, 2021 Aug;276:130162.
    PMID: 34088083 DOI: 10.1016/j.chemosphere.2021.130162
    Copper (Cu) ion in wastewater is considered as one of the crucial hazardous elements to be quantified. This research is established to predict copper ions adsorption (Ad) by Attapulgite clay from aqueous solutions using computer-aided models. Three artificial intelligent (AI) models are developed for this purpose including Grid optimization-based random forest (Grid-RF), artificial neural network (ANN) and support vector machine (SVM). Principal component analysis (PCA) is used to select model inputs from different variables including the initial concentration of Cu (IC), the dosage of Attapulgite clay (Dose), contact time (CT), pH, and addition of NaNO3 (SN). The ANN model is found to predict Ad with minimum root mean square error (RMSE = 0.9283) and maximum coefficient of determination (R2 = 0.9974) when all the variables (i.e., IC, Dose, CT, pH, SN) were considered as input. The prediction accuracy of Grid-RF model is found similar to ANN model when a few numbers of predictors are used. According to prediction accuracy, the models can be arranged as ANN-M5> Grid-RF-M5> Grid-RF-M4> ANN-M4> SVM-M4> SVM-M5. Overall, the applied statistical analysis of the results indicates that ANN and Grid-RF models can be employed as a computer-aided model for monitoring and simulating the adsorption from aqueous solutions by Attapulgite clay.
    Matched MeSH terms: Artificial Intelligence*
  10. Mohd Faizal AS, Thevarajah TM, Khor SM, Chang SW
    Comput Methods Programs Biomed, 2021 Aug;207:106190.
    PMID: 34077865 DOI: 10.1016/j.cmpb.2021.106190
    Cardiovascular disease (CVD) is the leading cause of death worldwide and is a global health issue. Traditionally, statistical models are used commonly in the risk prediction and assessment of CVD. However, the adoption of artificial intelligent (AI) approach is rapidly taking hold in the current era of technology to evaluate patient risks and predict the outcome of CVD. In this review, we outline various conventional risk scores and prediction models and do a comparison with the AI approach. The strengths and limitations of both conventional and AI approaches are discussed. Besides that, biomarker discovery related to CVD are also elucidated as the biomarkers can be used in the risk stratification as well as early detection of the disease. Moreover, problems and challenges involved in current CVD studies are explored. Lastly, future prospects of CVD risk prediction and assessment in the multi-modality of big data integrative approaches are proposed.
    Matched MeSH terms: Artificial Intelligence
  11. Hasnul MA, Aziz NAA, Alelyani S, Mohana M, Aziz AA
    Sensors (Basel), 2021 Jul 23;21(15).
    PMID: 34372252 DOI: 10.3390/s21155015
    Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare.
    Matched MeSH terms: Artificial Intelligence*
  12. Márquez-Sánchez S, Campero-Jurado I, Herrera-Santos J, Rodríguez S, Corchado JM
    Sensors (Basel), 2021 Jul 07;21(14).
    PMID: 34300392 DOI: 10.3390/s21144652
    It is estimated that we spend one-third of our lives at work. It is therefore vital to adapt traditional equipment and systems used in the working environment to the new technological paradigm so that the industry is connected and, at the same time, workers are as safe and protected as possible. Thanks to Smart Personal Protective Equipment (PPE) and wearable technologies, information about the workers and their environment can be extracted to reduce the rate of accidents and occupational illness, leading to a significant improvement. This article proposes an architecture that employs three pieces of PPE: a helmet, a bracelet and a belt, which process the collected information using artificial intelligence (AI) techniques through edge computing. The proposed system guarantees the workers' safety and integrity through the early prediction and notification of anomalies detected in their environment. Models such as convolutional neural networks, long short-term memory, Gaussian Models were joined by interpreting the information with a graph, where different heuristics were used to weight the outputs as a whole, where finally a support vector machine weighted the votes of the models with an area under the curve of 0.81.
    Matched MeSH terms: Artificial Intelligence
  13. Liew WS, Tang TB, Lin CH, Lu CK
    Comput Methods Programs Biomed, 2021 Jul;206:106114.
    PMID: 33984661 DOI: 10.1016/j.cmpb.2021.106114
    BACKGROUND AND OBJECTIVE: The increased incidence of colorectal cancer (CRC) and its mortality rate have attracted interest in the use of artificial intelligence (AI) based computer-aided diagnosis (CAD) tools to detect polyps at an early stage. Although these CAD tools have thus far achieved a good accuracy level to detect polyps, they still have room to improve further (e.g. sensitivity). Therefore, a new CAD tool is developed in this study to detect colonic polyps accurately.

    METHODS: In this paper, we propose a novel approach to distinguish colonic polyps by integrating several techniques, including a modified deep residual network, principal component analysis and AdaBoost ensemble learning. A powerful deep residual network architecture, ResNet-50, was investigated to reduce the computational time by altering its architecture. To keep the interference to a minimum, median filter, image thresholding, contrast enhancement, and normalisation techniques were exploited on the endoscopic images to train the classification model. Three publicly available datasets, i.e., Kvasir, ETIS-LaribPolypDB, and CVC-ClinicDB, were merged to train the model, which included images with and without polyps.

    RESULTS: The proposed approach trained with a combination of three datasets achieved Matthews Correlation Coefficient (MCC) of 0.9819 with accuracy, sensitivity, precision, and specificity of 99.10%, 98.82%, 99.37%, and 99.38%, respectively.

    CONCLUSIONS: These results show that our method could repeatedly classify endoscopic images automatically and could be used to effectively develop computer-aided diagnostic tools for early CRC detection.

    Matched MeSH terms: Artificial Intelligence
  14. Matin SS, Pradhan B
    Sensors (Basel), 2021 Jun 30;21(13).
    PMID: 34209169 DOI: 10.3390/s21134489
    Building-damage mapping using remote sensing images plays a critical role in providing quick and accurate information for the first responders after major earthquakes. In recent years, there has been an increasing interest in generating post-earthquake building-damage maps automatically using different artificial intelligence (AI)-based frameworks. These frameworks in this domain are promising, yet not reliable for several reasons, including but not limited to the site-specific design of the methods, the lack of transparency in the AI-model, the lack of quality in the labelled image, and the use of irrelevant descriptor features in building the AI-model. Using explainable AI (XAI) can lead us to gain insight into identifying these limitations and therefore, to modify the training dataset and the model accordingly. This paper proposes the use of SHAP (Shapley additive explanation) to interpret the outputs of a multilayer perceptron (MLP)-a machine learning model-and analyse the impact of each feature descriptor included in the model for building-damage assessment to examine the reliability of the model. In this study, a post-event satellite image from the 2018 Palu earthquake was used. The results show that MLP can classify the collapsed and non-collapsed buildings with an overall accuracy of 84% after removing the redundant features. Further, spectral features are found to be more important than texture features in distinguishing the collapsed and non-collapsed buildings. Finally, we argue that constructing an explainable model would help to understand the model's decision to classify the buildings as collapsed and non-collapsed and open avenues to build a transferable AI model.
    Matched MeSH terms: Artificial Intelligence*
  15. Wong YJ, Shimizu Y, Kamiya A, Maneechot L, Bharambe KP, Fong CS, et al.
    Environ Monit Assess, 2021 Jun 22;193(7):438.
    PMID: 34159431 DOI: 10.1007/s10661-021-09202-y
    Rivers in Malaysia are classified based on water quality index (WQI) that comprises of six parameters, namely, ammoniacal nitrogen (AN), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), pH, and suspended solids (SS). Due to its tropical climate, the impact of seasonal monsoons on river quality is significant, with the increased occurrence of extreme precipitation events; however, there has been little discussion on the application of artificial intelligence models for monsoonal river classification. In light of these, this study had applied artificial neural network (ANN) and support vector machine (SVM) models for monsoonal (dry and wet seasons) river classification using three of the water quality parameters to minimise the cost of river monitoring and associated errors in WQI computation. A structured trial-and-error approach was applied on input parameter selection and hyperparameter optimisation for both models. Accuracy, sensitivity, and precision were selected as the performance criteria. For dry season, BOD-DO-pH was selected as the optimum input combination by both ANN and SVM models, with testing accuracy of 88.7% and 82.1%, respectively. As for wet season, the optimum input combinations of ANN and SVM models were BOD-pH-SS and BOD-DO-pH with testing accuracy of 89.5% and 88.0%, respectively. As a result, both optimised ANN and SVM models have proven their prediction capacities for river classification, which may be deployed as effective and reliable tools in tropical regions. Notably, better learning and higher capacity of the ANN model for dataset characteristics extraction generated better predictability and generalisability than SVM model under imbalanced dataset.
    Matched MeSH terms: Artificial Intelligence
  16. Ahmad MH, Zezi AU, Anafi SB, Alhassan Z, Mohammed M, Danraka RN
    Data Brief, 2021 Jun;36:107155.
    PMID: 34041327 DOI: 10.1016/j.dib.2021.107155
    This article describes the dataset for the elucidation of the possible mechanisms of antidiarrhoeal actions of methanol leaves extract of Combretum hypopilinum (Diels) Combretaceae in mice. The plant has been used in traditional medicine to treat diarrhoea in Nigeria and other African countries. We introduce the data for the antidiarrhoeal activity of the methanol leaf extract of Combretum hypopilinum at 1,000 mg/kg investigated using charcoal meal test in mice with loperamide (5 mg/kg) as the standard antidiarrhoeal agent. To elucidate the possible mechanisms of its antidiarrhoeal action, naloxone (2 mg/kg), prazosin (1 mg/kg), yohimbine (2 mg/kg), propranolol (1 mg/kg), pilocarpine (1 mg/kg) and isosorbide dinitrate (150 mg/kg) were separately administered to different groups of mice 30 minutes before administration of the extract. Each mouse was dissected using dissecting set, and the small intestine was immediately removed from pylorus to caecum, placed lengthwise on moist filter paper and measured the distance travelled by charcoal relative to the length of the intestine using a calibrated ruler in centimetre. Besides, the peristaltic index and inhibition of charcoal movement of each animal were calculated and recorded. The methods for the data collection is similar to the one used to investigate the possible pathways involved in the antidiarrhoeal action of Combretum hypopilinum in mice in the research article by Ahmad et al. (2020) "Mechanisms of Antidiarrhoeal Activity of Methanol Leaf Extract of Combretum hypopilinum Diels (Combretaceae): Involvement of Opioidergic and (α1 and β)-Adrenergic Pathways" (https://doi.org/10.1016/j.jep.2020.113750) [1]. Therefore, this datasets could form a basis for in-depth research to elucidate further the pharmacological properties of the plant Combretum hypopilinum and its bioactive compounds to develop standardized herbal product and novel compound for management of diarrhoea. It could also be instrumental for evaluating the plant's pharmacological potentials using other computational-based and artificial intelligence approaches, including predictive modelling and simulation.
    Matched MeSH terms: Artificial Intelligence
  17. Jumin E, Basaruddin FB, Yusoff YBM, Latif SD, Ahmed AN
    Environ Sci Pollut Res Int, 2021 Jun;28(21):26571-26583.
    PMID: 33484461 DOI: 10.1007/s11356-021-12435-6
    Reliable and accurate prediction model capturing the changes in solar radiation is essential in the power generation and renewable carbon-free energy industry. Malaysia has immense potential to develop such an industry due to its location in the equatorial zone and its climatic characteristics with high solar energy resources. However, solar energy accounts for only 2-4.6% of total energy utilization. Recently, in developed countries, various prediction models based on artificial intelligence (AI) techniques have been applied to predict solar radiation. In this study, one of the most recent AI algorithms, namely, boosted decision tree regression (BDTR) model, was applied to predict the changes in solar radiation based on collected data in Malaysia. The proposed model then compared with other conventional regression algorithms, such as linear regression and neural network. Two different normalization techniques (Gaussian normalizer binning normalizer), splitting size, and different input parameters were investigated to enhance the accuracy of the models. Sensitivity analysis and uncertainty analysis were introduced to validate the accuracy of the proposed model. The results revealed that BDTR outperformed other algorithms with a high level of accuracy. The funding of this study could be used as a reliable tool by engineers to improve the renewable energy sector in Malaysia and provide alternative sustainable energy resources.
    Matched MeSH terms: Artificial Intelligence*
  18. Lau HJ, Lim CH, Foo SC, Tan HS
    Curr Genet, 2021 Jun;67(3):421-429.
    PMID: 33585980 DOI: 10.1007/s00294-021-01156-5
    Antimicrobial resistance (AMR) in bacteria is a global health crisis due to the rapid emergence of multidrug-resistant bacteria and the lengthy development of new antimicrobials. In light of this, artificial intelligence in the form of machine learning has been viewed as a potential counter to delay the spread of AMR. With the aid of AI, there are possibilities to predict and identify AMR in bacteria efficiently. Furthermore, a combination of machine learning algorithms and lab testing can help to accelerate the process of discovering new antimicrobials. To date, many machine learning algorithms for antimicrobial-resistance discovery had been created and vigorously validated. Most of these algorithms produced accurate results and outperformed the traditional methods which relied on sequence comparison within a database. This mini-review will provide an updated overview of antimicrobial design workflow using the latest machine-learning antimicrobial discovery algorithms in the last 5 years. With this review, we hope to improve upon the current AMR identification and antimicrobial development techniques by introducing the use of AI into the mix, including how the algorithms could be made more effective.
    Matched MeSH terms: Artificial Intelligence*
  19. Dimitri P, Fernandez-Luque L, Banerjee I, Bergadá I, Calliari LE, Dahlgren J, et al.
    J Med Internet Res, 2021 05 20;23(5):e27446.
    PMID: 34014174 DOI: 10.2196/27446
    BACKGROUND: The use of technology to support health and health care has grown rapidly in the last decade across all ages and medical specialties. Newly developed eHealth tools are being implemented in long-term management of growth failure in children, a low prevalence pediatric endocrine disorder.

    OBJECTIVE: Our objective was to create a framework that can guide future implementation and research on the use of eHealth tools to support patients with growth disorders who require growth hormone therapy.

    METHODS: A total of 12 pediatric endocrinologists with experience in eHealth, from a wide geographical distribution, participated in a series of online discussions. We summarized the discussions of 3 workshops, conducted during 2020, on the use of eHealth in the management of growth disorders, which were structured to provide insights on existing challenges, opportunities, and solutions for the implementation of eHealth tools across the patient journey, from referral to the end of pediatric therapy.

    RESULTS: A total of 815 responses were collected from 2 questionnaire-based activities covering referral and diagnosis of growth disorders, and subsequent growth hormone therapy stages of the patient pathway, relating to physicians, nurses, and patients, parents, or caregivers. We mapped the feedback from those discussions into a framework that we developed as a guide to integration of eHealth tools across the patient journey. Responses focused on improved clinical management, such as growth monitoring and automation of referral for early detection of growth disorders, which could trigger rapid evaluation and diagnosis. Patient support included the use of eHealth for enhanced patient and caregiver communication, better access to educational opportunities, and enhanced medical and psychological support during growth hormone therapy management. Given the potential availability of patient data from connected devices, artificial intelligence can be used to predict adherence and personalize patient support. Providing evidence to demonstrate the value and utility of eHealth tools will ensure that these tools are widely accepted, trusted, and used in clinical practice, but implementation issues (eg, adaptation to specific clinical settings) must be addressed.

    CONCLUSIONS: The use of eHealth in growth hormone therapy has major potential to improve the management of growth disorders along the patient journey. Combining objective clinical information and patient adherence data is vital in supporting decision-making and the development of new eHealth tools. Involvement of clinicians and patients in the process of integrating such technologies into clinical practice is essential for implementation and developing evidence that eHealth tools can provide value across the patient pathway.

    Matched MeSH terms: Artificial Intelligence
  20. Gopinath SCB, Ismail ZH, Shapiai MI, Yasin MNM
    PMID: 34009645 DOI: 10.1002/bab.2196
    Current developments in sensors and actuators are heralding a new era to facilitate things to happen effortlessly and efficiently with proper communication. On the other hand, Internet of Things (IoT) has been boomed up with er potential and occupies a wide range of disciplines. This study has choreographed to design of an algorithm and a smart data-processing scheme to implement the obtained data from the sensing system to transmit to the receivers. Technically, it is called "telediagnosis" and "remote digital monitoring," a revolution in the field of medicine and artificial intelligence. For the proof of concept, an algorithmic approach has been implemented for telediagnosis with one of the degenerative diseases, that is, Parkinson's disease. Using the data acquired from an improved interdigitated electrode, sensing surface was evaluated with the attained sensitivity of 100 fM (n = 3), and the limit of detection was calculated with the linear regression value coefficient. By the designed algorithm and data processing with the assistance of IoT, further validation was performed and attested the coordination. This proven concept can be ideally used with all sensing strategies for immediate telemedicine by end-to-end communications.
    Matched MeSH terms: Artificial Intelligence
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links