Displaying publications 1 - 20 of 301 in total

Abstract:
Sort:
  1. Lim LC, Tan HH, Lee LH, Tien SL, Abdul Ghafar A
    Ann Acad Med Singap, 1999 Mar;28(2):252-5.
    PMID: 10497677
    Resistance to activated protein C (APC-R) is the commonest inherited cause of thrombosis among Caucasians. Few studies have been carried out on its prevalence in Asians. We conducted a prospective study on 60 patients with thromboembolism to determine its prevalence in our local population. The Factor V Leiden (VaQ506) mutation associated with this condition was detected by amplification of the Factor V gene by polymerase chain reaction (PCR) and digestion of the fragment with Mnl I. Three patients were found to be heterozygous for this mutation. None of the 3 patients had other concomitant hypercoagulable states. In addition, we studied the prevalence of this condition in Malays which was found to be 0.5%. Our study suggests that the incidence of APC-R is much lower here compared to the West.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  2. Heidari F, Vasudevan R, Mohd Ali SZ, Ismail P, Etemad A, Pishva SR, et al.
    PMID: 25002132 DOI: 10.1177/1470320314538878
    Several studies show that the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene has been associated with hypertension in various populations. The present study sought to determine the association of the I/D gene polymorphism among Malay male essential hypertensive subjects in response to ACE inhibitors (enalapril and lisinopril).
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  3. Kakuda T, Shojo H, Tanaka M, Nambiar P, Minaguchi K, Umetsu K, et al.
    PLoS One, 2016;11(6):e0158463.
    PMID: 27355212 DOI: 10.1371/journal.pone.0158463
    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  4. Gopalai AA, Lim JL, Li HH, Zhao Y, Lim TT, Eow GB, et al.
    Mol Genet Genomic Med, 2019 Nov;7(11):e604.
    PMID: 31487119 DOI: 10.1002/mgg3.604
    BACKGROUND: The LRRK2 gene is associated with Parkinson's disease (PD) as a number of mutations within the gene have been shown to be susceptibility factors. Studies on various global populations have determined that mutations such as G2019S, G2385R, and R1628P in LRRK2 increase the risk of developing PD while the N551K-R1398H haplotype is associated with conferring protection against developing PD. Here we report a study looking at the N551K and R1398H variants for the first time in the Malaysian population.

    METHODS: Cases (523) which conformed to the United Kingdom PD Brain Bank Criteria for PD were recruited through trained neurologists and age- and ethnically matched controls (491) were individuals free of any neurological disorder. The N551K and R1398H mutations were genotyped using the Taqman SNP genotyping assay.

    RESULTS: A significant protective association for N551K was found in those of Malay ancestry, with a protective trend seen for R1398H. A meta-analysis of Chinese individuals in this cohort with other published cohorts of Chinese ancestry indicated a significant protective role for N551K and R1398H.

    CONCLUSION: This study reports that the N551K-R1398H haplotype is also relevant to the Malaysian population, with a significant protective effect found in those of Malay and Chinese ancestries.

    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  5. Gopalai AA, Lim SY, Chua JY, Tey S, Lim TT, Mohamed Ibrahim N, et al.
    Biomed Res Int, 2014;2014:867321.
    PMID: 25243190 DOI: 10.1155/2014/867321
    The LRRK2 gene has been associated with both familial and sporadic forms of Parkinson's disease (PD). The G2019S variant is commonly found in North African Arab and Caucasian PD patients, but this locus is monomorphic in Asians. The G2385R and R1628P variants are associated with a higher risk of developing PD in certain Asian populations but have not been studied in the Malaysian population. Therefore, we screened the G2385R and R1628P variants in 1,202 Malaysian subjects consisting of 695 cases and 507 controls. The G2385R and R1628P variants were associated with a 2.2-fold (P = 0.019) and 1.2-fold (P = 0.054) increased risk of PD, respectively. Our data concur with other reported findings in Chinese, Taiwanese, Singaporean, and Korean studies.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  6. Shahrizaila N, Samulong S, Tey S, Suan LC, Meng LK, Goh KJ, et al.
    Muscle Nerve, 2014 Feb;49(2):198-201.
    PMID: 23649551 DOI: 10.1002/mus.23892
    Data regarding Charcot-Marie-Tooth disease is lacking in Southeast Asian populations. We investigated the frequency of the common genetic mutations in a multiethnic Malaysian cohort.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  7. Lim JL, Ng EY, Lim SY, Tan AH, Abdul-Aziz Z, Ibrahim KA, et al.
    Neurol Sci, 2021 Oct;42(10):4203-4207.
    PMID: 33559030 DOI: 10.1007/s10072-021-05056-x
    BACKGROUND: Genome-wide association studies (GWAS) have shown that variants in the 3-methylcrotonyl-CoA carboxylase (MCCC1)/lysosome-associated membrane protein 3 (LAMP3) loci (rs10513789, rs12637471, rs12493050) reduce the risk of Parkinson's disease (PD) in Caucasians, Chinese and Ashkenazi-Jews while the rs11248060 variant in the diacylglycerol kinase theta (DGKQ) gene increases the risk of PD in Caucasian and Han Chinese cohorts. However, their roles in Malays are unknown. Therefore, this study aims to investigate the association of these variants with the risk of PD in individuals of Malay ancestry.

    METHODS: A total of 1114 subjects comprising of 536 PD patients and 578 healthy controls of Malay ancestry were recruited and genotyped using Taqman® allelic discrimination assays.

    RESULTS: The G allele of rs10513789 (OR = 0.83, p = 0.001) and A allele of rs12637471 (OR = 0.79, p = 0.007) in the MCCC1/LAMP3 locus were associated with a protective effect against developing PD in the Malay population. A recessive model of penetrance showed a protective effect of the GG genotype for rs10513789 and the AA genotype for rs12637471. No association with PD was found with the other MCCC1/LAMP3 rs12493050 variant or with the DGKQ (rs11248060) variant. No significant associations were found between the four variants with the age at PD diagnosis.

    CONCLUSION: MCCC1/LAMP3 variants rs10513789 and rs12637471 protect against PD in the Malay population.

    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  8. Hatta FH, Aklillu E
    OMICS, 2015 Dec;19(12):777-81.
    PMID: 26669712 DOI: 10.1089/omi.2015.0159
    CYP2C9 enzyme contributes to the metabolism of several pharmaceuticals and xenobiotics and yet displays large person-to-person and interethnic variation. Understanding the mechanisms of CYP2C9 variation is thus of immense importance for personalized medicine and rational therapeutics. A genetic variant of P450 (cytochrome) oxidoreductase (POR), a CYP450 redox partner, is reported to influence CYP2C9 metabolic activity in vitro. We investigated the impact of a common variant, POR*28, on CYP2C9 metabolic activity in humans. 148 healthy Swedish and 146 healthy Korean volunteers were genotyped for known CYP2C9 defective variant alleles (CYP2C9*2, *3). The CYP2C9 phenotype was determined using a single oral dose of 50 mg losartan. Excluding oral contraceptive (OC) users and carriers of 2C9*2 and *3 alleles, 117 Korean and 65 Swedish were genotyped for POR*5, *13 and *28 using Taqman assays. The urinary losartan to its metabolite E-3174 metabolic ratio (MR) was used as an index of CYP2C9 metabolic activity. The allele frequency of the POR*28 variant allele in Swedes and Koreans was 29% and 44%, respectively. POR*5 and *13 were absent in both study populations. Considering the CYP2C9*1/*1 genotypes only, the CYP2C9 metabolic activity was 1.40-fold higher in carriers of POR*28 allele than non-carriers among Swedes (p = 0.02). By contrast, no influence of the POR*28 on CYP2C9 activity was found in Koreans (p = 0.68). The multivariate analysis showed that ethnicity, POR genotype, and smoking were strong predictors of CYP2C9 MR (p < 0.05). This is the first report to implicate the importance of POR*28 genetic variation for CYP2C9 metabolic activity in humans. These findings contribute to current efforts for global personalized medicine and using medicines by taking into account pharmacogenetic and phenotypic variations.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  9. Mohamad S, Isa NM, Muhammad R, Emran NA, Kitan NM, Kang P, et al.
    PLoS One, 2015;10(1):e0117104.
    PMID: 25629968 DOI: 10.1371/journal.pone.0117104
    CHEK2 is a protein kinase that is involved in cell-cycle checkpoint control after DNA damage. Germline mutations in CHEK2 gene have been associated with increase in breast cancer risk. The aim of this study is to identify the CHEK2 gene germline mutations among high-risk breast cancer patients and its contribution to the multiethnic population in Malaysia. We screened the entire coding region of CHEK2 gene on 59 high-risk breast cancer patients who tested negative for BRCA1/2 germline mutations from UKM Medical Centre (UKMMC), Hospital Kuala Lumpur (HKL) and Hospital Putrajaya (HPJ). Sequence variants identified were screened further in case-control cohorts consisting of 878 unselected invasive breast cancer patients (180 Malays, 526 Chinese and 172 Indian) and 270 healthy individuals (90 Malays, 90 Chinese and 90 Indian). By screening the entire coding region of the CHEK2 gene, two missense mutations, c.480A>G (p.I160M) and c.538C>T (p.R180C) were identified in two unrelated patients (3.4%). Further screening of these missense mutations on the case-control cohorts unveiled the variant p.I160M in 2/172 (1.1%) Indian cases and 1/90 (1.1%) Indian control, variant p.R180C in 2/526 (0.38%) Chinese cases and 0/90 Chinese control, and in 2/180 (1.1%) of Malay cases and 1/90 (1.1%) of Malay control. The results of this study suggest that CHEK2 mutations are rare among high-risk breast cancer patients and may play a minor contributing role in breast carcinogenesis among Malaysian population.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  10. Chahil JK, Lye SH, Bagali PG, Alex L
    Mol Biol Rep, 2012 Jul;39(7):7831-8.
    PMID: 22544571 DOI: 10.1007/s11033-012-1626-8
    Familial hypercholesterolemia (FH) is a disease implicated with defects in either, Low density lipoprotein receptor gene (LDLR), Apolipoprotein B-100 gene (APOB), the Proprotein convertase subtilisin/kexin type 9 gene (PCSK9) or other related genes of the lipid metabolism pathway. The general characterization of heterozygous FH is by elevated low-density lipoprotein (LDL) cholesterol and early-onset cardiovascular diseases, while the more severe type, the homozygous FH results in extreme elevated levels of LDL cholesterol and usually death of an affected individual by early twenties. We present here a novel non-synonymous, missense mutation in exon 14 of the LDLR gene in two siblings of the Malay ethnicity discovered during an in-house genetic test. We postulate that their elevated cholesterol is due to this novel mutation and they are positive for homozygous FH. This is the first report of a C711Y mutation in patients with elevated cholesterol in Asia.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  11. Goodwin W, Alimat S
    Electrophoresis, 2017 04;38(7):1007-1015.
    PMID: 28008628 DOI: 10.1002/elps.201600383
    The SNPforID consortium identified a panel of 52 SNPs for forensic analysis that has been used by several laboratories worldwide. The original analysis of the 52 SNPs was based on a single multiplex reaction followed by two single-base-extension (SBE) reactions each of which was analyzed using capillary electrophoresis. The SBE assays were designed for high throughput genetic analyzers and were difficult to use on the single capillary ABI PRISM 310 Genetic Analyzer and the latest generation 3500 Genetic Analyzer, as sensitivity on the 310 was low and separation of products on the 3500 with POP-7™ was poor. We have modified the original assay and split it into four multiplex reactions, each followed by an SBE assay. These multiplex assays were analyzed using polymer POP-4™ on ABI 310 PRISM® and polymers POP-4™, POP-6™ and POP-7™ on the 3500 Genetic Analyzer. The assays were sensitive and reproducible with input DNA as low as 60 pg using both the ABI 310 and 3500. In addition, we found that POP-6™ was most effective with the 3500, based on the parameters that we assessed, achieving better separation of the small SBE products; this conflicted with the recommended use of POP-7™ by the instrument manufacturer. To support the use of the SNP panel in casework in Malaysia we have created an allele frequency database from 325 individuals, representing the major population groups within Malaysia. Population and forensic parameters were estimated for all populations and its efficacy evaluated using 51 forensic samples from challenging casework.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  12. Au A, Baba AA, Azlan H, Norsa'adah B, Ankathil R
    J Clin Pharm Ther, 2014 Dec;39(6):685-90.
    PMID: 25060527 DOI: 10.1111/jcpt.12197
    The introduction and success of imatinib mesylate (IM) has brought about a paradigm shift in chronic myeloid leukaemia (CML) treatment. However, despite the high efficacy of IM, clinical resistance develops due to a heterogeneous array of mechanisms. Pharmacogenetic variability as a result of genetic polymorphisms could be one of the most important factors influencing resistance to IM. The aim of this study was to investigate the association between genetic variations in drug efflux transporter ABCC1 (MRP1) and ABCC2 (MRP2) genes and response to IM in patients with CML.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  13. Elias MH, Baba AA, Azlan H, Rosline H, Sim GA, Padmini M, et al.
    Leuk. Res., 2014 Apr;38(4):454-9.
    PMID: 24456693 DOI: 10.1016/j.leukres.2013.12.025
    Discovery of imatinib mesylate (IM) as the targeted BCR-ABL protein tyrosine kinase inhibitor (TKI) has resulted in its use as the frontline therapy for chronic myeloid leukemia (CML) across the world. Although high response rates are observed in CML patients who receive IM treatment, a significant number of patients develop resistance to IM. Resistance to IM in patients has been associated with a heterogeneous array of mechanisms of which point mutations within the ABL tyrosine kinase domain (TKD) are the frequently documented. The types and frequencies of mutations reported in different population studies have shown wide variability. We screened 125 Malaysian CML patients on IM therapy who showed either TKI refractory or resistance to IM to investigate the frequency and pattern of BCR-ABL kinase domain mutations among Malaysian CML patients undergoing IM therapy and to determine the clinical significance. Mutational screening using denaturing high performance liquid chromatography (dHPLC) followed by DNA sequencing was performed on 125 IM resistant Malaysian CML patients. Mutations were detected in 28 patients (22.4%). Fifteen different types of mutations (T315I, E255K, G250E, M351T, F359C, G251E, Y253H, V289F, E355G, N368S, L387M, H369R, A397P, E355A, D276G), including 2 novel mutations were identified, with T315I as the predominant type of mutation. The data generated from clinical and molecular parameters studied were correlated with the survival of CML patients. Patients with Y253H, M351T and E355G TKD mutations showed poorer prognosis compared to those without mutation. Interestingly, when the prognostic impact of the observed mutations was compared inter-individually, E355G and Y253H mutations were associated with more adverse prognosis and shorter survival (P=0.025 and 0.005 respectively) than T315I mutation. Results suggest that apart from those mutations occurring in the three crucial regions (catalytic domain, P-loop and activation-loop), other rare mutations also may have high impact in the development of resistance and adverse prognosis. Presence of mutations in different regions of BCR-ABL TKD leads to different levels of resistance and early detection of emerging mutant clones may help in decision making for alternative treatment. Serial monitoring of BCR-ABL1 transcripts in CML patients allows appropriate selection of CML patients for BCR-ABL1 KD mutation analysis associated with acquired TKI resistance. Identification of these KD mutations is essential in order to direct alternative treatments in such CML patients.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  14. Yam YY, Hoh BP, Othman NH, Hassan S, Yahya MM, Zakaria Z, et al.
    Genet. Mol. Res., 2013;12(1):319-27.
    PMID: 23420356 DOI: 10.4238/2013.February.7.1
    Colorectal cancer is one of the most common cancers in many countries, including Malaysia. The accumulation of genomic alterations is an important feature of colorectal carcinogenesis. A better understanding of the molecular events underlying the stages of colorectal carcinogenesis might be helpful in the detection and management of the disease. We used a commercially available single-nucleotide polymorphism genotyping array to detect both copy number abnormalities (CNAs) and copy-neutral loss of heterozygosity (LOH) in sporadic colorectal carcinomas. Matched tumor and normal tissues of 13 colorectal carcinomas (Dukes' stages A-D) were analyzed using a 250K single nucleotide polymorphism array. An additional assay was performed to determine the microsatellite instability status by using the National Cancer Institute-recommended BAT-26 panel. In general, copy number gain (92.3%) was most common, followed by copy number loss (53.8%) and copy-neutral LOH (46.2%). Frequent CNAs of gains and losses were observed on chromosomes 7p, 8, 13q, 17p, 18q, and 20q, and copy-neutral LOH was observed on chromosomes 2, 6, 12, 13q, 14q, 17, 20p, 19q, and 22q. Even though genomic alterations are associated with colorectal cancer progression, our results showed that DNA CNAs and copy-neutral LOH do not reflect disease progression in at least 50% tumors. Copy-neutral LOH was observed in both early and advanced tumors, which favors the involvement of these genomic alterations in the early stages of tumor development.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  15. Ahmad Aizat AA, Siti Nurfatimah MS, Aminudin MM, Ankathil R
    World J Gastroenterol, 2013 Jun 21;19(23):3623-8.
    PMID: 23801864 DOI: 10.3748/wjg.v19.i23.3623
    To investigate the risk association of xeroderma pigmentosum group C (XPC) Lys939Gln polymorphism alone and in combination with cigarette smoking on colorectal cancer (CRC) predisposition.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  16. Thong MK, Fietz M, Nicholls C, Lee MH, Asma O
    J Inherit Metab Dis, 2009 Dec;32 Suppl 1:S41-4.
    PMID: 19165618 DOI: 10.1007/s10545-009-1031-1
    There are few reports of congenital disorders of glycosylation (CDGs) in the Asian population, although they have been reported worldwide. We identified a Malaysian infant female at 2 days of life with CDG type Ia. The diagnosis was suspected on the basis of inverted nipples and abnormal fat distribution. She had cerebellar hypoplasia and developed coagulopathy, hypothyroidism and severe pericardial effusion and died at 7 months of life. The diagnosis was supported by abnormal serum transferrin isoform pattern that showed elevated levels of the disialotransferrin isoform and trace levels of the asialotransferrin isoform. Enzyme testing of peripheral leukocytes showed decreased level of phosphomannomutase (PMM) activity (0.6 nmol/min per mg protein, normal range 1.6-6.2) and a normal level of phosphomannose isomerase activity (19 nmol/min per mg protein, normal range 12-25), indicating a diagnosis of CDG type Ia. Mutation study of the PMM2 gene showed the patient was heterozygous for both the common p.R141H (c.422T>A) mutation and a novel sequence change in exon 7, c.618C>A. The latter change is predicted to result in the replacement of the highly conserved phenylalanine residue at position 206 with a leucine residue (p.F206L) and occurs in the same codon as the previously reported p.F206S mutation. Analysis of 100 control chromosomes has shown that the p.F206L sequence change is not present, making it highly likely that this change is functionally important. To the best of our knowledge, this is the first report of CDG in the Malay population. Prenatal diagnosis was successfully performed in a subsequent pregnancy for this family.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  17. Orr N, Dudbridge F, Dryden N, Maguire S, Novo D, Perrakis E, et al.
    Hum Mol Genet, 2015 May 15;24(10):2966-84.
    PMID: 25652398 DOI: 10.1093/hmg/ddv035
    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  18. Choong ML, Koay ES, Khaw MC, Aw TC
    Hum. Hered., 1999 Jan;49(1):31-40.
    PMID: 9858855
    The allele frequencies for the apolipoprotein B (apo B) 5'-Ins/Del and 3'-VNTR polymorphisms varied significantly (p < 0.01) among Singaporeans of Chinese, Malay and Indian descent. We calculated the unbiased expected heterozygosities for the 5'-Ins/Del polymorphism as 0.3357, 0.1984 and 0.2418, and for the 3'-VNTR as 0.5980, 0.5260 and 0.6749, respectively, in the Chinese, Malays and Indians. Compared to heterozygosities reported for other populations, the Singaporeans differed from most Caucasians in having significantly lower values but were closely related to other non-Caucasians. Thirteen alleles, with a bimodal distribution, were observed at the 3'-VNTR polymorphic locus; the alleles occurring most frequently among the Chinese and Malays were of 35 or 53 repeats, and among the Indians, of 37 or 47 repeats. The Del allele was associated with elevated serum cholesterol (p = 0.023), LDL-cholesterol (LDL-C) (p = 0.001) in the Chinese, and apo B (p = 0.007) in the Indians. Likewise, the larger 3'-VNTR alleles (> 41 repeats) were associated with raised cholesterol (p = 0.018), LDL-C (p = 0.025), and triglyceride (p = 0.001) in the Chinese. The two polymorphisms were not in significant linkage disequilibrium (D = -0.0029, p = 0.494) in the three ethnic groups.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  19. Tai KY, Wong K, Aghakhanian F, Parhar IS, Dhaliwal J, Ayub Q
    BMC Genet, 2020 03 14;21(1):31.
    PMID: 32171244 DOI: 10.1186/s12863-020-0835-8
    BACKGROUND: Publicly available genome data provides valuable information on the genetic variation patterns across different modern human populations. Neuropeptide genes are crucial to the nervous, immune, endocrine system, and physiological homeostasis as they play an essential role in communicating information in neuronal functions. It remains unclear how evolutionary forces, such as natural selection and random genetic drift, have affected neuropeptide genes among human populations. To date, there are over 100 known human neuropeptides from the over 1000 predicted peptides encoded in the genome. The purpose of this study is to analyze and explore the genetic variation in continental human populations across all known neuropeptide genes by examining highly differentiated SNPs between African and non-African populations.

    RESULTS: We identified a total of 644,225 SNPs in 131 neuropeptide genes in 6 worldwide population groups from a public database. Of these, 5163 SNPs that had ΔDAF |(African - non-African)| ≥ 0.20 were identified and fully annotated. A total of 20 outlier SNPs that included 19 missense SNPs with a moderate impact and one stop lost SNP with high impact, were identified in 16 neuropeptide genes. Our results indicate that an overall strong population differentiation was observed in the non-African populations that had a higher derived allele frequency for 15/20 of those SNPs. Highly differentiated SNPs in four genes were particularly striking: NPPA (rs5065) with high impact stop lost variant; CHGB (rs6085324, rs236150, rs236152, rs742710 and rs742711) with multiple moderate impact missense variants; IGF2 (rs10770125) and INS (rs3842753) with moderate impact missense variants that are in linkage disequilibrium. Phenotype and disease associations of these differentiated SNPs indicated their association with hypertension and diabetes and highlighted the pleiotropic effects of these neuropeptides and their role in maintaining physiological homeostasis in humans.

    CONCLUSIONS: We compiled a list of 131 human neuropeptide genes from multiple databases and literature survey. We detect significant population differentiation in the derived allele frequencies of variants in several neuropeptide genes in African and non-African populations. The results highlights SNPs in these genes that may also contribute to population disparities in prevalence of diseases such as hypertension and diabetes.

    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  20. Lye MS, Visuvanathan S, Chong PP, Yap YY, Lim CC, Ban EZ
    PLoS One, 2015;10(6):e0130530.
    PMID: 26086338 DOI: 10.1371/journal.pone.0130530
    The xeroderma pigmentosum group D (XPD) gene encodes a DNA helicase, an important component in transcription factor IIH (TFIIH) complex. XPD helicase plays a pivotal role in unwinding DNA at the damaged region during nucleotide excision repair (NER) mechanism. Dysfunctional XPD helicase protein from polymorphic diversity may contribute to increased risk of developing cancers. This study aims to determine the association between XPD K751Q polymorphism (rs13181) and risk of nasopharyngeal carcinoma (NPC) in the Malaysian population. In this hospital-based matched case-control study, 356 controls were matched by age, gender and ethnicity to 356 cases. RFLP-PCR was used to genotype the XPD K751Q polymorphism. A significant association was observed between XPD K751Q polymorphism and the risk of NPC using conditional logistic regression. Subjects with homozygous Lys/Lys (wildtype) genotype have 1.58 times higher odds of developing NPC compared to subjects with recessive combination of heterozygous Lys/Gln and homozygous Gln/Gln genotypes (OR = 1.58, 95% CI = 1.05-2.38 p = 0.028) adjusted for cigarette smoking, alcohol and salted fish consumption. Our data suggests that Lys/Lys (wildtype) of XPD K751Q contributes to increased risk of NPC in the Malaysian population.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links