Displaying publications 1 - 20 of 301 in total

Abstract:
Sort:
  1. Lim WF, Muniandi L, George E, Sathar J, Teh LK, Gan GG, et al.
    Blood Cells Mol. Dis., 2012 Jan 15;48(1):17-21.
    PMID: 22079025 DOI: 10.1016/j.bcmd.2011.10.002
    The alpha haemoglobin stabilising protein (AHSP) acts as a molecular chaperone for α-globin by stabilising nascent α-globin before transferring it to waiting free β-globin chains. Binding of AHSP to α-globin renders α-globin chemically inert whereby preventing it from precipitating and forming reactive oxygen species byproducts. The AHSP has been actively studied in the recent years, particularly in its relation to β-thalassaemia. Studies have shown that AHSP is a modifier in β-thalassaemia mice models. However, this relationship is less established in humans. Studies by some groups showed no correlation between the AHSP haplotypes and the severity of β-thalassaemia, whereas others have shown that certain AHSP haplotype could modify the phenotype of β-thalassaemia intermedia patients. We investigated the expression of AHSP in relation to selected demographic data, full blood count, HPLC results, HbE/β-thalassaemia genotype, Xmn-1 Gγ polymorphism, α-globin, β-globin and γ-globin expression. We found that AHSP expression was significantly correlated to mean cell haemoglobin level, HbF %, α-globin, β-globin and excess α-globin expression. We concluded that AHSP could be a secondary compensatory mechanism in red blood cells to counterbalance the excess α-globin chains in HbE/β-thalassaemia individuals.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  2. Wise CA, Sullivan SG, Black ML, Erber WN, Bittles AH
    Am. J. Phys. Anthropol., 2005 Nov;128(3):670-7.
    PMID: 15864813
    Christmas Island is a remote Australian territory located close to the main Indonesian island of Java. Y-chromosome and mitochondrial DNA (mtDNA) markers were used to investigate the genetic structure of the population, which comprises communities of mixed ethnic origin. Analysis of 12 Y-chromosome biallelic polymorphisms revealed a high level of gene diversity and haplotype frequencies that were consistent with source populations in southern China and Southeast Asia. mtDNA hypervariable segment I (HVS-I) sequences displayed high levels of haplotype diversity and nucleotide diversity that were comparable to various Asian populations. Genetic distances revealed extremely low mtDNA differentiation among Christmas Islanders and Asian populations. This was supported by the relatively high proportion of sequence types shared among these populations. The most common mtDNA haplogroups were M* and B, followed by D and F, which are prevalent in East/Southeast Asia. Christmas Islanders of European descent were characterized by the Eurasian haplogroup R*, and a limited degree of admixture was observed. In general, analysis of the genetic data indicated population affinities to southern Chinese (in particular from the Yunnan Province) and Southeast Asia (Thailand, Malaysia, and Cambodia), which was consistent with historical records of settlement. The combined use of these different marker systems provides a useful and appropriate model for the study of contemporary populations derived from different ethnic origins.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  3. Ahmad Aizat AA, Siti Nurfatimah MS, Aminudin MM, Ankathil R
    World J Gastroenterol, 2013 Jun 21;19(23):3623-8.
    PMID: 23801864 DOI: 10.3748/wjg.v19.i23.3623
    To investigate the risk association of xeroderma pigmentosum group C (XPC) Lys939Gln polymorphism alone and in combination with cigarette smoking on colorectal cancer (CRC) predisposition.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  4. Shahrizaila N, Samulong S, Tey S, Suan LC, Meng LK, Goh KJ, et al.
    Muscle Nerve, 2014 Feb;49(2):198-201.
    PMID: 23649551 DOI: 10.1002/mus.23892
    Data regarding Charcot-Marie-Tooth disease is lacking in Southeast Asian populations. We investigated the frequency of the common genetic mutations in a multiethnic Malaysian cohort.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  5. Zuo XY, Feng QS, Sun J, Wei PP, Chin YM, Guo YM, et al.
    Biol Sex Differ, 2019 03 25;10(1):13.
    PMID: 30909962 DOI: 10.1186/s13293-019-0227-9
    BACKGROUND: The male predominance in the incidence of nasopharyngeal carcinoma (NPC) suggests the contribution of the X chromosome to the susceptibility of NPC. However, no X-linked susceptibility loci have been examined by genome-wide association studies (GWASs) for NPC by far.

    METHODS: To understand the contribution of the X chromosome in NPC susceptibility, we conducted an X chromosome-wide association analysis on 1615 NPC patients and 1025 healthy controls of Guangdong Chinese, followed by two validation analyses in Taiwan Chinese (n = 562) and Malaysian Chinese (n = 716).

    RESULTS: Firstly, the proportion of variance of X-linked loci over phenotypic variance was estimated in the discovery samples, which revealed that the phenotypic variance explained by X chromosome polymorphisms was estimated to be 12.63% (non-dosage compensation model) in males, as compared with 0.0001% in females. This suggested that the contribution of X chromosome to the genetic variance of NPC should not be neglected. Secondly, association analysis revealed that rs5927056 in DMD gene achieved X chromosome-wide association significance in the discovery sample (OR = 0.81, 95% CI 0.73-0.89, P = 1.49 × 10-5). Combined analysis revealed rs5927056 for DMD gene with suggestive significance (P = 9.44 × 10-5). Moreover, the female-specific association of rs5933886 in ARHGAP6 gene (OR = 0.62, 95%CI: 0.47-0.81, P = 4.37 × 10-4) was successfully replicated in Taiwan Chinese (P = 1.64 × 10-2). rs5933886 also showed nominally significant gender × SNP interaction in both Guangdong (P = 6.25 × 10-4) and Taiwan datasets (P = 2.99 × 10-2).

    CONCLUSION: Our finding reveals new susceptibility loci at the X chromosome conferring risk of NPC and supports the value of including the X chromosome in large-scale association studies.

    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  6. Benjamin G
    Hum Biol, 2013 Feb-Jun;85(1-3):445-84.
    PMID: 24297237
    The primary focus of this article is on the so-called negritos of Peninsular Malaysia and southern Thailand, but attention is also paid to other parts of Southeast Asia. I present a survey of current views on the "negrito" phenotype--is it single or many? If the phenotype is many (as now seems likely), it must have resulted from parallel evolution in the several different regions where it has been claimed to exist. This would suggest (contrary to certain views that have been expressed on the basis of very partial genetic data) that the phenotype originated recently and by biologically well-authenticated processes from within the neighboring populations. Whole-genome and physical-anthropological research currently support this view. Regardless of whether the negrito phenotype is ancient or recent-and to the extent that it retains any valid biological reality (which is worth questioning)-explanations are still needed for its continued distinctiveness. In the Malay Peninsula, a distinctive "Semang" societal pattern followed by most, but not all, so-called negritos may have been responsible for this by shaping familial, breeding, and demographic patterns to suit the two main modes of environmental appropriation that they have followed, probably for some millennia: nomadic foraging in the forest, and facultative dependence on exchange or labor relations with neighboring populations. The known distribution of "negritos" in the Malay Peninsula is limited to areas within relatively easy reach of archaeologically authenticated premodern transpeninsular trading and portage routes, as well as of other non-negrito, Aslian-speaking populations engaged in swidden farming. This suggests that their continued distinctiveness has resulted from a wish to maintain a complementary advantage vis-à-vis other, less specialized populations. Nevertheless, a significant degree of discordance exists between the associated linguistic, societal-tradition, and biological patterns which suggests that other factors have also been at play.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  7. Wang CW, Tassaneeyakul W, Chen CB, Chen WT, Teng YC, Huang CY, et al.
    J Allergy Clin Immunol, 2021 04;147(4):1402-1412.
    PMID: 32791162 DOI: 10.1016/j.jaci.2020.08.003
    BACKGROUND: Co-trimoxazole, a sulfonamide antibiotic, is used to treat a variety of infections worldwide, and it remains a common first-line medicine for prophylaxis against Pneumocystis jiroveci pneumonia. However, it can cause severe cutaneous adverse reaction (SCAR), including Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms. The pathomechanism of co-trimoxazole-induced SCAR remains unclear.

    OBJECTIVE: We aimed to investigate the genetic predisposition of co-trimoxazole-induced SCAR.

    METHODS: We conducted a multicountry case-control association study that included 151 patients with of co-trimoxazole-induced SCAR and 4631 population controls from Taiwan, Thailand, and Malaysia, as well as 138 tolerant controls from Taiwan. Whole-genome sequencing was performed for the patients and population controls from Taiwan; it further validated the results from Thailand and Malaysia.

    RESULTS: The whole-genome sequencing study (43 case patients vs 507 controls) discovered that the single-nucleotide polymorphism rs41554616, which is located between the HLA-B and MICA loci, had the strongest association with co-trimoxazole-induced SCAR (P = 8.2 × 10-9; odds ratio [OR] = 7.7). There were weak associations of variants in co-trimoxazole-related metabolizing enzymes (CYP2D6, GSTP1, GCLC, N-acetyltransferase [NAT2], and CYP2C8). A replication study using HLA genotyping revealed that HLA-B∗13:01 was strongly associated with co-trimoxazole-induced SCAR (the combined sample comprised 91 case patients vs 2545 controls [P = 7.2 × 10-21; OR = 8.7]). A strong HLA association was also observed in the case patients from Thailand (P = 3.2 × 10-5; OR = 3.6) and Malaysia (P = .002; OR = 12.8), respectively. A meta-analysis and phenotype stratification study further indicated a strong association between HLA-B∗13:01 and co-trimoxazole-induced drug reaction with eosinophilia and systemic symptoms (P = 4.2 × 10-23; OR = 40.1).

    CONCLUSION: This study identified HLA-B∗13:01 as an important genetic factor associated with co-trimoxazole-induced SCAR in Asians.

    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  8. Lim J, Lal S, Ng KC, Ng KS, Saha N, Heng CK
    Int J Cardiol, 2003 Aug;90(2-3):269-73.
    PMID: 12957761
    BACKGROUND: Polymorphisms of the glycoprotein IIIa receptor have been shown to be associated with differences in platelet aggregability. The PI(A2) variant of the polymorphism has been reported to be an inherited risk factor for acute coronary events. Although the allele frequency of this polymorphism is well documented in Caucasian populations, studies involving Asian Indians, Malays and Chinese are lacking. We studied 706 random male individuals to determine the genotypic distribution of this polymorphism in Singapore.

    METHODS: Male subjects included in this study were drawn from those undergoing routine annual medical examinations offered by their employers. Venous blood was obtained from these patients after an overnight fast and from which genomic DNA was extracted. Genotyping was carried out by polymerase chain reaction (PCR) followed by digestion with restriction enzyme NciI. Personal and family medical history of the subjects were also taken.

    RESULTS: The genotype distribution of the individuals studied was in accordance to a population at Hardy Weinberg equilibrium. The frequency of the PI(A2) allele was 0.1, 0.01 and 0.01 in the Indians, Malays and Chinese, respectively. The differences in frequencies of the PI(A2) variant are significant among different ethnic groups (P<0.001 for Indians vs. Chinese and Indians vs. Malays).

    CONCLUSIONS: We observed a significantly higher frequency of the PI(A2) allele among Indians relative to the Chinese and Malays in Singapore. The effect of this genotype may partially explain the higher rate of ischaemic heart disease seen among Indians compared to the Chinese and Malay ethnic groups.

    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  9. Chua YA, Abdullah WZ, Yusof Z, Gan SH
    Turk J Med Sci, 2015;45(4):913-8.
    PMID: 26422867
    BACKGROUND/AIM: VKORC1 and CYP2C9 genetic polymorphisms may not accurately predict warfarin dose requirements. We evaluated an existing warfarin dosing algorithm developed for Malaysian patients that was based only on VKORC1 and CYP2C9 genes.

    MATERIALS AND METHODS: Five Malay patients receiving warfarin maintenance therapy were investigated for their CYP2C9*2, CYP2C9*3, and VKORC1-1639G>A genotypes and their vitamin K-dependent (VKD) clotting factor activities. The records of their daily warfarin doses and international normalized ratio (INR) 2 years prior to and after the measurement of VKD clotting factors activities were acquired. The mean warfarin doses were compared with predicted warfarin doses calculated from a genotypic-based dosing model developed for Asians.

    RESULTS: A patient with the VKORC1-1639 GA genotype, who was supposed to have higher dose requirements, had a lower mean warfarin dose similar to those having the VKORC1-1639 AA genotype. This discrepancy may be due to the coadministration of celecoxib, which has the potential to decrease warfarins metabolism. Not all patients' predicted mean warfarin doses based on a previously developed dosing algorithm for Asians were similar to the actual mean warfarin dose, with the worst predicted dose being 54.34% higher than the required warfarin dose.

    CONCLUSION: Multiple clinical factors can significantly change the actual required dose from the predicted dose from time to time. The additions of other dynamic variables, especially INR, VKD clotting factors, and concomitant drug use, into the dosing model are important in order to improve its accuracy.

    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  10. Aghakhanian F, Yunus Y, Naidu R, Jinam T, Manica A, Hoh BP, et al.
    Genome Biol Evol, 2015 May;7(5):1206-15.
    PMID: 25877615 DOI: 10.1093/gbe/evv065
    Indigenous populations of Malaysia known as Orang Asli (OA) show huge morphological, anthropological, and linguistic diversity. However, the genetic history of these populations remained obscure. We performed a high-density array genotyping using over 2 million single nucleotide polymorphisms in three major groups of Negrito, Senoi, and Proto-Malay. Structural analyses indicated that although all OA groups are genetically closest to East Asian (EA) populations, they are substantially distinct. We identified a genetic affinity between Andamanese and Malaysian Negritos which may suggest an ancient link between these two groups. We also showed that Senoi and Proto-Malay may be admixtures between Negrito and EA populations. Formal admixture tests provided evidence of gene flow between Austro-Asiatic-speaking OAs and populations from Southeast Asia (SEA) and South China which suggest a widespread presence of these people in SEA before Austronesian expansion. Elevated linkage disequilibrium (LD) and enriched homozygosity found in OAs reflect isolation and bottlenecks experienced. Estimates based on Ne and LD indicated that these populations diverged from East Asians during the late Pleistocene (14.5 to 8 KYA). The continuum in divergence time from Negritos to Senoi and Proto-Malay in combination with ancestral markers provides evidences of multiple waves of migration into SEA starting with the first Out-of-Africa dispersals followed by Early Train and subsequent Austronesian expansions.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  11. Say YH, Ban ZL, Arumugam Y, Kaur T, Tan ML, Chia PP, et al.
    J Biosci, 2014 Dec;39(5):867-75.
    PMID: 25431415
    This study investigated the association of Uncoupling Protein 2 gene (UCP2) 45-bp I/D polymorphism with obesity and adiposity in 926 Malaysian subjects (416 males;265 obese; 102/672/152 Malays/Chinese/Indians). The overall minor allele frequency (MAF) was 0.14, while MAFs according to Malay/Chinese/Indian were 0.17/0.12/0.21. The polymorphism was associated with ethnicity, obesity and overall adiposity (total body fat percentage, TBF), but not gender and central adiposity (waist-hip ratio, WHR). Gender- and ethnicity-stratified analysis revealed that within males, the polymorphism was not associated with ethnicity and anthropometric classes. However, within females, significantly more Indians, obese and those with high TBF carried I allele. Logistic regression analysis among females further showed the polymorphism was associated with obesity and overall adiposity; however, when adjusted for age and ethnicity, this association was abolished for obesity but remained significant for overall adiposity [Odds Ratio (OR) for ID genotype = 2.02 (CI=1.18, 3.45; p=0.01); I allele =1.81 (CI=1.15, 2.84; p=0.01)]. Indeed, covariate analysis controlling for age and ethnicity also showed that those carrying ID genotype or I allele had significantly higher TBF than the rest. In conclusion, UCP2 45-bp I/D polymorphism is associated with overall adiposity among Malaysian women.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  12. Ismail NF, Nik Abdul Malik NM, Mohseni J, Rani AM, Hayati F, Salmi AR, et al.
    Jpn J Clin Oncol, 2014 May;44(5):506-11.
    PMID: 24683199 DOI: 10.1093/jjco/hyu024
    Tuberous sclerosis complex is an autosomal dominant neurocutaneous disorder affecting multiple organs. Tuberous sclerosis complex is caused by mutation in either one of the two disease-causing genes, TSC1 or TSC2, encoding for hamartin and tuberin, respectively. TSC2/PKD1 contiguous gene deletion syndrome is a very rare condition due to deletion involving both TSC2 and PKD1 genes. Tuberous sclerosis complex cannot be easily diagnosed since there is no pathognomonic feature, although there are consensus diagnostic criteria for that. Mutation analysis is useful and plays important roles. We report here two novel gross deletions of TSC2 gene in Malay patients with tuberous sclerosis complex and TSC2/PKD1 contiguous gene deletion syndrome, respectively.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
  13. Rani AQ, Malueka RG, Sasongko TH, Awano H, Lee T, Yagi M, et al.
    Mol Genet Metab, 2011 Jul;103(3):303-4.
    PMID: 21514860 DOI: 10.1016/j.ymgme.2011.04.002
    In Duchenne muscular dystrophy (DMD), identification of one nonsense mutation in the DMD gene has been considered an endpoint of genetic diagnosis. Here, we identified two closely spaced nonsense mutations in the DMD gene. In a Malaysian DMD patient two nonsense mutations (p.234S>X and p.249Q>X, respectively) were identified within exon 8. The proband's mother carried both mutations on one allele. Multiple mutations may explain the occasional discrepancies between genotype and phenotype in dystrophinopathy.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  14. Kruszka P, Addissie YA, Tekendo-Ngongang C, Jones KL, Savage SK, Gupta N, et al.
    Am J Med Genet A, 2020 Feb;182(2):303-313.
    PMID: 31854143 DOI: 10.1002/ajmg.a.61461
    Turner syndrome (TS) is a common multiple congenital anomaly syndrome resulting from complete or partial absence of the second X chromosome. In this study, we explore the phenotype of TS in diverse populations using clinical examination and facial analysis technology. Clinical data from 78 individuals and images from 108 individuals with TS from 19 different countries were analyzed. Individuals were grouped into categories of African descent (African), Asian, Latin American, Caucasian (European descent), and Middle Eastern. The most common phenotype features across all population groups were short stature (86%), cubitus valgus (76%), and low posterior hairline 70%. Two facial analysis technology experiments were conducted: TS versus general population and TS versus Noonan syndrome. Across all ethnicities, facial analysis was accurate in diagnosing TS from frontal facial images as measured by the area under the curve (AUC). An AUC of 0.903 (p < .001) was found for TS versus general population controls and 0.925 (p < .001) for TS versus individuals with Noonan syndrome. In summary, we present consistent clinical findings from global populations with TS and additionally demonstrate that facial analysis technology can accurately distinguish TS from the general population and Noonan syndrome.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  15. Chan SL, Suo C, Lee SC, Goh BC, Chia KS, Teo YY
    Pharmacogenomics J, 2012 Aug;12(4):312-8.
    PMID: 21383771 DOI: 10.1038/tpj.2011.7
    Genetic markers displaying highly significant statistical associations with complex phenotypes may not necessarily possess sufficient clinical validity to be useful. Understanding the contribution of these markers beyond readily available clinical biomarkers is particularly important in pharmacogenetics. We demonstrate the utility of genetic testing using the example of warfarin in a multi-ethnic setting comprising of three Asian populations that are broadly representative of the genetic diversity for half of the population in the world, especially as distinct interethnic differences in warfarin dose requirements have been previously established. We confirmed the roles of three well-established loci (CYP2C9, VKORC1 and CYP4F2) in explaining warfarin dosage variation in the three Asian populations. In addition, we assessed the relationship between ethnicity and the genotypes of these loci, observing strong correlations at VKORC1 and CYP4F2. Subsequently, we established the additional utility of these genetic factors in predicting warfarin dose beyond ethnicity and clinical biomarkers through performing a series of systematic cross-validation analyses of the relative predictive accuracies of various fixed-dose regimen, clinical and genetic models. Through a pharmacogenetics model for warfarin, we show the importance of genetic testing beyond readily available clinical biomarkers in predicting dose requirements, confirming the role of genetic profiling in personalized medicine.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  16. Lin PC, Lin WT, Yeh YH, Wung SF
    PLoS One, 2016;11(4):e0153044.
    PMID: 27058589 DOI: 10.1371/journal.pone.0153044
    BACKGROUND: There are racial and ethnic differences in the prevalence of gestational diabetes mellitus (GDM). Prior meta-analyses included small samples and very limited non-Caucasian populations. Studies to determine the relationship between transcription factor 7 like-2 (TCF7L2) rs7903146 polymorphism and risk of GDM in Hispanics/Latinos are recently available. The present meta-analysis was to estimate the impact of allele variants of TCF7L2 rs7903146 polymorphism on GDM susceptibility in overall population and racial/ethnic subgroups.

    METHODS: Literature was searched in multiple databases including PubMed, Web of Science, EMBASE (Ovid SP), Airiti Library, Medline Complete, and ProQuest up to July 2015. Allelic frequency for TCF7L2 rs7903146 polymorphism in GDM and control subjects was extracted and statistical analysis was performed using Comprehensive Meta-Analysis (CMA) 2.0 statistical software. The association between TCF7L2 rs7903146 polymorphism and GDM risk was assessed by pooled odd ratios (ORs) using five gene models (dominant, recessive, homozygote, heterozygote, and allele). Stratified analysis based on race/ethnicity was also conducted. The between-study heterogeneity and contribution of each single study to the final result was tested by Cochran Q test and sensitivity analyses, respectively. Publication bias was evaluated using Egger's linear regression test.

    RESULTS: A total of 16 studies involving 4,853 cases and 10,631 controls were included in this meta-analysis. Significant association between the T-allele of rs7903146 and GDM risk was observed under all genetic models, dominant model (OR = 1.44, 95% CI = 1.19-1.74), recessive model (OR = 1.35, 95% CI = 1.08-1.70), heterozygous model (OR = 1.31, 95% CI = 1.12-1.53), homozygous model (OR = 1.67, 95% CI = 1.31-2.12), and allele model (OR = 1.31, 95% CI = 1.12-1.53). Stratified analysis by race/ethnicity showed a statistically significant association between rs7903146 polymorphism and susceptibility to GDM under homozygous genetic model (TT versus CC) among whites, Hispanics/Latinos and Asians. Sensitivity analysis showed that the overall findings were robust to potentially influential decisions of the 16 studies included. No significant evidence for publication bias was observed in this meta-analysis for overall studies and subgroup studies.

    CONCLUSIONS: This meta-analysis showed that the T allele of TCF7L2 rs7903146 polymorphism was associated with susceptibility of GDM in overall population in white, Hispanic/Latino and Asian sub-groups. Asians with homozygous TT allele of rs7903146 polymorphism have highest risk of GDM (OR = 2.08) followed by Hispanics/Latinos (OR = 1.80) and whites (OR = 1.51). The highest and lowest frequency of T allele of rs7903146 was found in Malaysia and South Korea, respectively. Future studies are needed to profile genetic risk for GDM among high risk Asian and Pacific Islander subgroups.

    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  17. Maran S, Lee YY, Xu SH, Raj MS, Abdul Majid N, Choo KE, et al.
    J Dig Dis, 2013 Apr;14(4):196-202.
    PMID: 23241512 DOI: 10.1111/1751-2980.12023
    To identify gene polymorphisms that differ between Malays, Han Chinese and South Indians, and to identify candidate genes for the investigation of their role in protecting Malays from Helicobacter pylori (H. pylori) infection.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  18. Wang B, Ngoi S, Wang J, Chong SS, Lee CG
    Mol. Pharmacol., 2006 Jul;70(1):267-76.
    PMID: 16608921
    The MDR1 multidrug transporter represents one of the better characterized drug transporters that play an important role in protecting the body against xenobiotic insults. Single nucleotide polymorphisms (SNPs) and SNP haplotypes within this gene have been variously associated with differences in MDR1 expression/function, drug response as well as disease susceptibility. Nonetheless, the effect of polymorphisms at the MDR1 promoter region on its promoter activity remains less characterized. Through the examination of approximately 1.5 kilobases of MDR1 promoter region from five populations, including the Chinese, Malays, Indians, European Americans, and African Americans, we identified eight low-frequency SNPs, of which only two were polymorphic in at least four of the five populations examined. The other SNPs are mainly population-specific, the majority of which occur only in the African-American population. Recapitulation of the various combinations of SNP haplotypes in vitro in promoter-reporter assays revealed a few notable trends. The African and European American-specific haplotypes tended to result in enhanced MDR1 promoter activity only in the human embryonic kidney (HEK) 293 cell line. Haplotype GCTAACC, which occurs at variable frequencies in all the populations examined, with Asians having much lower frequencies (<2%) compared with the European Americans/African Americans (>4%), affected MDR1 promoter activity differently in different cell lines. Compared with the commonest haplotype, GCTA-ACC haplotype resulted in a significant decrease in MDR1 promoter activity in HeLa cells (P < 0.05) but a significant increase in the same promoter activity in HEK293 cells (P < 0.05). These results suggest that the MDR1 promoter region is largely invariant but that different haplotypes have differential effects on the MDR1 promoter activity in different cell lines.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  19. Nadarajan VS
    Transfusion, 2018 05;58(5):1189-1198.
    PMID: 29441590 DOI: 10.1111/trf.14538
    BACKGROUND: Antibodies to Mia , MUT, and Mur are among the most frequently identified alloantibodies in Southeast Asia. Understanding the characteristics of these antibodies in terms of induction and evanescence would aid in optimizing methods for their detection.

    STUDY DESIGN AND METHODS: Antibody testing results between the years 2013 and 2015 with relevant patient demographic data and red blood cell (RBC) transfusion history were retrieved. Cumulative alloimmunization incidence and evanescence to MUT and Mur were estimated by Kaplan-Meier analysis in relation to the number of RBC units transfused and time.

    RESULTS: Of 70,543 selected patients, 6186 nonalloimmunized subjects with available antibody testing results posttransfusion were identified. Cumulative alloimmunization incidence for MUT increased from 0.12% (95% confidence interval [CI], 0.03-0.21) to 0.63% (95% CI, 0.25-1.01), while for Mur it increased from 0.04% (95% CI, 0-0.09) to 0.42% (95% CI, 0.05-0.79) when a patient was transfused 2 RBC units as compared to 12. Both antibodies had high evanescence rates and at 1 year, anti-MUT and -Mur will be detected in only 45% (95% CI, 35%-57%) and 27% (95% CI, 17%-43%), respectively, of previously positive patients. MUT and Mur immunogenicity was estimated to be 1.7 and 1.2 times higher than E when their rate of evanescence was taken into account.

    CONCLUSION: Antibodies to MUT and Mur develop following multiple RBC exposures. Immunogenicity of MUT/Mur and evanescence rates of the corresponding antibodies is higher compared to anti-E. Appropriate selection of antibody screening cells is needed in view of the high prevalence, immunogenicity, and evanescence of the antibodies.

    Matched MeSH terms: Asian Continental Ancestry Group/genetics
  20. Prathiba R, Lopez CG, Usin FM
    Malays J Pathol, 2002 Dec;24(2):95-8.
    PMID: 12887167
    The Mi III phenotype of the Miltenberger subsystem (or GP Mur) is relatively common in Southeast Asia especially along the south-east coast lines of China and Taiwan. The term anti-"Mia" describes antibodies that react with the Mi III phenotype. Since the Peninsula Malaysian population is a multiethnic one with a significant proportion of Chinese, a study was conducted into the prevalence of anti-"Mia" in patients from its 3 major ethnic groups--Chinese, Malays and Indians, as well as the GP Mur phenotype in blood donors (healthy individuals). Blood samples from 33,716 patients (general and antenatal) were screened for anti-"Mia" from January 1999 to December 2000. The investigation for the GP Mur phenotype representing the corresponding sensitizing antigen complex was carried out in 655 blood donors. Serum anti-"Mia" antibody was found to be the third most commonly occurring antibody detected in our patients and was found in all the ethnic groups. The antibody was detected in 0.2% of 33,716 antenatal and general patients with a prevalence in Chinese of 0.3%, Malay 0.2% and Indian 0.2%. The detection of these antibodies in the ethnic groups other than the Chinese is a noteworthy finding as such information is not well documented. The GP Mur red cell phenotype was detected in 15/306 (4.9%) of Chinese blood donors, a lower prevalence than in Chinese populations in other countries in the region. More significant was its detection in the Malays (2.8%) and the Indians (3.0%). Because of the many reports of clinical problems associated with the "Mia" antibody including the causation of fetal hydrops and haemolytic transfusion reactions, it is warranted that the GP Mur red cells be included in screening panels for group and screen procedures in countries with a significant Asian population.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links