Displaying publications 1 - 20 of 361 in total

Abstract:
Sort:
  1. Bohari R, Jin Hin C, Matusop A, Abdullah MR, Ney TG, Benjamin S, et al.
    PLoS One, 2020;15(4):e0230910.
    PMID: 32236146 DOI: 10.1371/journal.pone.0230910
    Several sites, Z-7L, Z-5 and Z-14, in Sibu district, Sarawak, Malaysia, experienced intense dengue transmission in 2014 that continued into 2015. A pilot study with Bacillus thuringiensis israelensis (Bti) to control Aedes aegypti (L.) and Ae. albopictus (Skuse) was evaluated in Z-7L, a densely populated site of 12 ha. Bti treatments were conducted weekly from epidemiology week (EW) 24/2015 for 4 weeks, followed by fortnight treatments for 2 months, in addition to the routine control activities. Bti was directly introduced into potable containers and the outdoor artificial and natural containers were treated via a wide area spray application method using a backpack mister. Aedes indices significantly reduced during the treatment and post treatment phases, compared to the control site, Z-5 (p<0.05). A 51 fold reduction in the incidence rate per 100,000 population (IR) was observed, with one case in 25 weeks (EW 29-52). In Z-5 and Z-14, control sites, a 6 fold reduction in the IR was observed from EW 29-52. However, almost every week there were dengue cases in Z-14 and until EW 44 in Z-5. In 2016, dengue cases resurfaced in Z-7L from EW 4. Intensive routine control activities were conducted, but the IR continued to escalate. The wide area Bti spray misting of the outdoor containers was then included from EW 27 on fortnight intervals. A 6 fold reduction in IR was observed in the Bti treatment phase (EW 32-52) with no successive weekly cases after EW 37. However, in the control sites, there were dengue cases throughout the year from EW 1-52, particularly in Z-14. We feel that the wide area Bti spray application method is an integral component in the control program, in conjunction with other control measures carried out, to suppress the vector population in outdoor cryptic containers and to interrupt the disease transmission.
    Matched MeSH terms: Bacillus thuringiensis*
  2. Chan XY, Chen JW, Adrian TG, Hong KW, Chang CY, Yin WF, et al.
    Genome Announc, 2017 Mar 30;5(13).
    PMID: 28360153 DOI: 10.1128/genomeA.00067-17
    Bacillus sp. is a Gram-positive bacterium that is commonly found in seawater. In this study, the genome of marine Bacillus sp. strain G3(2015) was sequenced using MiSeq. The fosfomycin resistant gene fosB was identified upon bacterial genome annotation.
    Matched MeSH terms: Bacillus
  3. Mohd Zin NB, Mohamad Yusof B, Oslan SN, Wasoh H, Tan JS, Ariff AB, et al.
    AMB Express, 2017 Dec;7(1):131.
    PMID: 28651380 DOI: 10.1186/s13568-017-0433-y
    In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars. The highest extracellular lipase activity of 140 U/mL has been achieved in submerged fermentation with acid pre-treated coconut dregs. The lipase was found to be active over a wide range of temperatures and pHs. The activity of lipase can be generally increased by the presence of detergent ingredients such as Tween-80, cetyltrimethylammonium bromide, hydrogen peroxide and phosphate per sulphate. The great compatibility of lipase in commercial detergents has also underlined its potential as an additive ingredient in biodetergent formulations.
    Matched MeSH terms: Bacillus
  4. Goh KM, Liew KJ, Chai KP, Illias RM
    Methods Mol Biol, 2017;1498:385-396.
    PMID: 27709591
    Protein engineering is a very useful tool for probing structure-function relationships in proteins. Specifically, site-directed mutagenized proteins can provide useful insights into structural, binding and catalytic mechanisms of a protein, particularly when coupled with crystallization. In this chapter, we describe two protocols for performing site-directed mutagenesis of any protein-coding sequence, namely, megaprimer PCR and overlapping extension PCR (OE-PCR). We use as an example how these two SDM methods enhanced the function of a cyclodextrin glucosyltransferase (CGTase) from Bacillus lehensis strain G1.
    Matched MeSH terms: Bacillus/genetics
  5. Al-Mijalli SH, El Hachlafi N, Jeddi M, Abdallah EM, Assaggaf H, Qasem A, et al.
    Biomed Pharmacother, 2023 Nov;167:115609.
    PMID: 37801906 DOI: 10.1016/j.biopha.2023.115609
    Cupressus sempervirens is a known traditional plant used to manage various ailments, including cancer, inflammatory and infectious diseases. In this investigation, we aimed to explore the chemical profile of Cupressus sempervirens essential oil (CSEO) as well as their antibacterial mode of action. The volatile components were characterized using gas chromatography coupled to a mass spectrometer (GC-MS). The results revealed remarkable antibacterial properties of EO derived from C. sempervirens. GC-MS analysis indicated that C. sempervirens EO characterized by δ-3-carene (47.72%), D-limonene (5.44%), β-pinene (4.36%), β-myrcene (4.02%). The oil exhibited significant inhibitory effects against a range of bacteria, including Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 13048, Bacillus cereus (Clinical isolate), Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922. These inhibitory effects surpassed those of conventional antibiotics. Furthermore, the EO demonstrated low minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs), indicating its bactericidal nature (MBC/MIC < 4.0). Time-kill kinetics analysis showed that CSEO was particularly effective at 2 × MIC doses, rapidly reduced viable count of B. subtilis and P. aeruginosa within 8 h. This suggests that the oil acts quickly and efficiently. The cell membrane permeability test further demonstrated the impact of CSEO on the relative conductivity of B. subtilis and P. aeruginosa, both at 2 × MIC concentrations. These observations suggest that EO disrupts the bacterial membrane, thereby influencing their growth and viability. Additionally, the cell membrane integrity test indicated that the addition of CSEO to bacterial cultures resulted in the significant release of proteins from the bacterial cells. This suggests that EO affects the structural integrity of the bacterial cells. Furthermore, the anti-biofilm assay confirmed the efficacy of CSEO as a potent anti-biofilm agent. It demonstrated the oil's ability to inhibit quorum sensing, a crucial mechanism for biofilm formation, and its competitive performance compared to the tested antibiotics.
    Matched MeSH terms: Bacillus subtilis
  6. Lee HL, Gregorio ER, Khadri MS, Seleena P
    J Am Mosq Control Assoc, 1996 Dec;12(4):651-5.
    PMID: 9046471
    Evaluation of the effectiveness of Bacillus thuringiensis ssp. israelensis (B.t.i.) against mosquito larvae dispersed by ultralow volume (ULV) spraying was conducted in simulated field trials. Effectiveness was measured using 3 different indicators: larval mortality, colony-forming unit enumeration, and droplet analysis. B.t.i. was dispersed with a ULV generator using 2 different flow rates: 0.3 and 0.5 liter/min on 2 different days. Based on the results of this study, it can be concluded that an output of 0.3 liter/min is effective for controlling Aedes aegypti. although a dosage of 0.5 liter/min can be used when high residual activity is desired. For Culex quinquefasciatus control, both dosages were effective but with low residual activity. For Anopheles maculatus control, only a discharge rate of 0.5 liter/min was effective with low residual activity. B.t.i. application at both dosages penetrated tires well, indicating that B.t.i. ULV application is an effective method for controlling container-inhabiting mosquitoes. Good coverage of target area and penetration were attributed to satisfactory droplet profiles.
    Matched MeSH terms: Bacillus thuringiensis*
  7. Nurul ‘Izzah Mohd Sarmin, Noraziah M. Zin, Nik Marzuki Sidik, Franco CM, Ng KT, Kaewkla O
    Sains Malaysiana, 2012;41:547-551.
    Sembilan aktinomiset endofit telah berjaya dipencilkan daripada pokok yang mempunyai nilai ubatan dari beberapa tempat di Semenanjung Malaysia. Pencilan tersebut telah dikenalpasti melalui pemerhatian morfologi, amplifikasi gen 16S rRNA dan analisis penjujukan 16S rRNA. Saringan awal terhadap aktiviti antimikrob telah dilakukan dengan menggunakan teknik calitan plat. Pembentukan miselium substrat dan aerial, warna jisim spora, pigmen larut dan morfologi rantai spora pada semua pencilan menyerupai Streptomyces sp. dan Microbispora sp. Analisis filogenetik jujukan separa 16S rRNA mendapati pencilan SUK 08, SUK 10 dan SUK 15 saling berkaitan dengan Streptomyceseurythermus ATCC 14975T. Walau bagaimanapun pencilan ini telah dipencilkan dari tumbuhan yang berbeza. Pencilan ini didapati mempunyai aktiviti antimikrob terhadap bakteria dan kulat kajian. Empat pencilan aktif iaitu SUK 08, SUK10, SUK 12 dan SUK 15 berupaya untuk membunuh dan merencat sehingga 100% satu atau lebih organisma patogen seperti Bacillus subtilis, Aspergillus fumigatus, Aspergillus niger, Fusarium solani, Rhizoctonia solani dan Trichoderma viride. Kajian ini mengesahkan bahawa tumbuhan etnoperubatan adalah sumber pencarian aktinomiset endofit bioaktif yang berupaya menjadi sumber novel dalam pencarian agen antibakteria dan antimikotik.
    Matched MeSH terms: Bacillus subtilis
  8. Saallah S, Naim MN, Mokhtar MN, Abu Bakar NF, Gen M, Lenggoro IW
    Enzyme Microb Technol, 2014 Oct;64-65:52-9.
    PMID: 25152417 DOI: 10.1016/j.enzmictec.2014.06.002
    In this study, the potential of electrohydrodynamic atomization or electrospraying to produce nanometer-order CGTase particles from aqueous suspension was demonstrated. CGTase enzyme was prepared in acetate buffer solution (1% v/v), followed by electrospraying in stable Taylor cone-jet mode. The deposits were collected on aluminium foil (collector) at variable distances from the tip of spraying needle, ranging from 10 to 25 cm. The Coulomb fission that occurs during electrospraying process successfully transformed the enzyme to the solid state without any functional group deterioration. The functional group verification was conducted by FTIR analysis. Comparison between the deposit and the as-received enzyme in dry state indicates almost identical spectra. By increasing the distance of the collector from the needle tip, the average particle size of the solidified enzyme was reduced from 200±117 nm to 75±34 nm. The average particle sizes produced from the droplet fission were in agreement with the scaling law models. Enzyme activity analysis showed that the enzyme retained its initial activity after the electrospraying process. The enzyme particles collected at the longest distance (25 cm) demonstrated the highest enzyme activity, which indicates that the activity was controlled by the enzyme particle size.
    Matched MeSH terms: Bacillus/enzymology
  9. Seder N, Abu Bakar MH, Abu Rayyan WS
    PMID: 33488102 DOI: 10.2147/AABC.S292143
    Introduction: Malaysian stingless bee honey (Trigona) has been aroused as a potential antimicrobial compound with antibiofilm activity. The capability of the gram-negative bacillus P. aeruginosa to sustain a fatal infection is encoded in the bacterium genome.

    Methods: In the current study, a transcriptome investigation was performed to explore the mechanism underlying the biofilm dispersal of P. aeruginosa after the exposure to Trigona honey.

    Results: Microarray analysis of the Pseudomonas biofilm treated by 20% Trigona honey has revealed a down-regulation of 3478 genes among the 6085 screened genes. Specifically, around 13.5% of the down-regulated genes were biofilm-associated genes. The mapping of the biofilm-associated pathways has shown an ultimate decrease in the expression levels of the D-GMP signaling pathway and diguanylate cyclases (DGCs) genes responsible for c-di-GMP formation.

    Conclusion: We predominantly report the lowering of c-di-GMP through the down-regulation of DGC genes as the main mechanism of biofilm inhibition by Trigona honey.

    Matched MeSH terms: Bacillus
  10. Ahmad NS, Abdullah N, Yasin FM
    Toxicol Rep, 2020;7:693-699.
    PMID: 32528857 DOI: 10.1016/j.toxrep.2020.04.015
    Toxicity effect of reduced graphene oxide (rGO) and titanium dioxide (TiO2) nanomaterials (NMs) on Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria was assessed. For both strains, study demonstrated that the toxicity was time and concentration dependent which led to reduction in growth rate and cell death. Upon NMs exposure, an instantaneous cell death in E. coli culture was observed. This is in contrast with B. subtilis, in which the culture growth remained in the log phase; however their growth rate constant,

    μ
    g

    was reduced by ∼70%. The discrepancy between E. coli and B. subtilis was due to strain-specific response upon contact with NMs. TEM, SEM and EDX analysis revealed direct physical surface-surface interaction, as evidence from the adherence of NMs on the cell surface.
    Matched MeSH terms: Bacillus subtilis
  11. Abed SA, Sirat HM, Taher M
    EXCLI J, 2013;12:404-12.
    PMID: 26600731
    The antioxidant activity and the total phenolic content, as well as the influence of petroleum ether, chloroform and methanol extracts from the leaves of Gynotroches axillaris, on microorganisms were studied. The total phenolic contents were evaluated by using Folin-Ciocalteu reagent and the obtained values ranged from 70.0 to 620 mg GAE/g. The efficiency of antioxidation, which was identified through the scavenging of free radical DPPH, exhibited that the highest IC50 was in the methanolic extract (44.7 µg/mL) as compared to the standard ascorbic acid (25.83 µg/mL) and to standard BHT (17.2 µg/mL). In vitro antimicrobial activity of extracts was tested against Gram-negative bacteria, Gram-positive bacteria and fungi. Methanol extract showed activity in the range (225-900 μg/mL) with both types, while petroleum ether and chloroform extracts were only active with Bacillus subtilis. The three extracts strongly inhibited all fungi with activity 225-450 μg/mL. The toxicity test against brine shrimps indicated that all extracts were non-toxic with LC50 value more than 1000 µg/mL. The finding of this study supports the safety of these extracts to be used in medical treatments.
    Matched MeSH terms: Bacillus subtilis
  12. Seleena P, Lee HL, Chiang YF
    J Vector Ecol, 2001 Jun;26(1):110-3.
    PMID: 11469179
    Matched MeSH terms: Bacillus thuringiensis/pathogenicity*
  13. Al-Hada NM, Kamari HM, Baqer AA, Shaari AH, Saion E
    Nanomaterials (Basel), 2018 Apr 17;8(4).
    PMID: 29673195 DOI: 10.3390/nano8040250
    SnO₂ nanoparticle production using thermal treatment with tin(II) chloride dihydrate and polyvinylpyrrolidone capping agent precursor materials for calcination was investigated. Samples were analyzed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), diffuse UV-vis reflectance spectra, photoluminescence (PL) spectra and the electron spin resonance (ESR). XRD analysis found tetragonal crystalline structures in the SnO₂ nanoparticles generated through calcination. EDX and FT-IR spectroscopy phase analysis verified the derivation of the Sn and O in the SnO₂ nanoparticle samples from the precursor materials. An average nanoparticle size of 4–15.5 nm was achieved by increasing calcination temperature from 500 °C to 800 °C, as confirmed through TEM. The valence state and surface composition of the resulting nanoparticle were analyzed using XPS. Diffuse UV-vis reflectance spectra were used to evaluate the optical energy gap using the Kubelka-Munk equation. Greater calcination temperature resulted in the energy band gap falling from 3.90 eV to 3.64 eV. PL spectra indicated a positive relationship between particle size and photoluminescence. Magnetic features were investigated through ESR, which revealed the presence of unpaired electrons. The magnetic field resonance decreases along with an increase of the g-factor value as the calcination temperature increased from 500 °C to 800 °C. Finally, Escherichia coli ATCC 25922 Gram (–ve) and Bacillus subtilis UPMC 1175 Gram (+ve) were used for in vitro evaluation of the tin oxide nanoparticle’s antibacterial activity. This work indicated that the zone of inhibition of 22 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
    Matched MeSH terms: Bacillus subtilis
  14. MyJurnal
    Genetically modified organisms (GMO) are increased remarkably from year to year and the estimated global area cultivated with genetically modified (GM) crops reached 125 million hectares in year 2008. However, insect resistance maize based on Bacillus thuringienses (Bt) is of the most cultivated GM crop in worldwide. Bacillus thuringiensis (Bt) is an aerobic, gram-positive bacterium that synthesize one or more Cry protein that are toxic to various types crop and forestry insects pests. To date, several cry genes have been introduced into GM plant to combat with various type of insect. Worldwide commercialization of GM crops has raised the customers’ concern about the Biosafety issues, and thus, many countries have implemented the labeling legislations for GM food and their derivatives. In this study, we introduced the quantitative analysis method based on the recombinant plasmid DNA as calibrators that can be used to determine the percentage of GMO content in various types of food and feed samples. Therefore, we have reported 7.5% (6/80) of the samples were contained StarLink maize and 1.25% (1/80) samples were contained Bt176 maize. Additionally, the percentage of GM content in each positive sample were further determined with the developed quantitative method. The percentage of the StarLink corns that present in the positive samples were varies from 0.09% to 2.53% and Bt176 corn that present in the positive sample was 16.90%. The present study demonstrated that the recombinant plasmid DNA that used in quantitative real-time method as good alternative quantitative analysis of GM content.
    Matched MeSH terms: Bacillus thuringiensis
  15. Xing SC, Mi JD, Chen JY, Xiao L, Wu YB, Liang JB, et al.
    Sci Total Environ, 2019 Nov 25;693:133490.
    PMID: 31635006 DOI: 10.1016/j.scitotenv.2019.07.296
    Lead is among the most common toxic heavy metals and its contamination is of great public concern. Bacillus coagulans is the probiotic which can be considered as the lead absorption sorbent to apply in the lead contaminant water directly or indirectly. A better understanding of the lead resistance and tolerance mechanisms of B. coagulans would help further its development and utilization. Wild-type Bacillus coagulans strain R11 isolated from a lead mine, was acclimated to lead-containing culture media over 85 passages, producing two lead-adapted strains, and the two strains shown higher lead intracellular accumulation ability (38.56-fold and 19.36-fold) and reducing ability (6.94-fold and 7.44-fold) than that of wild type. Whole genome sequencing, genome resequencing, and comparative transcriptomics identified lead resistance and tolerance process significantly involved in these genes which regulated glutathione and sulfur metabolism, flagellar formation and metal ion transport pathways in the lead-adapted strains, elucidating the relationships among the mechanisms regulating lead deposition, deoxidation, and motility and the evolved tolerance to lead. In addition, the B. coagulans mutants tended to form flagellar and chemotaxis systems to avoid lead ions rather than export it, suggesting a new resistance strategy. Based on the present results, the optimum lead concentration in environment should be considered when employed B. coagulans as the lead sorbent, due to the bacteria growth ability decreased in high lead concentration and physiology morphology changed could reduce the lead removal effectiveness. The identified deoxidization and compound secretion genes and pathways in B. coagulans R11 also are potential genetic engineering candidates for synthesizing glutathione, cysteine, methionine, and selenocompounds.
    Matched MeSH terms: Bacillus coagulans/physiology*
  16. Ramli NS, Eng Guan C, Nathan S, Vadivelu J
    PLoS One, 2012;7(9):e44104.
    PMID: 22970167 DOI: 10.1371/journal.pone.0044104
    Burkholderia pseudomallei, a Gram-negative saprophytic bacterium, is the causative agent of the potentially fatal melioidosis disease in humans. In this study, environmental parameters including temperature, nutrient content, pH and the presence of glucose were shown to play a role in in vitro biofilm formation by 28 B. pseudomallei clinical isolates, including four isolates with large colony variants (LCVs) and small colony variants (SCVs) morphotypes. Enhanced biofilm formation was observed when the isolates were tested in LB medium, at 30 °C, at pH 7.2, and in the presence of as little as 2 mM glucose respectively. It was also shown that all SVCs displayed significantly greater capacity to form biofilms than the corresponding LCVs when cultured in LB at 37 °C. In addition, octanoyl-homoserine lactone (C(8)-HSL), a quorum sensing molecule, was identified by mass spectrometry analysis in bacterial isolates referred to as LCV CTH, LCV VIT, SCV TOM, SCV CTH, 1 and 3, and the presence of other AHL's with higher masses; decanoyl-homoserine lactone (C(10)-HSL) and dodecanoyl-homoserine lactone (C(12)-HSL) were also found in all tested strain in this study. Last but not least, we had successfully acquired two Bacillus sp. soil isolates, termed KW and SA respectively, which possessed strong AHLs degradation activity. Biofilm formation of B. pseudomallei isolates was significantly decreased after treated with culture supernatants of KW and SA strains, demonstrating that AHLs may play a role in B. pseudomallei biofilm formation.
    Matched MeSH terms: Bacillus/drug effects; Bacillus/physiology
  17. Chang MS, Ho BC, Chan KL
    PMID: 1981631
    The measurement of the ultimate effects of the microbial insecticides on mosquito density is best obtained by assessment of adult populations. The main aims of this study are: (1) to assess the effect of Bacillus thuringiensis israelensis (Bti) FC Skeetal and Bactimos briquettes on the emergence rate of Mansonia bonneae developed from the introduced first-instar stage larvae and (2) to measure the effect of these two formulations of insecticides on Mansonia adult populations emerging from the natural breeding plots. Bti Skeetal and Bactimos briquettes at the lower applied dosages of 2.3 kg/ha and 1 briquette case/20 m2 respectively achieved 39-40% pupation rates and 31.5-34.2% adult emergence rates. At these low applied dosages, there was little or no direct effect on pupation from the surviving larvae and thereafter on the emergence of adults from the pupae. A two-fold increase in dosage, however, produced a drastic decline in the pupation rate and adult emergence rate. The rates dropped to 6.5% (pupation) and 4.3% (adult emergence) of the total larvae for Bactimos briquettes and to merely 1.5% (pupation) and 1.3% (adult emergence) of the total larvae for Skeetal. In studying the effect of Bti on the field populations of Mansonia mosquitos, two plots each were treated with Bactimos at 1 briquette case/10 m2 and Skeetal at 4.6 kg/ha. A wooden pyramid-shaped screened cage was placed on a cluster of host plants for a period of 2 weeks to trap the emerging adult mosquitoes. There were a total of 24 clusters of host plants in each plot.(ABSTRACT TRUNCATED AT 250 WORDS)
    Matched MeSH terms: Bacillus thuringiensis
  18. Abdul Manas NH, Pachelles S, Mahadi NM, Illias RM
    PLoS One, 2014;9(9):e106481.
    PMID: 25221964 DOI: 10.1371/journal.pone.0106481
    A maltogenic amylase (MAG1) from alkaliphilic Bacillus lehensis G1 was cloned, expressed in Escherichia coli, purified and characterised for its hydrolysis and transglycosylation properties. The enzyme exhibited high stability at pH values from 7.0 to 10.0. The hydrolysis of β-cyclodextrin (β-CD) produced malto-oligosaccharides of various lengths. In addition to hydrolysis, MAG1 also demonstrated transglycosylation activity for the synthesis of longer malto-oligosaccharides. The thermodynamic equilibrium of the multiple reactions was shifted towards synthesis when the reaction conditions were optimised and the water activity was suppressed, which resulted in a yield of 38% transglycosylation products consisting of malto-oligosaccharides of various lengths. Thin layer chromatography and high-performance liquid chromatography analyses revealed the presence of malto-oligosaccharides with a higher degree of polymerisation than maltoheptaose, which has never been reported for other maltogenic amylases. The addition of organic solvents into the reaction further suppressed the water activity. The increase in the transglycosylation-to-hydrolysis ratio from 1.29 to 2.15 and the increased specificity toward maltopentaose production demonstrated the enhanced synthetic property of the enzyme. The high transglycosylation activity of maltogenic amylase offers a great advantage for synthesising malto-oligosaccharides and rare carbohydrates.
    Matched MeSH terms: Bacillus/enzymology*
  19. Nur Fatihah Nordin, Hasnah Begum Said Gulam Khan, Kazi Ahsan Jamil, Nurul ‘Izzah Mohd Sarmin
    MyJurnal
    Introduction:Staphylococcus aureus is a Gram-positive staphylococci that form biofilms. Bacteria that dwell in bio-films tend to be highly resistant towards the action of antibiotics. S. aureus is a main cause of infections in the oral cavity such as angular cheilitis, endodontic infections, osteomyelitis of the jaw, parotitis and oral mucositis. Previous studies reported that S. aureus also spread to the other parts of the body through the circulatory system, which may lead to chronic infections. Hence the search for new antibacterial agents remains high and needs urgent attention to treat this problem. Plants offer a rich source of antimicrobial agents and bioactive compounds. In this study, aque-ous oil palm leaf extracts (OPLE) has been used as an alternative antibacterial agent against oral infections mainly caused by Staphylococcus aureus. Many studies report the potential use of oil palm leaf extracts in treating bacterial infections such as Escherichia coli, Salmonella sp., Staphylococcus aureus (isolated from other part of the body), Pseudomonas aeruginosa and Bacillus sp. Although previous studies have documented the antimicrobial properties of oil palm leaf extracts, to date no study has been reported on the effect of oil palm leaf extract on oral microbes. Methods: The agar diffusion method, minimum inhibitory concentration (MIC) and minimal bactericidal concen-tration (MBC) assay were conducted in order to observe the antibacterial activity of aqueous oil palm leaf extract. The crystal violet assay was used to determine the anti-biofilm activity of the extracts. Chlorhexidine and deionised distilled water were used as the positive and negative control respectively. For agar diffusion method, the diameter of inhibition zone was measured. Results: The inhibition zone of the tested bacteria was observed between 0-20mm. The MIC and MBC assay were used to know the lowest concentrations of the extract that inhibit the growth and killed the tested bacteria respectively. The MIC and MBC values for the tested bacteria were observed between 0-7.813mg/mL. While for anti-biofilm assays, OPLE aqueous extract acts as a potent anti-biofilm agent with dual actions, pre-venting and eradicating the biofilm of the tested bacteria. Conclusion: In conclusion, the tested plant extracts could serve as alternative natural antibacterial and anti-biofilm agent against oral infections.
    Matched MeSH terms: Bacillus
  20. Altowayti WAH, Algaifi HA, Bakar SA, Shahir S
    Ecotoxicol Environ Saf, 2019 May 15;172:176-185.
    PMID: 30708229 DOI: 10.1016/j.ecoenv.2019.01.067
    Globally, the contamination of water with arsenic is a serious health issue. Recently, several researches have endorsed the efficiency of biomass to remove As (III) via adsorption process, which is distinguished by its low cost and easy technique in comparison with conventional solutions. In the present work, biomass was prepared from indigenous Bacillus thuringiensis strain WS3 and was evaluated to remove As (III) from aqueous solution under different contact time, temperature, pH, As (III) concentrations and adsorbent dosages, both experimentally and theoretically. Subsequently, optimal conditions for As (III) removal were found; 6 (ppm) As (III) concentration at 37 °C, pH 7, six hours of contact time and 0.50 mg/ml of biomass dosage. The maximal As (III) loading capacity was determined as 10.94 mg/g. The equilibrium adsorption was simulated via the Langmuir isotherm model, which provided a better fitting than the Freundlich model. In addition, FESEM-EDX showed a significant change in the morphological characteristic of the biomass following As (III) adsorption. 128 batch experimental data were taken into account to create an artificial neural network (ANN) model that mimicked the human brain function. 5-7-1 neurons were in the input, hidden and output layers respectively. The batch data was reserved for training (75%), testing (10%) and validation process (15%). The relationship between the predicted output vector and experimental data offered a high degree of correlation (R2 = 0.9959) and mean squared error (MSE; 0.3462). The predicted output of the proposed model showed a good agreement with the batch work with reasonable accuracy.
    Matched MeSH terms: Bacillus thuringiensis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links