Displaying publications 1 - 20 of 926 in total

Abstract:
Sort:
  1. Xi Loh EY, Fauzi MB, Ng MH, Ng PY, Ng SF, Ariffin H, et al.
    ACS Appl Mater Interfaces, 2018 Nov 21;10(46):39532-39543.
    PMID: 30372014 DOI: 10.1021/acsami.8b16645
    The evaluation of the interaction of cells with biomaterials is fundamental to establish the suitability of the biomaterial for a specific application. In this study, the properties of bacterial nanocellulose/acrylic acid (BNC/AA) hydrogels fabricated with varying BNC to AA ratios and electron-beam irradiation doses were determined. The manner these hydrogel properties influence the behavior of human dermal fibroblasts (HDFs) at the cellular and molecular levels was also investigated, relating it to its application both as a cell carrier and wound dressing material. Swelling, hardness, adhesive force (wet), porosity, and hydrophilicity (dry) of the hydrogels were dependent on the degree of cross-linking and the amount of AA incorporated in the hydrogels. However, water vapor transmission rate, pore size, hydrophilicity (semidry), and topography were similar between all formulations, leading to a similar cell attachment and proliferation profile. At the cellular level, the hydrogel demonstrated rapid cell adhesion, maintained HDFs viability and morphology, restricted cellular migration, and facilitated fast transfer of cells. At the molecular level, the hydrogel affected nine wound-healing genes (IL6, IL10, MMP2, CTSK, FGF7, GM-CSF, TGFB1, COX2, and F3). The findings indicate that the BNC/AA hydrogel is a potential biomaterial that can be employed as a wound-dressing material to incorporate HDFs for the acceleration of wound healing.
    Matched MeSH terms: Bacteria/metabolism
  2. Ahmed D, Anwar A, Khan AK, Ahmed A, Shah MR, Khan NA
    AMB Express, 2017 Nov 21;7(1):210.
    PMID: 29164404 DOI: 10.1186/s13568-017-0515-x
    Biofilm formation by pathogenic bacteria is one of the major threats in hospital related infections, hence inhibiting and eradicating biofilms has become a primary target for developing new anti-infection approaches. The present study was aimed to develop novel antibiofilm agents against two Gram-positive bacteria; Staphylococcus aureus (ATCC 43300) and Streptococcus mutans (ATCC 25175) using gold nanomaterials conjugated with 3-(diphenylphosphino)propionic acid (Au-LPa). Gold nanomaterials with different sizes as 2-3 nm small and 9-90 nm (50 nm average size) large were stabilized by LPa via different chemical synthetic strategies. The nanomaterials were fully characterized using atomic force microscope (AFM), transmission electron microscope, ultraviolet-visible absorption spectroscopy, and Fourier transformation infrared spectroscopy. Antibiofilm activity of Au-LPa nanomaterials was tested using LPa alone, Au-LPa and unprotected gold nanomaterials against the both biofilm-producing bacteria. The results showed that LPa alone did not inhibit biofilm formation to a significant extent below 0.025 mM, while conjugation with gold nanomaterials displayed manifold enhanced antibiofilm potential against both strains. Moreover, it was also observed that the antibiofilm potency of the Au-LPa nanomaterials varies with size variations of nanomaterials. AFM analysis of biofilms further complemented the assay results and provided morphological aspects of the antibiofilm action of Au-LPa nanomaterials.
    Matched MeSH terms: Gram-Positive Bacteria
  3. Ali SM, Khan NA, Sagathevan K, Anwar A, Siddiqui R
    AMB Express, 2019 Jun 28;9(1):95.
    PMID: 31254123 DOI: 10.1186/s13568-019-0816-3
    The discovery of novel antimicrobials from animal species under pollution is an area untapped. Chinese red-headed centipede is one of the hardiest arthropod species commonly known for its therapeutic value in traditional Chinese medicine. Here we determined the antibacterial activity of haemolymph and tissue extracts of red-headed centipede, Scolopendra subspinipes against a panel of Gram-positive and Gram-negative bacteria. Lysates exhibited potent antibacterial activities against a broad range of bacteria tested. Chemical characterization of biologically active molecules was determined via liquid chromatography mass spectrometric analysis. From crude haemolymph extract, 12 compounds were identified including: (1) L-Homotyrosine, (2) 8-Acetoxy-4-acoren-3-one, (3) N-Undecylbenzenesulfonic acid, (4) 2-Dodecylbenzenesulfonic acid, (5) 3H-1,2-Dithiole-3-thione, (6) Acetylenedicarboxylate, (7) Albuterol, (8) Tetradecylamine, (9) Curcumenol, (10) 3-Butylidene-7-hydroxyphthalide, (11) Oleoyl Ethanolamide and (12) Docosanedioic acid. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses and parasites, that possibly explain centipede's survival in harsh and polluted environments. Further research in characterization, molecular mechanism of action and in vivo testing of active molecules is needed for the development of novel antibacterials.
    Matched MeSH terms: Gram-Negative Bacteria
  4. Sampath Kumar NS, Sarbon NM, Rana SS, Chintagunta AD, Prathibha S, Ingilala SK, et al.
    AMB Express, 2021 Mar 01;11(1):36.
    PMID: 33646462 DOI: 10.1186/s13568-021-01194-9
    Psidium guajava L. (guava) is predominantly grown throughout the world and known for its medicinal properties in treating various diseases and disorders. The present work focuses on aqueous extraction of bioactive compounds from the guava leaf and its utilization in the formulation of jelly to improve the public health. The guava leaf extract has been used in the preparation of jelly with pectin (1.5 g), sugar (28 g) and lemon juice (2 mL). The prepared guava leaf extract jelly (GJ) and the control jelly (CJ, without extract) were subjected to proximate, nutritional and textural analyses besides determination of antioxidant and antimicrobial activities. GJ was found to contain carbohydrate (45.78 g/100 g), protein (3.0 g/100 g), vitamin C (6.15 mg/100 g), vitamin B3 (2.90 mg/100 g) and energy (120.6 kcal). Further, the texture analysis of CJ and GJ indicated that both the jellies showed similar properties emphasizing that the addition of guava leaf extract does not bring any change in the texture properties of jelly. GJ exhibited antimicrobial activity against various bacteria ranging from 11.4 to 13.6 mm. Similarly, GJ showed antioxidant activity of 42.38% against DPPH radical and 33.45% against hydroxyl radical. Mass spectroscopic analysis of aqueous extract confirmed the presence of esculin, quercetin, gallocatechin, 3-sinapoylquinic acid, gallic acid, citric acid and ellagic acid which are responsible for antioxidant and antimicrobial properties.
    Matched MeSH terms: Bacteria
  5. Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, et al.
    Acta Diabetol, 2019 May;56(5):493-500.
    PMID: 30903435 DOI: 10.1007/s00592-019-01312-x
    The human gut is a home for more than 100 trillion bacteria, far more than all other microbial populations resident on the body's surface. The human gut microbiome is considered as a microbial organ symbiotically operating within the host. It is a collection of different cell lineages that are capable of communicating with each other and the host and has an ability to undergo self-replication for its repair and maintenance. As the gut microbiota is involved in many host processes including growth and development, an imbalance in its ecological composition may lead to disease and dysfunction in the human. Gut microbial degradation of nutrients produces bioactive metabolites that bind target receptors, activating signalling cascades, and modulating host metabolism. This review covers current findings on the nutritional and pharmacological roles of selective gut microbial metabolites, short-chain fatty acids, methylamines and indoles, as well as discussing nutritional interventions to modulate the microbiome.
    Matched MeSH terms: Bacteria
  6. Wei LS, Wee W, Siong JY, Syamsumir DF
    Acta Med Iran, 2011;49(10):670-4.
    PMID: 22071643
    Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.
    Matched MeSH terms: Bacteria/drug effects; Bacteria/growth & development
  7. Lee JM, Yek SH, Wilson RF, Rahman S
    Acta Trop, 2020 Dec;212:105683.
    PMID: 32888935 DOI: 10.1016/j.actatropica.2020.105683
    Understanding the diversity and dynamics of the microbiota within the mosquito holobiome is of great importance to apprehend how the microbiota modulates various complex processes and interactions. This study examined the bacterial composition of Aedes albopictus across land use type and mosquito sex in the state of Selangor, Malaysia using 16S rRNA sequencing. The bacterial community structure in mosquitoes was found to be influenced by land use type and mosquito sex, with the environment and mosquito diet respectively identified to be the most likely sources of microbes. We found that approximately 70% of the microbiota samples were dominated by Wolbachia and removing Wolbachia from analyses revealed the relatively even composition of the remaining bacterial microbiota. Furthermore, microbial interaction network analysis highlighted the prevalence of co-exclusionary patterns in all networks regardless of land use and mosquito sex, with Wolbachia exhibiting co-exclusionary interactions with other residential bacteria such as Xanthomonas, Xenophilus and Zymobacter.
    Matched MeSH terms: Bacteria/isolation & purification*
  8. Lee HY, Loong SK, Ya'cob Z, Low VL, Teoh BT, Ahmad-Nasrah SN, et al.
    Acta Trop, 2021 Jul;219:105923.
    PMID: 33878305 DOI: 10.1016/j.actatropica.2021.105923
    Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies.
    Matched MeSH terms: Bacteria/drug effects; Bacteria/genetics; Bacteria/growth & development*; Bacteria/isolation & purification*; Drug Resistance, Bacterial
  9. Zepeda Mendoza ML, Roggenbuck M, Manzano Vargas K, Hansen LH, Brunak S, Gilbert MTP, et al.
    Acta Vet Scand, 2018 Oct 11;60(1):61.
    PMID: 30309375 DOI: 10.1186/s13028-018-0415-3
    BACKGROUND: Vultures have adapted the remarkable ability to feed on carcasses that may contain microorganisms that would be pathogenic to most other animals. The holobiont concept suggests that the genetic basis of such adaptation may not only lie within their genomes, but additionally in their associated microbes. To explore this, we generated shotgun DNA sequencing datasets of the facial skin and large intestine microbiomes of the black vulture (Coragyps atratus) and the turkey vulture (Cathartes aura). We characterized the functional potential and taxonomic diversity of their microbiomes, the potential pathogenic challenges confronted by vultures, and the microbial taxa and genes that could play a protective role on the facial skin and in the gut.

    RESULTS: We found microbial taxa and genes involved in diseases, such as dermatitis and pneumonia (more abundant on the facial skin), and gas gangrene and food poisoning (more abundant in the gut). Interestingly, we found taxa and functions with potential for playing beneficial roles, such as antilisterial bacteria in the gut, and genes for the production of antiparasitics and insecticides on the facial skin. Based on the identified phages, we suggest that phages aid in the control and possibly elimination, as in phage therapy, of microbes reported as pathogenic to a variety of species. Interestingly, we identified Adineta vaga in the gut, an invertebrate that feeds on dead bacteria and protozoans, suggesting a defensive predatory mechanism. Finally, we suggest a colonization resistance role through biofilm formation played by Fusobacteria and Clostridia in the gut.

    CONCLUSIONS: Our results highlight the importance of complementing genomic analyses with metagenomics in order to obtain a clearer understanding of the host-microbial alliance and show the importance of microbiome-mediated health protection for adaptation to extreme diets, such as scavenging.

    Matched MeSH terms: Bacteria/classification; Bacteria/genetics; Bacteria/isolation & purification*
  10. Bayat H, Naderi F, Khan AH, Memarnejadian A, Rahimpour A
    Adv Pharm Bull, 2018 Nov;8(4):591-597.
    PMID: 30607331 DOI: 10.15171/apb.2018.067
    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein nuclease (Cas) is identified as an adaptive immune system in archaea and bacteria. Type II of this system, CRISPR-Cas9, is the most versatile form that has enabled facile and efficient targeted genome editing. Viral infections have serious impacts on global health and conventional antiviral therapies have not yielded a successful solution hitherto. The CRISPR-Cas9 system represents a promising tool for eliminating viral infections. In this review, we highlight 1) the recent progress of CRISPR-Cas technology in decoding and diagnosis of viral outbreaks, 2) its applications to eliminate viral infections in both pre-integration and provirus stages, and 3) various delivery systems that are employed to introduce the platform into target cells.
    Matched MeSH terms: Bacteria
  11. El Enshasy H, Malik K, Malek RA, Othman NZ, Elsayed EA, Wadaan M
    PMID: 26907552
    Human gastrointestinal microbiota (HGIM) incorporate a large number of microbes from different species. Anaerobic bacteria are the dominant organisms in this microbial consortium and play a crucial role in human health. In addition to their functional role as the main source of many essential metabolites for human health, they are considered as biotherapeutic agents in the regulation of different human metabolites. They are also important in the prevention and in the treatment of different physical and mental diseases. Bifidobacteria are the dominant anaerobic bacteria in HGIM and are widely used in the development of probiotic products for infants, children and adults. To develop bifidobacteria-based bioproducts, therefore, it is necessary to develop a large-scale biomass production platform based on a good understanding of the ideal medium and bioprocessing parameters for their growth and viability. In addition, high cell viability should be maintained during downstream processing and storage of probiotic cell powder or the final formulated product. In this work we review the latest information about the biology, therapeutic activities, cultivation and industrial production of bifidobacteria.
    Matched MeSH terms: Bacteria, Anaerobic/classification; Bacteria, Anaerobic/growth & development*; Bacteria, Anaerobic/isolation & purification
  12. Latha LY, Sasidharan S, Zuraini Z, Suryani S, Shirley L, Sangetha S, et al.
    Afr J Tradit Complement Altern Med, 2006 Aug 28;4(1):59-63.
    PMID: 20162073
    The extract of the Psophocarpus tetragonolobus pods has been tested for antimicrobial activity in a disk diffusion assay on eight human pathogenic bacteria and two human pathogenic yeasts. The extracts of P. tetragonolobus possessed antimicrobial activity against all tested strains. The ethanolic extract of P. tetragonolobus pods was further tested for in vivo brine shrimp lethality test and in vitro sheep erythrocyte cytotoxic assay. The brine shrimp lethality test exhibited no significant toxicity (LC(50)=1.88 mg/ml) against Artemia salina, whereas sheep erythrocyte test showed significant toxicity. The reason for haemolysis of erythrocyte was discussed. The P. tetragonolobus extract with high LC(50) value signified that this plant is not toxic to human. This result also suggested that the ethanolic extract of P. tetragonolobus pods is potential source for novel antimicrobial compounds.
    Matched MeSH terms: Anti-Bacterial Agents; Bacteria
  13. Ng WJ, Ken KW, Kumar RV, Gunasagaran H, Chandramogan V, Lee YY
    PMID: 25435614
    BACKGROUND: Different researches on therapeutic effects of honey have been conducted in different regions; however the study on the potential antibacterial activity of Malaysian honey is still limited. In this study, antibacterial activities of different monofloral honey samples were tested against several common human pathogenic bacteria.

    MATERIALS AND METHODS: The well-diffusion method, minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) techniques were employed to investigate the putative antibacterial activity of Malaysian monofloral honey from Koompassia excelsa (Becc.) Taub (Tualang), Melaleuca cajuputi Powell (Gelam) and Durio zibethinus Murr. (Durian). Honey samples were tested against Staphylococcus aureus ATCC6518 and ATCC25923, Staphylococcus epidermidis ATCC12228, Enterococcus faecium LMG16192, Enterococcus faecalis LMG16216 and ATCC29212, Escherichia coli ATCC25922, Salmonella enterica serovar Typhimurium ATCC14028 and Klebsiella pneumoniae ATCC13883.

    RESULTS: Marked variations were observed in the antibacterial activity of these honey samples. Durian honey failed to produce substantial antibacterial activity, whereas Tualang and Gelam honey showed a spectrum of antibacterial activity with their growth inhibitory effects against all of the tested bacterial species including vancomycin-resistant enterococci (VRE).

    CONCLUSION: Present findings suggested Gelam honey possesses highest antibacterial effect among the tested Malaysian honey samples.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Bacteria/drug effects*; Bacteria/growth & development; Bacterial Infections/microbiology*
  14. Castro-Mejía JL, Khakimov B, Krych Ł, Bülow J, Bechshøft RL, Højfeldt G, et al.
    Aging Cell, 2020 03;19(3):e13105.
    PMID: 31967716 DOI: 10.1111/acel.13105
    When humans age, changes in body composition arise along with lifestyle-associated disorders influencing fitness and physical decline. Here we provide a comprehensive view of dietary intake, physical activity, gut microbiota (GM), and host metabolome in relation to physical fitness of 207 community-dwelling subjects aged +65 years. Stratification on anthropometric/body composition/physical performance measurements (ABPm) variables identified two phenotypes (high/low-fitness) clearly linked to dietary intake, physical activity, GM, and host metabolome patterns. Strikingly, despite a higher energy intake high-fitness subjects were characterized by leaner bodies and lower fasting proinsulin-C-peptide/blood glucose levels in a mechanism likely driven by higher dietary fiber intake, physical activity and increased abundance of Bifidobacteriales and Clostridiales species in GM and associated metabolites (i.e., enterolactone). These factors explained 50.1% of the individual variation in physical fitness. We propose that targeting dietary strategies for modulation of GM and host metabolome interactions may allow establishing therapeutic approaches to delay and possibly revert comorbidities of aging.
    Matched MeSH terms: Bacteria/genetics; DNA, Bacterial/genetics; DNA, Bacterial/isolation & purification
  15. Zulkifly S, Hanshew A, Young EB, Lee P, Graham ME, Graham ME, et al.
    Am J Bot, 2012 Sep;99(9):1541-52.
    PMID: 22947483 DOI: 10.3732/ajb.1200161
    The filamentous chlorophyte Cladophora produces abundant nearshore populations in marine and freshwaters worldwide, often dominating periphyton communities and producing nuisance growths under eutrophic conditions. High surface area and environmental persistence foster such high functional and taxonomic diversity of epiphytic microfauna and microalgae that Cladophora has been labeled an ecological engineer. We tested the hypotheses that (1) Cladophora supports a structurally and functionally diverse epiphytic prokaryotic microbiota that influences materials cycling and (2) mutualistic host-microbe interactions occur. Because previous molecular sequencing-based analyses of the microbiota of C. glomerata found as western Lake Michigan beach drift had identified pathogenic associates such as Escherichia coli, we also asked if actively growing lentic C. glomerata harbors known pathogens.
    Matched MeSH terms: Bacteria/classification; Bacteria/genetics; Bacteria/ultrastructure
  16. Ariffin N, Hasan H, Ramli N, Ibrahim NR, Taib F, Rahman AA, et al.
    Am J Infect Control, 2012 Aug;40(6):572-5.
    PMID: 22854380 DOI: 10.1016/j.ajic.2012.02.032
    Intrahospital variations in antimicrobial profiles may be related to many factors. This study compared causative agents of nosocomial bloodstream infections between a neonatal intensive care unit (NICU) that adopted a ward-tailored antibiotic policy and adult intensive care units (ICUs). Data on organisms from blood cultures obtained from the respective wards between 2005 and 2009 were analyzed. Compared with the adult ICUs, the NICU had a higher frequency of Enterobacteriacae and lower frequencies of typical hospital-acquired pathogens (eg, Klebsiella pneumoniae, 17.4% vs 10.0% [P < .001]; Acinetobacter baumannii, 3.9% vs 11.6% [P < .001]). Antibiotic resistance of gram-negative organisms was also significantly lower in the NICU, including resistance to imipenem (5.7% vs 32.1%; P < .001), amikacin (8.8% vs 30.3%), and ceftriaxone (36.1% vs 74.6%; P < .001). This could possibly be due to the ward-tailored antibiotic policy adopted by the NICU but not by the other ICUs.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Bacteria/classification; Bacteria/drug effects*; Bacteria/isolation & purification; Drug Resistance, Bacterial*
  17. Siddiqui R, Maciver SK, Anuar TS, Khan NA
    Am J Vet Res, 2023 Aug 01;84(8).
    PMID: 37353216 DOI: 10.2460/ajvr.23.03.0061
    OBJECTIVE: The objective of this study was to determine bacterial flora throughout the gastrointestinal tract of a saltwater crocodile (Crocodylus porosus) using 16S rRNA gene analysis.

    ANIMALS: A convention on international trade in endangered species (CITES) of wild fauna and flora registered crocodile farm, provided a healthy male saltwater crocodile, Crocodylus porosus for this study.

    PROCEDURES: Three samples were taken from the oral cavity, 3 samples from the proximal region of the small intestine (jejunum), and 3 samples from the distal part of the large intestine of the gastrointestinal tract of C. porosus were obtained using sterile cotton swabs. Next, swabs were placed in 15 mL sterile centrifuge tubes, individually, and kept on ice for immediate transportation to the laboratory. This was followed by 16S rRNA gene analysis using specific primers (341F-CCTAYGGGRBGCASCAG, and 806R-GGACTACNNGGGTATCTAAT). Amplicons were sequenced on Illumina paired-end platform, and bacterial gastrointestinal communities, the relative abundance of taxa, and principal component and coordinate analysis were performed.

    RESULTS: The findings revealed that bacterial community structures from differing regions exhibited several differences. The number of observed bacterial operational taxonomic units (OTUs) was 153 in the oral cavity, 239 in the small intestine, and 119 in the large intestine of C. porosus. The small intestine reflects the highest richness. In contrast, the large intestine exhibited the least richness of microbial communities. Relative abundance of taxa showed that Proteobacteria, Bacteroidetes, and Firmicutes were dominant in all 3 sample sites. Pseudomonas differed in the oral cavity and the large intestine, with the latter exhibiting less distribution of Pseudomonas. Stenotrophomonas and Castellaniella were higher in the oral cavity, while the relative abundance of Comamonas and Salmonella was higher in the small intestine. Conversely, the relative abundance of Salmonella and Pannonibacter was augmented in the large intestine.

    CLINICAL RELEVANCE: For the first time, this study demonstrates the bacterial diversity along the segments of the gastrointestinal tract of C. porosus. Bacterial flora varies throughout the gastrointestinal tract. Although further studies using large cohorts are warranted; however, our findings suggest that microbiome composition may have the potential as a biomarker in determining the overall health and well-being of C. porosus.

    Matched MeSH terms: Bacteria/genetics
  18. Pathmanathan SG, Lawley B, McConnell M, Baird MA, Tannock GW
    Anaerobe, 2020 Feb;61:102112.
    PMID: 31629806 DOI: 10.1016/j.anaerobe.2019.102112
    Immuno-modulatory effects of infant gut bacteria were tested on poly(I:C) stimulated HT-29 intestinal epithelial cells. Blautia producta, Bacteroides vulgatus, Bacteroides fragilis and Bacteroides thetaiotaomicron decreased transcription of poly(I:C)-induced inflammatory genes. Modulation of basal level and poly(I:C)-induced IL-8 secretion varied between bacterial species, and between heat treated and non-heat treated bacterial cells.
    Matched MeSH terms: Bacteria*
  19. Chen Q, Narayanan K
    Anal Biochem, 2011 Jul 1;414(1):169-71.
    PMID: 21396906 DOI: 10.1016/j.ab.2011.03.006
    The phage N15 protelomerase enzyme (TelN) is essential for the replication of its genome by resolution of its telRL domain, located within a telomerase occupancy site (tos), into hairpin telomeres. Isolation of TelN for in vitro processing of tos, however, is a highly complex process, requiring multiple purification steps. In this study a simplified protocol for crude total protein extraction is described that retains the tos-cleaving activity of TelN for at least 4 weeks, greatly simplifying in vitro testing of its activity. This protocol may be extended for functional analysis of other phage and bacterial proteins, particularly DNA-processing enzymes.
    Matched MeSH terms: Bacteria/virology
  20. Xiao SS, Mi JD, Mei L, Liang J, Feng KX, Wu YB, et al.
    Animals (Basel), 2021 Mar 16;11(3).
    PMID: 33809729 DOI: 10.3390/ani11030840
    The intestinal microbiota is increasingly recognized as an important component of host health, metabolism and immunity. Early gut colonizers are pivotal in the establishment of microbial community structures affecting the health and growth performance of chickens. White Lohmann layer is a common commercial breed. Therefore, this breed was selected to study the pattern of changes of microbiota with age. In this study, the duodenum, caecum and colorectum contents of white Lohmann layer chickens from same environment control farm were collected and analyzed using 16S rRNA sequencing to explore the spatial and temporal variations in intestinal microbiota. The results showed that the diversity of the microbial community structure in the duodenum, caecum and colorectum increased with age and tended to be stable when the layer chickens reached 50 days of age and the distinct succession patterns of the intestinal microbiota between the duodenum and large intestine (caecum and colorectum). On day 0, the diversity of microbes in the duodenum was higher than that in the caecum and colorectum, but the compositions of intestinal microbes were relatively similar, with facultative anaerobic Proteobacteria as the main microbes. However, the relative abundance of facultative anaerobic bacteria (Escherichia) gradually decreased and was replaced by anaerobic bacteria (Bacteroides and Ruminococcaceae). By day 50, the structure of intestinal microbes had gradually become stable, and Lactobacillus was the dominant bacteria in the duodenum (41.1%). The compositions of dominant microbes in the caecum and colorectum were more complex, but there were certain similarities. Bacteroides, Odoribacter and Clostridiales vadin BB60 group were dominant. The results of this study provide evidence that time and spatial factors are important factors affecting the intestinal microbiota composition. This study provides new knowledge of the intestinal microbiota colonization pattern of layer chickens in early life to improve the intestinal health of layer chickens.
    Matched MeSH terms: Bacteria; Bacteria, Anaerobic; Proteobacteria
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links