Displaying publications 1 - 20 of 156 in total

Abstract:
Sort:
  1. Jaganathan SK, Mani MP
    3 Biotech, 2018 Aug;8(8):327.
    PMID: 30073112 DOI: 10.1007/s13205-018-1356-2
    In this study, a wound dressing based on polyurethane (PU) blended with copper sulphate nanofibers was developed using an electrospinning technique. The prepared PU and PU nanocomposites showed smooth fibers without any bead defects. The prepared nanocomposites showed smaller fiber (663 ± 156.30 nm) and pore (888 ± 70.93 nm) diameter compared to the pristine PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). The interaction of PU with copper sulphate was evident in the infrared spectrum through hydrogen-bond formation. Thermal analysis displayed enhanced weight residue at higher temperature suggesting interaction of PU with copper sulphate. The contact angle measurements revealed the hydrophilic nature of the prepared nanocomposites (71° ± 2.309°) compared with pure PU (100° ± 0.5774°). The addition of copper sulphate into the PU matrix increased the surface roughness, as revealed in the atomic force microscopy (AFM) analysis. Mechanical testing demonstrated the enhanced tensile strength behavior of the fabricated nanocomposites (18.58 MPa) compared with the pristine PU (7.12 MPa). The coagulation assays indicated the enhanced blood compatibility of the developed nanocomposites [activated partial thromboplastin time (APTT)-179 ± 3.606 s and partial thromboplastin time (PT)-105 ± 2.646 s] by showing a prolonged blood clotting time compared with the pristine PU (APTT-147.7 ± 3.512 s and PT-84.67 ± 2.517 s). Furthermore, the hemolysis and cytotoxicity studies suggested a less toxicity nature of prepared nanocomposites by displaying low hemolytic index and enhanced cell viability rates compared with the PU membrane. It was observed that the fabricated novel wound dressing possesses better physicochemical and enhanced blood compatibility properties, and may be utilized for wound-healing applications.
    Matched MeSH terms: Bandages
  2. Usman A, Razak IA, Fun HK, Chantrapromma S, Zhang Y, Xu JH
    Acta Crystallogr C, 2002 Apr;58(Pt 4):O239-41.
    PMID: 11932554
    The crystal of the title compound, C(20)H(17)NO(4), which was used for collecting intensity data was twinned. Each of the two crystallographically independent molecules in the asymmetric unit has a planar indole moiety perpendicular to a planar oxopropyl moiety. The distribution of the bonds at the central C atom joining the oxopropyl, phenyl and indole substituents is also planar. The packing is stabilized by intermolecular C-H* * *O interactions, as well as by dipole-dipole and van der Waals interactions.
    Matched MeSH terms: Bandages
  3. Usman A, Fun HK, Chantrapromma S, Zhu HL, Wang XJ
    Acta Crystallogr C, 2003 Mar;59(Pt 3):m97-9.
    PMID: 12711770
    In the ternary title compound, catena-poly[[silver(I)-mu-ethylenediamine-kappa(2)N:N'] 3-nitrobenzoate monohydrate], [[Ag(C(2)H(8)N(2))](C(7)H(4)NO(4)) x H(2)O](n), the Ag atom is bicoordinated in a linear configuration by two different N atoms from two symmetry-related ethylenediamine ligands, thus giving linear polymeric chains with an [-Ag-N-C-C-N-](n) backbone running parallel to the a axis. In the crystal packing, these linear chains are interconnected by N-H...O and O-H...O hydrogen bonds to form layers parallel to the ab plane.
    Matched MeSH terms: Bandages
  4. Shanmuga Sundara Raj S, Surya Prakash Rao H, Sakthikumar L, Fun HK
    Acta Crystallogr C, 2000 Sep;56 (Pt 9):1113-4.
    PMID: 10986500
    In the crystal structure of the title compound, C(3)H(3)NO(2)S(2), the four-membered C(2)S(2) ring is planar, as is the whole molecule. The short intramolecular S.O distance of 2.687 (2) A shows the five-atom system to be conjugated. The molecules pack as a two-dimensional network in the (010) plane through short intermolecular S.O [2.900 (2) and 3.077 (2) A] interactions.
    Matched MeSH terms: Bandages
  5. Tan YS, Yeo CI, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Aug 1;71(Pt 8):886-9.
    PMID: 26396747 DOI: 10.1107/S2056989015012682
    The title compound, [Fe(C17H14PS)2], is a second monoclinic polymorph (P21/c, with Z' = 1) of the previously reported monoclinic (C2/c, with Z' = 1/2) form [Fang et al. (1995 ▸). Polyhedron, 14, 2403-2409]. In the new form, the S atoms lie to the same side of the mol-ecule with the pseudo S-P⋯P-S torsion angle being -53.09 (3)°. By contrast to this almost syn disposition, in the C2/c polymorph, the Fe atom lies on a centre of inversion so that the S atoms are strictly anti, with a pseudo-S-P⋯P-S torsion angle of 180°. The significant difference in mol-ecular conformation between the two forms does not result in major perturbations in the P=S bond lengths nor in the distorted tetra-hedral geometries about the P atoms. The crystal packing of the new monoclinic polymorph features weak Cp-C-H⋯π(phen-yl) inter-actions consolidating linear supra-molecular chains along the a axis. These pack with no directional inter-actions between them.
    Matched MeSH terms: Bandages
  6. Ravoof TB, Tiekink ER, Omar SA, Begum SZ, Tahir MI
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1071-2.
    PMID: 26870503 DOI: 10.1107/S205698901502407X
    In the title di-thio-carbazate compound, C17H19N3S2, the central CN2S2 residue is essentially planar (r.m.s. deviation = 0.0288 Å) and forms dihedral angles of 9.77 (8) and 77.47 (7)° with the substituted-pyridyl and p-tolyl rings, respectively, indicating a highly twisted mol-ecule; the dihedral angle between the rings is 85.56 (8)°. The configuration about the C=N bond is Z, which allows for the formation of an intra-molecular N-H⋯N(pyrid-yl) hydrogen bond. The packing features tolyl-methyl-C-H⋯N(imine), pyridyl-C-H⋯π(tol-yl) and π-π inter-actions [between pyridyl rings with a distance = 3.7946 (13) Å], which generates jagged supra-molecular layers that stack along the b axis with no directional inter-actions between them.
    Matched MeSH terms: Bandages
  7. Zaldi NB, Hussen RSD, Lee SM, Halcovitch NR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Jun 01;73(Pt 6):842-848.
    PMID: 28638641 DOI: 10.1107/S2056989017006855
    The title compound, [Sn(CH3)2(C5H8NOS2)2], has the Sn(IV) atom bound by two methyl groups which lie over the weaker Sn-S bonds formed by two asymmetrically chelating di-thio-carbamate ligands so that the coordination geometry is skew-trapezoidal bipyramidal. The most prominent feature of the mol-ecular packing are secondary Sn⋯S inter-actions [Sn⋯S = 3.5654 (7) Å] that lead to centrosymmetric dimers. These are connected into a three-dimensional architecture via methyl-ene-C-H⋯S and methyl-C-H⋯O(morpholino) inter-actions. The Sn⋯S inter-actions are clearly evident in the Hirshfeld surface analysis of the title compound along with a number of other inter-molecular contacts.
    Matched MeSH terms: Bandages
  8. Sim A, Chidan Kumar CS, Kwong HC, Then LY, Win YF, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jun 01;73(Pt 6):896-900.
    PMID: 28638654 DOI: 10.1107/S2056989017007460
    In the title compounds, (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(2-meth-oxy-phen-yl)prop-2-en-1-one], C26H22O4 (I), (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(3-meth-oxy-phen-yl)prop-2-en-1-one], C26H22O4 (II) and (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one], C28H26O6 (III), the asymmetric unit consists of a half-mol-ecule, completed by crystallographic inversion symmetry. The dihedral angles between the central and terminal benzene rings are 56.98 (8), 7.74 (7) and 7.73 (7)° for (I), (II) and (III), respectively. In the crystal of (I), mol-ecules are linked by pairs of C-H⋯π inter-actions into chains running parallel to [101]. The packing for (II) and (III), features inversion dimers linked by pairs of C-H⋯O hydrogen bonds, forming R2(2)(16) and R2(2)(14) ring motifs, respectively, as parts of [201] and [101] chains, respectively.
    Matched MeSH terms: Bandages
  9. Tan YJ, Yeo CI, Halcovitch NR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):493-499.
    PMID: 28435705 DOI: 10.1107/S205698901700353X
    The title compound, (C6H11)3PS (systematic name: tri-cyclo-hexyl-λ(5)-phosphane-thione), is a triclinic (P-1, Z' = 1) polymorph of the previously reported ortho-rhom-bic form (Pnma, Z' = 1/2) [Kerr et al. (1977 ▸). Can. J. Chem. 55, 3081-3085; Reibenspies et al. (1996 ▸). Z. Kristallogr. 211, 400]. While conformational differences exist between the non-symmetric mol-ecule in the triclinic polymorph, cf. the mirror-symmetric mol-ecule in the ortho-rhom-bic form, these differences are not chemically significant. The major feature of the mol-ecular packing in the triclinic polymorph is the formation of linear chains along the a axis sustained by methine-C-H⋯S(thione) inter-actions. The chains pack with no directional inter-actions between them. The analysis of the Hirshfeld surface for both polymorphs indicates a high degree of similarity, being dominated by H⋯H (ca 90%) and S⋯H/H⋯S contacts.
    Matched MeSH terms: Bandages
  10. Mohamad R, Awang N, Kamaludin NF, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Feb 01;73(Pt 2):260-265.
    PMID: 28217355 DOI: 10.1107/S2056989017001098
    The complete mol-ecule of the title compound, [Sn(C4H9)2(C5H10NOS2)2], is generated by a crystallographic mirror plane, with the SnIV atom and the two inner methyl-ene C atoms of the butyl ligands lying on the mirror plane; statistical disorder is noted in the two terminal ethyl groups, which deviate from mirror symmetry. The di-thio-carbamate ligand coordinates to the metal atom in an asymmetric mode with the resulting C2S4 donor set defining a skew trapezoidal bipyramidal geometry; the n-butyl groups are disposed to lie over the longer Sn-S bonds. Supra-molecular chains aligned along the a-axis direction and sustained by methyl-ene-C-H⋯S(weakly coordinating) inter-actions feature in the mol-ecular packing. A Hirshfeld surface analysis reveals the dominance of H⋯H contacts in the crystal.
    Matched MeSH terms: Bandages
  11. Suwardi SA, Lee SM, Lo KM, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Mar 01;73(Pt 3):429-433.
    PMID: 28316825 DOI: 10.1107/S2056989017002705
    The title compound, [Cd2(C8H8NS2)4], is a centrosymmetric dimer with both chelating and μ2-tridentate di-thio-carbamate ligands. The resulting S5 donor set defines a Cd(II) coordination geometry inter-mediate between square-pyramidal and trigonal-bipyramidal, but tending towards the former. The packing features C-H⋯S and C-H⋯π inter-actions, which generate a three-dimensional network. The influence of these inter-actions, along with intra-dimer π-π inter-actions between chelate rings, has been investigated by an analysis of the Hirshfeld surface.
    Matched MeSH terms: Bandages
  12. Yeo CI, Tan SL, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Oct 1;72(Pt 10):1446-1452.
    PMID: 27746938
    The title compound, [Au(C9H10NOS)(C18H15P)], features a near linear P-Au-S arrangement defined by phosphane P and thiol-ate S atoms with the minor distortion from the ideal [P-Au-S is 177.61 (2)°] being traced in part to the close intra-molecular approach of an O atom [Au⋯O = 3.040 (2) Å]. The packing features supra-molecular layers lying parallel to (011) sustained by a combination of C-H⋯π and π-π [inter-centroid distance = 3.8033 (17) Å] inter-actions. The mol-ecular structure and packing are compared with those determined for a previously reported hemi-methanol solvate [Kuan et al. (2008 ▸). CrystEngComm, 10, 548-564]. Relatively minor differences are noted in the conformations of the rings in the Au-containing mol-ecules. A Hirshfeld surface analysis confirms the similarity in the packing with the most notable differences relating to the formation of C-H⋯S contacts between the constituents of the solvate.
    Matched MeSH terms: Bandages
  13. Shawkataly OB, Sirat SS, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Nov 01;73(Pt 11):1652-1657.
    PMID: 29152343 DOI: 10.1107/S2056989017014517
    In the title cluster complex hexane solvate, [Ru6(C30H32P2)(CO)22]·C6H14, two Ru3(CO)11 fragments are linked by a Ph2P(CH2)6PPh2 bridge with the P atoms equatorially disposed with respect to the Ru3 triangle in each case; the hexane solvent mol-ecule is statistically disordered. The Ru⋯Ru distances span a relatively narrow range, i.e. 2.8378 (4) to 2.8644 (4) Å. The hexyl chain within the bridge has an all-trans conformation. In the mol-ecular packing, C-H⋯O inter-actions between cluster mol-ecules, and between cluster and hexane solvent mol-ecules lead to a three-dimensional architecture. In addition, there are a large number of C≡O⋯π(arene) inter-actions in the crystal. The importance of the carbonyl groups in establishing the packing is emphasized by the contribution of 53.4% to the Hirshfeld surface by O⋯H/H⋯O contacts.
    Matched MeSH terms: Bandages
  14. Tan SL, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Mar 01;75(Pt 3):308-318.
    PMID: 30867939 DOI: 10.1107/S2056989019001129
    The analysis of atom-to-atom and/or residue-to-residue contacts remains a favoured mode of analysing the mol-ecular packing in crystals. In this contribution, additional tools are highlighted as methods for analysis in order to complement the 'crystallographer's tool', PLATON [Spek (2009). Acta Cryst. D65, 148-155]. Thus, a brief outline of the procedures and what can be learned by using Crystal Explorer [Spackman & Jayatilaka (2009). CrystEngComm11, 19-23] is presented. Attention is then directed towards evaluating the nature, i.e. attractive/weakly attractive/repulsive, of specific contacts employing NCIPLOT [Johnson et al. (2010). J. Am. Chem. Soc. 132, 6498-6506]. This is complemented by a discussion of the calculation of energy frameworks utilizing the latest version of Crystal Explorer. All the mentioned programs are free of charge and straightforward to use. More importantly, they complement each other to give a more complete picture of how mol-ecules assemble in mol-ecular crystals.
    Matched MeSH terms: Bandages
  15. Jotani MM, Lee SM, Lo KM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 May 01;75(Pt 5):624-631.
    PMID: 31110800 DOI: 10.1107/S2056989019004742
    The crystal and mol-ecular structures of C14H12Cl2, (I), and C14H12Br2, (II), are described. The asymmetric unit of (I) comprises two independent mol-ecules, A and B, each disposed about a centre of inversion. Each mol-ecule approximates mirror symmetry [the Cb-Cb-Ce-Ce torsion angles = -83.46 (19) and 95.17 (17)° for A, and -83.7 (2) and 94.75 (19)° for B; b = benzene and e = ethyl-ene]. By contrast, the mol-ecule in (II) is twisted, as seen in the dihedral angle of 59.29 (11)° between the benzene rings cf. 0° in (I). The mol-ecular packing of (I) features benzene-C-H⋯π(benzene) and Cl⋯Cl contacts that lead to an open three-dimensional (3D) architecture that enables twofold 3D-3D inter-penetration. The presence of benzene-C-H⋯π(benzene) and Br⋯Br contacts in the crystal of (II) consolidate the 3D architecture. The analysis of the calculated Hirshfeld surfaces confirm the influence of the benzene-C-H⋯π(benzene) and X⋯X contacts on the mol-ecular packing and show that, to a first approximation, H⋯H, C⋯H/H⋯C and C⋯X/X⋯C contacts dominate the packing, each contributing about 30% to the overall surface in each of (I) and (II). The analysis also clearly differentiates between the A and B mol-ecules of (I).
    Matched MeSH terms: Bandages
  16. Harrison WT, Plater MJ, Yin LJ
    Acta Crystallogr E Crystallogr Commun, 2016 Mar 1;72(Pt 3):407-11.
    PMID: 27006818 DOI: 10.1107/S2056989016002942
    The title compounds, C14H12O, (I), and C15H11BrO2, (II), were prepared and characterized as part of our studies of potential new photo-acid generators. In (I), which crystallizes in the ortho-rhom-bic space group Pca21, compared to P21/n for the previously known monoclinic polymorph [Cornella & Martin (2013 ▸). Org. Lett. 15, 6298-6301], the dihedral angle between the aromatic rings is 4.35 (6)° and the OH group is disordered over two sites in a 0.795 (3):0.205 (3) ratio. In the crystal of (I), mol-ecules are linked by O-H⋯π inter-actions involving both the major and minor -OH disorder components, generating [001] chains as part of the herringbone packing motif. The asymmetric unit of (II) contains two mol-ecules with similar conformations (weighted r.m.s. overlay fit = 0.183 Å). In the crystal of (II), both mol-ecules form carboxyl-ate inversion dimers linked by pairs of O-H⋯O hydrogen bonds, generating R 2 (2)(8) loops in each case. The dimers are linked by pairs of C-H⋯O hydrogen bonds to form [010] chains.
    Matched MeSH terms: Bandages
  17. Syed S, Jotani MM, Halim SN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Mar 1;72(Pt 3):391-8.
    PMID: 27006815 DOI: 10.1107/S2056989016002735
    The asymmetric unit of the title 2:1 co-crystal, 2C8H8O2·C14H14N4O2, comprises an acid mol-ecule in a general position and half a di-amide mol-ecule, the latter being located about a centre of inversion. In the acid, the carb-oxy-lic acid group is twisted out of the plane of the benzene ring to which it is attached [dihedral angle = 28.51 (8)°] and the carbonyl O atom and methyl group lie approximately to the same side of the mol-ecule [hy-droxy-O-C-C-C(H) torsion angle = -27.92 (17)°]. In the di-amide, the central C4N2O2 core is almost planar (r.m.s. deviation = 0.031 Å), and the pyridyl rings are perpendicular, lying to either side of the central plane [central residue/pyridyl dihedral angle = 88.60 (5)°]. In the mol-ecular packing, three-mol-ecule aggregates are formed via hy-droxy-O-H⋯N(pyrid-yl) hydrogen bonds. These are connected into a supra-molecular layer parallel to (12[Formula: see text]) via amide-N-H⋯O(carbon-yl) hydrogen bonds, as well as methyl-ene-C-H⋯O(amide) inter-actions. Significant π-π inter-actions occur between benzene/benzene, pyrid-yl/benzene and pyrid-yl/pyridyl rings within and between layers to consolidate the three-dimensional packing.
    Matched MeSH terms: Bandages
  18. Lee SL, Tan AL, Young DJ, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Jun 1;72(Pt 6):849-53.
    PMID: 27308057 DOI: 10.1107/S205698901600832X
    The title compound, C13H10N2O2 [also called 1-(pyridin-2-yl)-3-(pyridin-3-yl)propane-1,3-dione], features an almost planar (r.m.s. deviation = 0.0095 Å) central C3O2 core consolidated by an intra-molecular hy-droxy-O-H⋯O(carbon-yl) hydrogen bond. Twists are evident in the mol-ecule, as seen in the dihedral angles between the central core and the 2- and pyridin-3-yl rings of 8.91 (7) and 15.88 (6)°, respectively. The conformation about the C=C bond [1.3931 (17) Å] is Z, and the N atoms lie to the same side of the mol-ecule. In the mol-ecular packing, supra-molecular chains along the a axis are mediated by π(pyridin-2-yl)-π(pyridin-3-yl) inter-actions [inter-centroid distance = 3.7662 (9) Å]. The observation that chains pack with no directional inter-actions between them is consistent with the calculated electrostatic potential, which indicates that repulsive inter-actions dominate.
    Matched MeSH terms: Bandages
  19. Mohamad R, Awang N, Kamaludin NF, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Oct 1;72(Pt 10):1480-1487.
    PMID: 27746946
    The crystal and mol-ecular structures of two tri-phenyl-tin di-thio-carbamates, [Sn(C6H5)3(C16H16NS2)], (I), and [Sn(C6H5)3(C7H14NO2S2)], (II), are described. In (I), the di-thio-carbamate ligand coordinates the Sn(IV) atom in an asymmetric manner, leading to a highly distorted trigonal-bipyramidal coordination geometry defined by a C3S2 donor set with the weakly bound S atom approximately trans to one of the ipso-C atoms. A similar structure is found in (II), but the di-thio-carbamate ligand coordinates in an even more asymmetric fashion. The packing in (I) features supra-molecular chains along the c axis sustained by C-H⋯π inter-actions; chains pack with no directional inter-actions between them. In (II), supra-molecular layers are formed, similarly sustained by C-H⋯π inter-actions; these stack along the b axis. An analysis of the Hirshfeld surfaces for (I) and (II) confirms the presence of the C-H⋯π inter-actions but also reveals the overall dominance of H⋯H contacts in the respective crystals.
    Matched MeSH terms: Bandages
  20. Zukerman-Schpector J, Caracelli I, Stefani HA, Shamim A, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):o53-4.
    PMID: 25705505 DOI: 10.1107/S205698901402564X
    In the title compound, C12H15IO7, the 3,4-di-hydro-2H-pyran ring is in a distorted half-boat conformation with the atom bearing the acet-yloxy group adjacent to the C atom bearing the methyl-acetate group lying 0.633 (6) Å above the plane of the remaining ring atoms (r.m.s. deviation = 0.0907 Å). In the crystal, mol-ecules are linked into a supra-molecular chain along the a axis through two C-H⋯O inter-actions to the same acceptor carbonyl O atom; these chains pack with no specific inter-molecular inter-actions between them.
    Matched MeSH terms: Bandages
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links