Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Al-Khatib RM, Rashid NA, Abdullah R
    J Biomol Struct Dyn, 2011 Aug;29(1):1-26.
    PMID: 21696223
    The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.
    Matched MeSH terms: Base Pairing
  2. Ee Uli J, Yong CSY, Yeap SK, Rovie-Ryan JJ, Mat Isa N, Tan SG, et al.
    PeerJ, 2017;5:e3566.
    PMID: 28828235 DOI: 10.7717/peerj.3566
    The cynomolgus macaque (Macaca fascicularis) is an extensively utilised nonhuman primate model for biomedical research due to its biological, behavioural, and genetic similarities to humans. Genomic information of cynomolgus macaque is vital for research in various fields; however, there is presently a shortage of genomic information on the Malaysian cynomolgus macaque. This study aimed to sequence, assemble, annotate, and profile the Peninsular Malaysian cynomolgus macaque transcriptome derived from three tissues (lymph node, spleen, and thymus) using RNA sequencing (RNA-Seq) technology. A total of 174,208,078 paired end 70 base pair sequencing reads were obtained from the Illumina Hi-Seq 2500 sequencer. The overall mapping percentage of the sequencing reads to the M. fascicularis reference genome ranged from 53-63%. Categorisation of expressed genes to Gene Ontology (GO) and KEGG pathway categories revealed that GO terms with the highest number of associated expressed genes include Cellular process, Catalytic activity, and Cell part, while for pathway categorisation, the majority of expressed genes in lymph node, spleen, and thymus fall under the Global overview and maps pathway category, while 266, 221, and 138 genes from lymph node, spleen, and thymus were respectively enriched in the Immune system category. Enriched Immune system pathways include Platelet activation pathway, Antigen processing and presentation, B cell receptor signalling pathway, and Intestinal immune network for IgA production. Differential gene expression analysis among the three tissues revealed 574 differentially expressed genes (DEG) between lymph and spleen, 5402 DEGs between lymph and thymus, and 7008 DEGs between spleen and thymus. Venn diagram analysis of expressed genes revealed a total of 2,630, 253, and 279 tissue-specific genes respectively for lymph node, spleen, and thymus tissues. This is the first time the lymph node, spleen, and thymus transcriptome of the Peninsular Malaysian cynomolgus macaque have been sequenced via RNA-Seq. Novel transcriptomic data will further enrich the present M. fascicularis genomic database and provide future research potentials, including novel transcript discovery, comparative studies, and molecular markers development.
    Matched MeSH terms: Base Pairing
  3. Hassanudin SA, Ponnampalam SN, Amini MN
    Oncol Lett, 2019 Feb;17(2):1675-1687.
    PMID: 30675227 DOI: 10.3892/ol.2018.9811
    The aim of the present study was to determine the genetic aberrations and novel transcripts, particularly the fusion transcripts, involved in the pathogenesis of low-grade and anaplastic oligodendroglioma. In the present study, tissue samples were obtained from patients with oligodendroglioma and additionally from archived tissue samples from the Brain Tumor Tissue Bank of the Brain Tumor Foundation of Canada. Six samples were obtained, three of which were low-grade oligodendroglioma and the other three anaplastic oligodendroglioma. DNA and RNA were extracted from each tissue sample. The resulting genomic DNA was then hybridized using the Agilent CytoSure 4×180K oligonucleotide array. Human reference DNA and samples were labeled using Cy3 cytidine 5'-triphosphate (CTP) and Cy5 CTP, respectively, while human Cot-1 DNA was used to reduce non-specific binding. Microarray-based comparative genomic hybridization data was then analyzed for genetic aberrations using the Agilent Cytosure Interpret software v3.4.2. The total RNA isolated from each sample was mixed with oligo dT magnetic beads to enrich for poly(A) mRNA. cDNAs were then synthesized and subjected to end-repair, poly(A) addition and connected using sequencing adapters using the Illumina TruSeq RNA Sample Preparation kit. The fragments were then purified and selected as templates for polymerase chain reaction amplification. The final library was constructed with fragments between 350-450 base pairs and sequenced using deep transcriptome sequencing on an Illumina HiSeq 2500 sequencer. The array comparative genomic hybridization revealed numerous amplifications and deletions on several chromosomes in all samples. However, the most interesting result was from the next generation sequencing, where one anaplastic oligodendroglioma sample was demonstrated to have five novel fusion genes that may potentially serve a critical role in tumor pathogenesis and progression.
    Matched MeSH terms: Base Pairing
  4. Sellvam D, Lau NS, Arip YM
    Trop Life Sci Res, 2018 Mar;29(1):37-50.
    PMID: 29644014 DOI: 10.21315/tlsr2018.29.1.3
    Malaysia is one of the countries that are loaded with mega biodiversity which includes microbial communities. Phages constitute the major component in the microbial communities and yet the numbers of discovered phages are just a minute fraction of its population in the biosphere. Taking into account of a huge numbers of waiting to be discovered phages, a new bacteriophage designated as Escherichia phage YD-2008.s was successfully isolated using Escherichia coli ATCC 11303 as the host. Phage YD-2008.s poses icosahedral head measured at 57nm in diameter with a long non-contractile flexible tail measured at 107nm; proving the phage as one of the members of Siphoviridae family under the order of Caudovirales. Genomic sequence analyses revealed phage YD-2008.s genome as linear dsDNA of 44,613 base pairs with 54.6% G+C content. Sixty-two open reading frames (ORFs) were identified on phage YD-2008.s full genome, using bioinformatics annotation software; Rapid Annotation using Subsystem Technology (RAST). Among the ORFs, twenty-eight of them code for functional proteins. Thirty two are classified as hypothetical proteins and there are two unidentified proteins. Even though majority of the coded putative proteins have high amino acids similarities to phages from the genus Hk578likevirus of the Siphoviridae family, yet phage YD-2008.s stands with its' own distinctiveness. Therefore, this is another new finding to Siphoviridae family as well as to the growing list of viruses in International Committee on Taxonomy of Viruses (ICTV) database.
    Matched MeSH terms: Base Pairing
  5. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25423512 DOI: 10.3109/19401736.2014.982587
    The mitochondrial genome sequence of the ghost crab, Ocypode ceratophthalmus, is documented (GenBank accession number: LN611669) in this article. This is the first mitogenome for the family Ocypodidae and the second for the order Ocypodoidea. Ocypode ceratophthalmus has a mitogenome of 15,564 base pairs consisting of 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the O. ceratophthalmus mitogenome is 35.78% for T, 19.36% for C, 33.73% for A and 11.13% for G, with an AT bias of 69.51% and the gene order is the typical arrangement for brachyuran crabs.
    Matched MeSH terms: Base Pairing/genetics
  6. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25423510 DOI: 10.3109/19401736.2014.982585
    The Mictyris longicarpus (soldier crab) complete mitochondrial genome sequence is reported making it the first for the family Mictyridae and the second for the superfamily Ocypodoidea. The mitogenome is 15,548 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The soldier crab mitogenome gene order is characteristic of brachyuran crabs with a base composition of 36.58% for T, 19.15% for C, 32.43% for A and 11.83% for G, with an AT bias of 69.01%.
    Matched MeSH terms: Base Pairing/genetics
  7. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329292 DOI: 10.3109/19401736.2014.974174
    The mitogenome of the Australian freshwater blackfish, Gadopsis marmoratus was recovered coverage by genome skimming using the MiSeq sequencer (GenBank Accession Number: NC_024436). The blackfish mitogenome has 16,407 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the 5th mitogenome sequence to be reported for the family Percichthyidae.
    Matched MeSH terms: Base Pairing/genetics
  8. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329290 DOI: 10.3109/19401736.2014.974173
    The mitochondrial genome sequence of the Australian tadpole shrimp, Triops australiensis is presented (GenBank Accession Number: NC_024439) and compared with other Triops species. Triops australiensis has a mitochondrial genome of 15,125 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The T. australiensis mitogenome is composed of 36.4% A, 16.1% C, 12.3% G and 35.1% T. The mitogenome gene order conforms to the primitive arrangement for Branchiopod crustaceans, which is also conserved within the Pancrustacean.
    Matched MeSH terms: Base Pairing/genetics
  9. Gan HM, Tan MH, Austin CM
    PMID: 24938115 DOI: 10.3109/19401736.2014.926490
    The mitochondrial genome sequence of the Australian crayfish, Euastacus yarraensis, is documented and compared with other Australian crayfish genera. Euastacus yarraensis has a mitogenome of 15,548 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The base composition of E. yarraensis mitogenome is 32.39% for T, 22.45% for C, 34.43% for A, and 10.73% for G, with an AT bias of 66.82%. The mitogenome gene order conforms to what is considered the primitive arrangement for parastacid crayfish.
    Matched MeSH terms: Base Pairing
  10. Mohd-Yusoff NF, Ruperao P, Tomoyoshi NE, Edwards D, Gresshoff PM, Biswas B, et al.
    G3 (Bethesda), 2015 Apr;5(4):559-67.
    PMID: 25660167 DOI: 10.1534/g3.114.014571
    Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm.
    Matched MeSH terms: Base Pairing
  11. Noor AF, Soo TCC, Ghani FM, Goh ZH, Khoo LT, Bhassu S
    Heliyon, 2017 Dec;3(12):e00446.
    PMID: 29322096 DOI: 10.1016/j.heliyon.2017.e00446
    Background: Dystrophin, an essential protein functional in the maintenance of muscle structural integrity is known to be responsible for muscle deterioration during white spot syndrome virus (WSSV) infection among prawn species. Previous studies have shown the upregulation of dystrophin protein in Macrobrachium rosenbergii (the giant freshwater prawn) upon white spot syndrome virus (WSSV) infection. The literature has also suggested the important role of calcium ion alterations in causing such muscle diseases. Thus, the interest of this study lies within the linkage between dystrophin functioning, intracellular calcium and white spot syndrome virus (WSSV) infection condition.

    Methods: In this study, the dystrophin gene from M. rosenbergii (MrDys) was first characterised followed by the characterization of dystrophin gene from a closely related shrimp species, Penaeus monodon (PmDys). Dystrophin sequences from different phyla were then used for evolutionary comparison through BLAST analysis, conserved domain analysis and phylogenetic analysis. The changes in mRNA expression levels of dystrophin and the alteration of intracellular calcium concentrations in WSSV infected muscle cells were then studied.

    Results: A 1246 base pair long dystrophin sequence was identified in the giant freshwater prawn, Macrobrachium rosenbergii (MrDys) followed by 1082 base pair long dystrophin sequence in P. monodon (PmDys). Four conserved domains were identified from the thirteen dystrophin sequences compared which were classified into 5 different phyla. From the phylogenetic analysis, aside from PmDys, the characterised MrDys was shown to be most similar to the invertebrate phylum of Nematoda. In addition, an initial down-regulation of dystrophin gene expression followed by eventual up-regulation, together with an increase in intracellular calcium concentration [Ca2+]
    i
    were shown upon WSSV experimental infection.

    Discussion: Both the functionality of the dystrophin protein and the intracellular calcium concentration were affected by WSSV infection which resulted in progressive muscle degeneration. An increased understanding of the role of dystrophin-calcium in MrDys and the interactions between these two components is necessary to prevent or reduce occurrences of muscle degeneration caused by WSSV infection, thereby reducing economic losses in the prawn farming industry from such disease.

    Matched MeSH terms: Base Pairing
  12. Teh KY, Afifudeen CLW, Aziz A, Wong LL, Loh SH, Cha TS
    Data Brief, 2019 Dec;27:104680.
    PMID: 31720332 DOI: 10.1016/j.dib.2019.104680
    Interest in harvesting potential benefits from microalgae renders it necessary to have the many ecological niches of a single species to be investigated. This dataset comprises de novo whole genome assembly of two mangrove-isolated microalgae (from division Chlorophyta); Chlorella vulgaris UMT-M1 and Messastrum gracile SE-MC4 from Universiti Malaysia Terengganu, Malaysia. Library runs were carried out with 2 × 150 base paired-ends reads, whereas sequencing was conducted using Illumina Novaseq 2500 platform. Sequencing yielded raw reads amounting to ∼11 Gb in total bases for both species and was further assembled de novo. Genome assembly resulted in a 50.15 Mbp and 60.83 Mbp genome size for UMT-M1 and SE-MC4, respectively. All filtered and assembled genomic data sequences have been submitted to National Centre for Biotechnology Information (NCBI) and can be located at DDBJ/ENA/GenBank under the accession of VJNP00000000 (UMT-M1) and VIYE00000000 (SE-MC4).
    Matched MeSH terms: Base Pairing
  13. Dennin RH
    Malays J Med Sci, 2018 Mar;25(2):20-26.
    PMID: 30918452 DOI: 10.21315/mjms2018.25.2.3
    Extrachromosomal (ec) DNA in eukaryotic cells has been known for decades. The structures described range from linear double stranded (ds) DNA to circular dsDNA, distinct from mitochondrial (mt) DNA. The sizes of circular forms are described from some hundred base pairs (bp) up to more than 150 kbp. The number of molecules per cell ranges from several hundred to a thousand. Semi-quantitative determinations of circular dsDNA show proportions as high as several percentages of the total DNA per cell. These ecDNA fractions harbor sequences that are known to be present in chromosomal DNA (chrDNA) too. Sequencing projects on, for example the human genome, have to take into account the ecDNA sequences which are simultaneously ascertained; corrections cannot be performed retrospectively. Concerning the results of sequencings derived from extracted whole DNA: if the ecDNA fractions contained therein are not taken into account, erroneous conclusions at the chromosomal level may result.
    Matched MeSH terms: Base Pairing
  14. Yousaf MZ, Abbas M, Nazir T, Abdullah FA, Birhanu A, Emadifar H
    Sci Rep, 2024 Mar 17;14(1):6410.
    PMID: 38494490 DOI: 10.1038/s41598-024-55786-z
    The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination, demonstrating the hydrogen bonds formed within the chain's base pairs. The modified extended Fan sub equation method effectively used to explain the exact travelling wave solutions for the double-chain deoxyribonucleic acid model. Compared to the earlier, now in use methods, the previously described modified extended Fan sub equation method provide more innovative, comprehensive solutions and are relatively straightforward to implement. This method transforms a non-linear partial differential equation into an ODE by using a travelling wave transformation. Additionally, the study yields both single and mixed non-degenerate Jacobi elliptic function type solutions. The complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions are a few of the creative solutions that have been constructed utilizing modified extended Fan sub equation method that can offer details on the transversal and longitudinal moves inside the DNA helix by freely chosen parameters. Solitons propagate at a consistent rate and retain their original shape. They are widely used in nonlinear models and can be found everywhere in nature. To help in understanding the physical significance of the double-chain deoxyribonucleic acid model, several solutions are shown with graphics in the form of contour, 2D and 3D graphs using computer software Mathematica 13.2. All of the requisite constraint factors that are required for the completed solutions to exist appear to be met. Therefore, our method of strengthening symbolic computations offers a powerful and effective mathematical tool for resolving various moderate nonlinear wave problems. The findings demonstrate the system's potentially very rich precise wave forms with biological significance. The fundamentals of double-chain deoxyribonucleic acid model diffusion and processing are demonstrated by this work, which marks a substantial development in our knowledge of double-chain deoxyribonucleic acid model movements.
    Matched MeSH terms: Base Pairing
  15. Miya Shaik M, Tamargo IA, Abubakar MB, Kamal MA, Greig NH, Gan SH
    Genes (Basel), 2018 Mar 21;9(4).
    PMID: 29561798 DOI: 10.3390/genes9040174
    MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that post-transcriptionally regulate gene expression by base pairing with mRNA targets. Altered miRNA expression profiles have been observed in several diseases, including neurodegeneration. Multiple studies have reported altered expressions of miRNAs in the brains of individuals with Alzheimer's disease (AD) as compared to those of healthy elderly adults. Some of the miRNAs found to be dysregulated in AD have been reported to correlate with neuropathological changes, including plaque and tangle accumulation, as well as altered expressions of species that are known to be involved in AD pathology. To examine the potentially pathogenic functions of several dysregulated miRNAs in AD, we review the current literature with a focus on the activities of ten miRNAs in biological pathways involved in AD pathogenesis. Comprehensive understandings of the expression profiles and activities of these miRNAs will illuminate their roles as potential therapeutic targets in AD brain and may lead to the discovery of breakthrough treatment strategies for AD.
    Matched MeSH terms: Base Pairing
  16. Boon Yee Wong, Taranjeet Kaur Awtar Singh, Gideon Khoo, Han Kiat Alan Ong
    Sains Malaysiana, 2017;46:2393-2416.
    The intra- and inter-specific variation of Acetes shrimps were evaluated based on samples collected from in-shore catches and off-shore trawling around the west coast of Peninsular Malaysia. Species captured were identified as Acetes indicus, A. serrulatus, A. japonicus and A. sibogae. A region of the mitochondrial cytochrome c oxidase subunit I (COI) gene comprising 552 base pairs (bp) was amplified from 159 Acetes specimens. The sequence alignment analysis generated phylogenetic trees which depicted the four major clades that were consistent with the species identified morphologically. These four species varied considerably for haplotype and nucleotide diversity, with A. indicus and A. serrulatus showing different demographic histories. Furthermore, the observation of two clades in the A. indicus and A. sibogae lineages, with relatively high levels of intraspecific divergence, suggests that cryptic diversity is possibly present in these two taxa. This study has contributed to the knowledge of the distribution patterns and molecular phylogenetics of four Acetes spp. in the Straits of Malacca.
    Matched MeSH terms: Base Pairing
  17. Yusoff AA, Abdullah J, Abdullah MR, Mohd Ariff AR, Isa MN
    Acta Neurochir (Wien), 2004 Jun;146(6):595-601.
    PMID: 15168228
    Alteration of the tumor suppressor gene p53 is considered to be a critical step in the development of human cancer. Changes in this gene have been detected in a wide range of human tumours, including gliomas. In glioma, the presence of p53 gene alterations has been associated with worse prognosis.
    Matched MeSH terms: Base Pairing/genetics
  18. Yazdanpanah A, Khaithir TM
    J Clin Lab Anal, 2014 Jan;28(1):1-9.
    PMID: 24375729 DOI: 10.1002/jcla.21635
    Candida speciation is vital for epidemiology and management of candidiasis. Nonmolecular conventional methods often fail to identify closely related germ tube positive yeasts from clinical specimens. The present study was conducted to identify these yeasts and to highlight issues in conventional versus molecular methods of identification. A total of 98 germ tube positive yeasts from high vaginal swabs were studied over a 12-month period. Isolates were examined with various methods including growth at 42 °C and 45 °C on Sabouraud dextrose agar (SDA), color development on CHROMagar Candida medium, chlamydospore production on corn meal agar at 25 °C, carbohydrate assimilation using ID 32C system, and polymerase chain reaction using a single pair of primers targeting the hyphal wall protein 1 (Hwp1) gene. Of all the isolates studied, 97 were molecularly confirmed as C. albicans and one isolate was identified as C. dubliniensis. No C. africana was detected in this study. The molecular method used in our study was an accurate and useful tool for discriminating C. albicans, C. dubliniensis, and C. africana. The conventional methods, however, were less accurate and riddled with many issues that will be discussed in further details.
    Matched MeSH terms: Base Pairing
  19. Latifah Saiful Yazan, Faujan Ahmad, Ooi, Choong Li, Raha Abdul Rahim, Hisyam Abdul Hamid, Lee, Pei Sze
    MyJurnal
    Betulinic acid (BA) is a pentacyclic triterpene found in several botanical sources that has been shown to cause apoptosis in a number of cell lines. This study was undertaken to determine the in vitro cytotoxic properties of BA towards the human mammary carcinoma cell line MDA-MB-231 and the human promyelocytic leukaemia cell line HL-60 and the mode of the induced cell death. The cytotoxicity and mode of cell death of BA were determined using the MTT assay and DNA fragmentation analysis, respectively. In our study, the compound was found to be cytotoxic to MDA-MB-231 and HL-60 cells with IC50 values of 58 μg/mL and 134 μg/mL, respectively. Cells treated with high concentrations of BA exhibited features characteristic of apoptosis such as blebbing, shrinking and a number of small cytoplasm body masses when viewed under an inverted light microscope after 24h. The incidence of apoptosis in MDA-MB-231 was further confirmed by the DNA fragmentation analysis, with the formation of DNA fragments of oligonucleosomal size (180-200 base pairs), giving a ladder-like pattern on agarose gel electrophoresis. BA was more cytotoxic towards MDA-MB-231 than HL-60 cells, and induced apoptosis in MDA-MB-231 cells.
    Matched MeSH terms: Base Pairing
  20. Abdul-Latiff MA, Ruslin F, Faiq H, Hairul MS, Rovie-Ryan JJ, Abdul-Patah P, et al.
    Biomed Res Int, 2014;2014:897682.
    PMID: 25143948 DOI: 10.1155/2014/897682
    The phylogenetic relationships of long-tailed macaque (Macaca fascicularis fascicularis) populations distributed in Peninsular Malaysia in relation to other regions remain unknown. The aim of this study was to reveal the phylogeography and population genetics of Peninsular Malaysia's M. f. fascicularis based on the D-loop region of mitochondrial DNA. Sixty-five haplotypes were detected in all populations, with only Vietnam and Cambodia sharing four haplotypes. The minimum-spanning network projected a distant relationship between Peninsular Malaysian and insular populations. Genetic differentiation (F(ST), Nst) results suggested that the gene flow among Peninsular Malaysian and the other populations is very low. Phylogenetic tree reconstructions indicated a monophyletic clade of Malaysia's population with continental populations (NJ = 97%, MP = 76%, and Bayesian = 1.00 posterior probabilities). The results demonstrate that Peninsular Malaysia's M. f. fascicularis belonged to Indochinese populations as opposed to the previously claimed Sundaic populations. M. f. fascicularis groups are estimated to have colonized Peninsular Malaysia ~0.47 million years ago (MYA) directly from Indochina through seaways, by means of natural sea rafting, or through terrestrial radiation during continental shelf emersion. Here, the Isthmus of Kra played a central part as biogeographical barriers that then separated it from the remaining continental populations.
    Matched MeSH terms: Base Pairing/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links