Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Zulkeflee Z, Aris AZ, Shamsuddin ZH, Yusoff MK
    ScientificWorldJournal, 2012;2012:495659.
    PMID: 22997497
    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.
    Matched MeSH terms: Batch Cell Culture Techniques/methods; Batch Cell Culture Techniques/standards*
  2. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
    Matched MeSH terms: Batch Cell Culture Techniques/methods
  3. El Enshasy H, Malik K, Malek RA, Othman NZ, Elsayed EA, Wadaan M
    PMID: 26907552
    Human gastrointestinal microbiota (HGIM) incorporate a large number of microbes from different species. Anaerobic bacteria are the dominant organisms in this microbial consortium and play a crucial role in human health. In addition to their functional role as the main source of many essential metabolites for human health, they are considered as biotherapeutic agents in the regulation of different human metabolites. They are also important in the prevention and in the treatment of different physical and mental diseases. Bifidobacteria are the dominant anaerobic bacteria in HGIM and are widely used in the development of probiotic products for infants, children and adults. To develop bifidobacteria-based bioproducts, therefore, it is necessary to develop a large-scale biomass production platform based on a good understanding of the ideal medium and bioprocessing parameters for their growth and viability. In addition, high cell viability should be maintained during downstream processing and storage of probiotic cell powder or the final formulated product. In this work we review the latest information about the biology, therapeutic activities, cultivation and industrial production of bifidobacteria.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  4. Rosman NH, Nor Anuar A, Othman I, Harun H, Sulong Abdul Razak MZ, Elias SH, et al.
    Bioresour Technol, 2013 Feb;129:620-3.
    PMID: 23317554 DOI: 10.1016/j.biortech.2012.12.113
    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater.
    Matched MeSH terms: Batch Cell Culture Techniques
  5. Ngoh, Gek Cheng, Masitah Hasan, Kumoro, Andri Chahyo, Chew, Fui Ling, Tham, Margaret
    MyJurnal
    The production of ethanol, from glucose in batch and fed batch culture, was investigated. In the fed batch culture, the glucose feeding was added into the culture at 16th hour of fermentation. The effects of different glucose concentration feeding rates on ethanol fermentation were investigated for fed batch culture. The 2gL-1hr-1 glucose concentration feeding rate was found to give higher ethanol yield (2.47 g ethanol g glucose-1), with respect to substrate consumed as compared to 8 gL-1hr-1 (0.23 g ethanol g glucose-1) and 4 gL-1hr-1 (0.20 g ethanol g glucose-1). The ethanol yield with respect to substrate consumed obtained in batch culture was 0.81 g ethanol g glucose-1. The fed batch culture at 2 gL-1hr-1 glucose concentration feeding rate was proven to be a better fermentation system than the batch culture. The specific growth rate, specific glucose consumption rate and specific ethanol production rate for the fed batch fermentation, at 2 gL-1hr-1 glucose concentration feeding rate, were 0.065 hr-1, 1.20 hr-1 and 0.0009 hr-1, respectively.
    Matched MeSH terms: Batch Cell Culture Techniques
  6. Lim JW, Seng CE, Lim PE, Ng SL, Sujari AN
    Bioresour Technol, 2011 Nov;102(21):9876-83.
    PMID: 21890353 DOI: 10.1016/j.biortech.2011.08.014
    The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal.
    Matched MeSH terms: Batch Cell Culture Techniques/instrumentation*
  7. Zainab-L I, Sudesh K
    J Biotechnol, 2019 Nov 10;305:35-42.
    PMID: 31493421 DOI: 10.1016/j.jbiotec.2019.09.001
    The cost of polyhydroxyalkanoates (PHAs) can be reduced by improving their productivity and recovery. In this study, we attempted to obtain a high cell density culture from a 13 L bioreactor and subsequently improved the recently developed biological recovery process using mealworms to obtain the PHA granules. A cell dry weight of 161 g/L containing 68-70 wt% P(3HB) was obtained. The freeze-dried cells contained a significant amount of mineral salts from the culture medium which reduced the cells' palatability for the mealworms. A simple washing procedure with water was sufficient to remove the residual mineral salts and this improved the cells' consumption by up to 12.5% of the mealworms' body weight. As a result, one kilogram of mealworms consumed 125 g of the washed cells daily and 87.2 g of feacal pellets were recovered, which was almost twice the weight of the unwashed cells. In addition, it also improved the purity of the PHA in the faecal pellets to a value <90% upon washing with water to remove the water-soluble compounds. This study has demonstrated a significant improvement in the production and recovery of PHA. In addition, the resulting mealworms showed a significant increase in protein content up to 79% and a decrease in fat content down to 8.3% of its dry weight.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  8. Biglari N, Orita I, Fukui T, Sudesh K
    J Biotechnol, 2020 Jan 10;307:77-86.
    PMID: 31669355 DOI: 10.1016/j.jbiotec.2019.10.013
    This study investigates the effect of strategies on poly(3-hydroxybutyrate) [P(3HB)] production in bioreactor. In the production of P(3HB), urea and glucose feeding streams were developed to characterize the fed-batch culture conditions for new Cupriavidus necator NSDG-GG mutant. Feeding urea in repeated fed-batch stage (RFB-I) at 6, and 12 h in cultivation led to insignificant kinetic effect on the cell dry mass (CDM) and P(3HB) accumulation. Feeding glucose in repeated fed-batch stage (RFB-II) demonstrated that the incremental feeding approach of glucose after urea in fill-and-draw (F/D) mode at 24, 30, 36, 42, and 48 h in fermentation increased CDM and P(3HB) concentration. In the 1st cycle in RFB-II, the cumulative CDM reached the value of 26.22 g/L and then it increased with the successive repeated fed-batches to attain biomass of 145 g/L at the end of 5th cycle of RFB-II. The final cumulative P(3HB) concentration at the end of 5th cycle of RFB-II reached 111 g/L with the overall yield of 0.50 g P(3HB) g gluc- 1; the CDM productivity from the RFB-II cycles was in the range of 0.84-1.3 g/(L·h). The RFB-II of glucose in an increment mode produced nearly 2.2 times more increase in CDM and P(3HB) productivities compared to the decrement RFB-II mode. Repeated cultivation had also the advantage of avoiding extra time required for innoculum preparation, and sterilization of bioreactor during batch, thereby it increased the overall industrial importance of the process.
    Matched MeSH terms: Batch Cell Culture Techniques
  9. Bajury DM, Rawi MH, Sazali IH, Abdullah A, Sarbini SR
    Int J Food Sci Nutr, 2017 Nov;68(7):821-828.
    PMID: 28393631 DOI: 10.1080/09637486.2017.1309522
    Red seaweed (Kappaphycus alvarezii) cultivated from Sabah (RSS) and Langkawi (RSL) were digested using in vitro mouth, gastric and duodenal model. The digested seaweed then fermented in a pH-controlled batch culture system inoculated with human faeces to mimic the distal colon. Bacterial enumeration were monitored using fluorescent in situ hybridisation, and the fermentation end products, the short chain fatty acids (SCFA), were analysed using HPLC. Both RSS and RSL showed significant increase of Bifidobacterium sp.; from log10 7.96 at 0 h to log10 8.72 at 24 h, and from log10 7.96 at 0 h to log10 8.60 at 24 h, respectively, and shows no significant difference when compared to the Bifidobacterium sp. count at 24 h of inulin fermentation. Both seaweeds also showed significant increase in total SCFA production, particularly acetate and propionate. Overall, this data suggested that K. alvarezii might have the potential as a prebiotic ingredient.
    Matched MeSH terms: Batch Cell Culture Techniques
  10. Muntari B, Amid A, Mel M, Jami MS, Salleh HM
    AMB Express, 2012;2:12.
    PMID: 22336426 DOI: 10.1186/2191-0855-2-12
    Bromelain, a cysteine protease with various therapeutic and industrial applications, was expressed in Escherichia coli, BL21-AI clone, under different cultivation conditions (post-induction temperature, L-arabinose concentration and post-induction period). The optimized conditions by response surface methodology using face centered central composite design were 0.2% (w/v) L-arabinose, 8 hr and 25°C. The analysis of variance coupled with larger value of R2 (0.989) showed that the quadratic model used for the prediction was highly significant (p < 0.05). Under the optimized conditions, the model produced bromelain activity of 9.2 U/mg while validation experiments gave bromelain activity of 9.6 ± 0.02 U/mg at 0.15% (w/v) L-arabinose, 8 hr and 27°C. This study had innovatively developed cultivation conditions for better production of recombinant bromelain in shake flask culture.
    Matched MeSH terms: Batch Cell Culture Techniques
  11. Sarbini SR, Kolida S, Deaville ER, Gibson GR, Rastall RA
    Br J Nutr, 2014 Oct 28;112(8):1303-14.
    PMID: 25196744 DOI: 10.1017/S0007114514002177
    The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides-Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.
    Matched MeSH terms: Batch Cell Culture Techniques
  12. Ong YH, Chua AS, Lee BP, Ngoh GC
    Water Sci Technol, 2013;67(2):340-6.
    PMID: 23168633 DOI: 10.2166/wst.2012.552
    To date, little information is known about the operation of the enhanced biological phosphorus removal (EBPR) process in tropical climates. Along with the global concerns on nutrient pollution and the increasing array of local regulatory requirements, the applicability and compliance accountability of the EBPR process for sewage treatment in tropical climates is being evaluated. A sequencing batch reactor (SBR) inoculated with seed sludge from a conventional activated sludge (CAS) process was successfully acclimatized to EBPR conditions at 28 °C after 13 days' operation. Enrichment of Candidatus Accumulibacter phosphatis in the SBR was confirmed through fluorescence in situ hybridization (FISH). The effects of operational pH and influent C:P ratio on EBPR were then investigated. At pH 7 or pH 8, phosphorus removal rates of the EBPR processes were relatively higher when operated at C:P ratio of 3 than C:P ratio of 10, with 0.019-0.020 and 0.011-0.012 g-P/g-MLVSS•day respectively. One-year operation of the 28 °C EBPR process at C:P ratio of 3 and pH 8 demonstrated stable phosphorus removal rate of 0.020 ± 0.003 g-P/g-MLVSS•day, corresponding to effluent with phosphorus concentration <0.5 mg/L. This study provides the first evidence on good EBPR activity at relatively high temperature, indicating its applicability in a tropical climate.
    Matched MeSH terms: Batch Cell Culture Techniques
  13. Al-Amrani WA, Lim PE, Seng CE, Ngah WS
    Bioresour Technol, 2012 Aug;118:633-7.
    PMID: 22704829 DOI: 10.1016/j.biortech.2012.05.090
    The objectives of this study were: (1) to investigate the role of mixed culture of biomass in the regeneration of mono-amine modified silica (MAMS) and granular activated carbon (GAC) loaded with Acid Orange 7 (AO7), (2) to quantify and compare the bioregeneration efficiencies of AO7-loaded MAMS and GAC using the sequential adsorption and biodegradation approach and (3) to evaluate the reusability of bioregenerated MAMS. The results show that considerably higher bioregeneration efficiency of AO7-loaded MAMS as compared to that of AO7-loaded GAC was achieved due to higher reversibility of adsorption of MAMS for AO7 and favorable pH factor resulting in more AO7 desorption. The progressive loss of adsorption capacity of MAMS for AO7 with multiple cycles of use suggests possible chemical and microbial fouling of the adsorption sites.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  14. Takriff M, Masngut N, Kadhum A, Kalil M, Mohammad A
    Acetone-butanol-ethanol (ABE) fermentation from Palm Oil Mill Effluent (POME) by C. acetobutylicum NCIMB 13357 in an oscillatory flow bioreactor was investigated. Experimental works were conducted in a U-shaped stainless steel oscillatory flow bioreactor at oscillation frequency between 0.45-0.78 Hz and a constant amplitude of 12.5 mm. Fermentations were carried out for 72 hr at 35oC using palm oil mill effluent and reinforced clostridia medium as a growth medium in batch culture. Result of this investigation showed that POME is a viable media for ABE fermentation and oscillatory flow bioreactor has an excellent potential as an alternative fermentation device.
    Matched MeSH terms: Batch Cell Culture Techniques
  15. Darah I, Sumathi G, Jain K, Lim SH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1682-90.
    PMID: 21947762 DOI: 10.1007/s12010-011-9387-8
    Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.
    Matched MeSH terms: Batch Cell Culture Techniques/instrumentation; Batch Cell Culture Techniques/methods*
  16. Hii KS, Lim PT, Kon NF, Usup G, Gu H, Leaw CP
    Gene, 2019 Aug 30;711:143950.
    PMID: 31255736 DOI: 10.1016/j.gene.2019.143950
    The marine dinoflagellate Alexandrium minutum is known to produce saxitoxins that cause paralytic shellfish poisoning in human worldwide through consumption of the contaminated shellfish mollusks. Despite numerous studies on the growth physiology and saxitoxin production of this species, the knowledge on the molecular basis of nutrient uptakes in relation to toxin production in this species is limited. In this study, relative expressions of the high-affinity transporter genes of nitrate, ammonium, and phosphate (AmNrt2, AmAmt1 and AmPiPT1) and the assimilation genes, nitrate reductase (AmNas), glutamine synthase (AmGSIII) and carbamoyl phosphate synthase (AmCPSII) from A. minutum were studied in batch clonal culture condition with two nitrogen sources (nitrate: NO3- or ammonium: NH4+) under different N:P ratios (high-P: N:P of 14 and 16, and low-P: N:P of 155). The expression of AmAmt1 was suppressed in excess NH4+-grown condition but was not observed in AmNrt2 and AmNas. Expressions of AmAmt1, AmNrt2, AmNas, AmGSIII, AmCPSII, and AmPiPT1 were high in P-deficient condition, showing that A. minutum is likely to take up nutrients for growth under P-stress condition. Conversely, relative expression of AmCPSII was incongruent with cell growth, but was well correlated with toxin quota, suggesting that the gene might involve in arginine metabolism and related toxin production pathway. The expression of AmGSIII is found coincided with higher toxin production and is believed to involve in mechanism to detoxify the cells from excess ammonium stress. The gene regulation observed in this study has provided better insights into the ecophysiology of A. minutum in relation to its adaptive strategies in unfavorable environments.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  17. Ng HS, Chai CXY, Chow YH, Loh WLC, Yim HS, Tan JS, et al.
    J Biosci Bioeng, 2018 May;125(5):585-589.
    PMID: 29339003 DOI: 10.1016/j.jbiosc.2017.12.010
    Xylanase enzyme degrades linear polysaccharide β-1,4 xylan and the hemicellulose of the plant cell wall. There is a growing demand in finding a cost-effective alternative for industrial scale production of xylanase with high purity for pharmaceutical applications. In this study, an alcohol/salt aqueous biphasic system (ABS) was adopted to recover xylanase from the Bacillus subtilis fermentation broth. The effects of several ABS parameters such as types and concentrations of alcohols and salts (i.e., sulphate, phosphate, and citrate), amount of crude loading and pH of the system on the recovery of xylanase were investigated. Partition coefficient of xylanase (KE), selectivity (S) and yield (YT) of xylanase in top phase of the ABS were measured. Highest KE (6.58 ± 0.05) and selectivity (4.84 ± 0.33) were recorded in an ABS of pH 8 composed of 26% (w/w) 1-propanol, 18% (w/w) ammonium sulphate. High YT of 71.88% ± 0.15 and a purification fold (PFT) of 5.74 ± 0.33 were recorded with this optimum recovery of xylanase using alcohol/salt ABS. The purity of xylanase recovered was then qualitatively verified with sodium dodecyl sulphate (SDS) gel electrophoresis. The SDS profile revealed the purified xylanase was successfully obtained in the top phase of the one-step 1-propanol/sulphate ABS with a distinct single band.
    Matched MeSH terms: Batch Cell Culture Techniques/methods
  18. Al-Shorgani NKN, Al-Tabib AI, Kadier A, Zanil MF, Lee KM, Kalil MS
    Sci Rep, 2019 03 15;9(1):4622.
    PMID: 30874578 DOI: 10.1038/s41598-019-40840-y
    Continuous fermentation of dilute acid-pretreated de-oiled rice bran (DRB) to butanol by the Clostridium acetobutylicum YM1 strain was investigated. Pretreatment of DRB with dilute sulfuric acid (1%) resulted in the production of 42.12 g/L total sugars, including 25.57 g/L glucose, 15.1 g/L xylose and 1.46 g/L cellobiose. Pretreated-DRB (SADRB) was used as a fermentation medium at various dilution rates, and a dilution rate of 0.02 h-1 was optimal for solvent production, in which 11.18 g/L of total solvent was produced (acetone 4.37 g/L, butanol 5.89 g/L and ethanol 0.92 g/L). Detoxification of SADRB with activated charcoal resulted in the high removal of fermentation inhibitory compounds. Fermentation of detoxified-SADRB in continuous fermentation with a dilution rate of 0.02 h-1 achieved higher concentrations of solvent (12.42 g/L) and butanol (6.87 g/L), respectively, with a solvent productivity of 0.248 g/L.h. This study showed that the solvent concentration and productivity in continuous fermentation from SADRB was higher than that obtained from batch culture fermentation. This study also provides an economic assessment for butanol production in continuous fermentation process from DRB to validate the commercial viability of this process.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  19. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC
    J Biosci Bioeng, 2019 Feb;127(2):150-159.
    PMID: 30224189 DOI: 10.1016/j.jbiosc.2018.07.012
    Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
    Matched MeSH terms: Batch Cell Culture Techniques/methods
  20. Radzun KA, Wolf J, Jakob G, Zhang E, Stephens E, Ross I, et al.
    PMID: 25984234 DOI: 10.1186/s13068-015-0238-7
    BACKGROUND: Microalgae provide an excellent platform for the production of high-value-products and are increasingly being recognised as a promising production system for biomass, animal feeds and renewable fuels.

    RESULTS: Here, we describe an automated screen, to enable high-throughput optimisation of 12 nutrients for microalgae production. Its miniaturised 1,728 multiwell format allows multiple microalgae strains to be simultaneously screened using a two-step process. Step 1 optimises the primary elements nitrogen and phosphorous. Step 2 uses Box-Behnken analysis to define the highest growth rates within the large multidimensional space tested (Ca, Mg, Fe, Mn, Zn, Cu, B, Se, V, Si) at three levels (-1, 0, 1). The highest specific growth rates and maximum OD750 values provide a measure for continuous and batch culture.

    CONCLUSION: The screen identified the main nutrient effects on growth, pairwise nutrient interactions (for example, Ca-Mg) and the best production conditions of the sampled statistical space providing the basis for a targeted full factorial screen to assist with optimisation of algae production.

    Matched MeSH terms: Batch Cell Culture Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links