Displaying publications 1 - 20 of 120 in total

Abstract:
Sort:
  1. Ramlan NAFM, Mohamad Azman E, Muhammad K, Jusoh AZ, Johari NA, Yusof YA, et al.
    J Sci Food Agric, 2024 Feb;104(3):1756-1767.
    PMID: 37862235 DOI: 10.1002/jsfa.13067
    BACKGROUND: The nutritional composition of stingless bee honey (SBH) can be affected by different climates and soil composition across different geographical areas. However, the range of attributes set for a honey quality standard should be inclusive. This study analysed the sugar profile's physiochemical properties, including quantifying the rare sugar trehalulose, organic acid and mineral composition of SBH collected from inland, and west and east coasts of Peninsular Malaysia. Forty-three SBH (Heterotrigona itama) samples were collected and labelled as <20 and <40 West Coast (<20WC, <40WC), <20 and <40 East Coast (<20EC, <40EC) and Inland, according to their distance from the coasts.

    RESULTS: The moisture, pH and sugar composition of all SBH samples adhered to the Malaysian Kelulut Honey Standard (MS2683:2017) but not to the International Codex Standard (CODEX) for honey. Trehalulose presence in all samples, regardless of geographical area, was predominant alongside fructose and glucose. Only hydroxymethylfurfural (HMF) content and electrical conductivity (EC) results complied with both standards. The principal component analysis biplot showed that the discrimination of SBH according to the five different areas was not feasible, indicating sample homogeneity.

    CONCLUSION: The physicochemical evaluation of SBH from Peninsular Malaysia shows mainly homogeneous attributes of samples across geographical locations. These findings demonstrated that the current MS2683:2017 is relevant and accommodates all SBH of H. itama species produced in Peninsular Malaysia. Furthermore, the trehalulose range calculated in this study can be implemented as a new benchmark for the indicator of SBH honey quality standard by national and international food standard committees. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Bees
  2. Manickavasagam G, Saaid M, Lim V
    J Food Sci, 2024 Feb;89(2):1058-1072.
    PMID: 38221804 DOI: 10.1111/1750-3841.16903
    Volatile organic compounds in honey are known for their considerable impact on the organoleptic properties of honey, such as aroma, flavor, taste, and texture. The type and composition of volatile organic compounds are influenced by entomological, geographical, and botanical origins; thus, these compounds have the potential to be chemical markers. Sixty-two volatile compounds were identified using gas chromatography-mass spectrometry from 30 Heterotrigona itama (H. itama) honey samples from 3 different geographical origins. Hydrocarbons and benzene derivatives were the dominant classes of volatile organic compounds in the samples. Both clustering and discriminant analyses demonstrated a clear separation between samples from distant origins (Kedah and Perak), and the volcano plot supported it. The reliability and predictability of the partial least squares-discriminant analysis model from the discriminant analysis were validated using cross-validation (R2 : 0.93; Q2 : 0.83; accuracy: 0.97) and the permutation test (p  1.0) and the Kruskal-Wallis test (p 
    Matched MeSH terms: Bees
  3. Huyop F, Ullah S, Abdul Wahab R, Huda N, Sujana IGA, Saloko S, et al.
    PLoS One, 2024;19(4):e0301213.
    PMID: 38578814 DOI: 10.1371/journal.pone.0301213
    Limited honey production worldwide leads to higher market prices, thus making it prone to adulteration. Therefore, regular physicochemical analysis is imperative for ensuring authenticity and safety. This study describes the physicochemical and antioxidant properties of Apis cerana honey sourced from the islands of Lombok and Bali, showing their unique regional traits. A comparative analysis was conducted on honey samples from Lombok and Bali as well as honey variety from Malaysia. Moisture content was found slightly above 20% in raw honey samples from Lombok and Bali, adhering to the national standard (SNI 8664:2018) of not exceeding 22%. Both honey types displayed pH values within the acceptable range (3.40-6.10), ensuring favorable conditions for long-term storage. However, Lombok honey exhibited higher free acidity (78.5±2.14 meq/kg) than Bali honey (76.0±1.14 meq/kg), surpassing Codex Alimentarius recommendations (≤50 meq/kg). The ash content, reflective of inorganic mineral composition, was notably lower in Lombok (0.21±0.02 g/100) and Bali honey (0.14±0.01 g/100) compared to Tualang honey (1.3±0.02 g/100). Electric conductivity, indicative of mineral content, revealed Lombok and Bali honey with lower but comparable values than Tualang honey. Hydroxymethylfurfural (HMF) concentrations in Lombok (14.4±0.11 mg/kg) and Bali (17.6±0.25 mg/kg) were slightly elevated compared to Tualang honey (6.4±0.11 mg/kg), suggesting potential processing-related changes. Sugar analysis revealed Lombok honey with the highest sucrose content (2.39±0.01g/100g) and Bali honey with the highest total sugar content (75.21±0.11 g/100g). Both honeys exhibited lower glucose than fructose content, aligning with Codex Alimentarius guidelines. The phenolic content, flavonoids, and antioxidant activity were significantly higher in Lombok and Bali honey compared to Tualang honey, suggesting potential health benefits. Further analysis by LC-MS/MS-QTOF targeted analysis identified various flavonoids/flavanols and polyphenolic/phenolic acid compounds in Lombok and Bali honey. The study marks the importance of characterizing the unique composition of honey from different regions, ensuring quality and authenticity in the honey industry.
    Matched MeSH terms: Bees
  4. Huda N, Ullah S, Wahab RA, Lani MN, Daud NHA, Shariff AHM, et al.
    BMC Res Notes, 2023 Sep 12;16(1):211.
    PMID: 37700361 DOI: 10.1186/s13104-023-06495-9
    OBJECTIVES: Pollen is a useful tool for identifying the provenance and complex ecosystems surrounding honey production in Malaysian forests. As native key pollinators in Malaysia, Apis dorsata and Heterotrigona itama forage on various plant/pollen species to collect honey. This study aims to generate a dataset that uncovers the presence of these plant/pollen species and their relative abundance in the honey of A. dorsata and H. itama. The information gathered from this study can be used to determine the geographical and botanical origin and authenticity of the honey produced by these two species.

    RESULTS: Sequence data were obtained for both A. dorsata and H. itama. The raw sequence data for A. dorsata was 5 Mb, which was assembled into 5 contigs with a size of 6,098,728 bp, an N50 of 15,534, and a GC average of 57.42. Similarly, the raw sequence data for H. itama was 6.3 Mb, which was assembled into 11 contigs with a size of 7,642,048 bp, an N50 of 17,180, and a GC average of 55.38. In the honey sample of A. dorsata, we identified five different plant/pollen species, with only one of the five species exhibiting a relative abundance of less than 1%. For H. itama, we identified seven different plant/pollen species, with only three of the species exhibiting a relative abundance of less than 1%. All of the identified plant species were native to Peninsular Malaysia, especially the East Coast area of Terengganu.

    DATA DESCRIPTION: Our data offers valuable insights into honey's geographical and botanical origin and authenticity. Metagenomic studies could help identify the plant species that honeybees forage and provide preliminary data for researchers studying the biological development of A. dorsata and H. itama. The identification of various flowers from the eDNA of honey that are known for their medicinal properties could aid in regional honey with accurate product origin labeling, which is crucial for guaranteeing product authenticity to consumers.

    Matched MeSH terms: Bees/genetics
  5. Yong PYA, Yip AJW, Islam F, Hong HJ, Teh YE, Tham CL, et al.
    BMC Complement Med Ther, 2023 Sep 04;23(1):307.
    PMID: 37667314 DOI: 10.1186/s12906-023-04129-y
    BACKGROUND: Allergy is an inflammatory disorder affecting around 20% of the global population. The adverse effects of current conventional treatments give rise to the increased popularity of using natural food products as complementary and alternative medicine against allergic diseases. Stingless bee honey, commonly known as Kelulut honey (KH) in Malaysia, has been used locally as a traditional remedy to relieve cough and asthma. This study evaluated the anti-allergic potential of KH collected from four different botanical sources on phorbol ester 12-myristate-3-acetate and calcium ionophore-activated human mast cells.

    METHODS: The present study examined the inhibitory effects of all collected honey on the release of selected inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, IL-8, histamine, and β-hexosaminidase in an activated HMC. Besides that, all honey's total phenolic content (TPC) was also examined, followed by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) to identify the phytochemicals in the honey. Further examination of the identified phytochemicals on their potential interaction with selected signaling molecules in an activated mast cell was conducted using computational methods.

    RESULTS: The results indicated that there were significant inhibitory effects on all selected inflammatory mediators' release by KH sourced from bamboo (BH) and rubber tree (RH) at 0.5% and 1%, but not KH sourced from mango (AH) and noni (EH). BH and RH were found to have higher TPC values and were rich in their phytochemical profiles based on the LC-MS/MS results. Computational studies were employed to determine the possible molecular target of KH through molecular docking using HADDOCK and PRODIGY web servers.

    CONCLUSIONS: In short, the results indicated that KH possesses anti-allergic effects towards an activated HMC, possibly by targeting downstream MAPKs. However, their anti-allergic effects may vary according to their botanical sources. Nevertheless, the present study has provided insight into the potential application of stingless bee honey as a complementary and alternative medicine to treat various allergic diseases.

    Matched MeSH terms: Bees
  6. Cheng MZSZ, Amin FAZ, Zawawi N, Chan KW, Ismail N, Ishak NA, et al.
    Nutrients, 2023 Jun 22;15(13).
    PMID: 37447162 DOI: 10.3390/nu15132835
    Diabetes is associated with an imbalance between oxidants and antioxidants, leading to oxidative stress. This imbalance contributes to the development and progression of diabetic complications. Similarly, renal and liver diseases are characterised by oxidative stress, where an excess of oxidants overwhelms the antioxidant defense mechanisms, causing tissue damage and dysfunction. Restoring the oxidant-antioxidant balance is essential for mitigating oxidative stress-related damage under these conditions. In this current study, the efficacy of stingless bee honey (SBH) and its phenolic-rich extract (PRE) in controlling the oxidant-antioxidant balance in high-fat diet- and streptozotocin/nicotinamide-induced diabetic rats was investigated. The administration of SBH and PRE improved systemic antioxidant defense and oxidative stress-related measures without compromising liver and renal functioning. Analyses of the liver, skeletal muscle and adipose tissues revealed differences in their capacities to scavenge free radicals and halt lipid peroxidation. Transcriptional alterations hypothesised tissue-specific control of KEAP1-NRF2 signalling by upregulation of Nrf2, Ho1 and Sod1 in a tissue-specific manner. In addition, hepatic translational studies demonstrated the stimulation of downstream antioxidant-related protein with upregulated expression of SOD-1 and HOD-1 protein. Overall, the results indicated that PRE and SBH can be exploited to restore the oxidant-antioxidant imbalance generated by diabetes via regulating the KEAP1-NRF2 signalling pathway.
    Matched MeSH terms: Bees
  7. Li A, Wang Q, Huang Y, Hu L, Li S, Wang Q, et al.
    Virus Res, 2023 Apr 15;328:199080.
    PMID: 36882131 DOI: 10.1016/j.virusres.2023.199080
    Chinese sacbrood virus (CSBV) is the most severe pathogen of Apis cerana, which leads to serious fatal diseases in bee colonies and eventual catastrophe for the Chinese beekeeping industry. Additionally, CSBV can potentially infect Apis mellifera by bridging the species barrier and significantly affect the productivity of the honey industry. Although several approaches, such as feeding royal jelly, traditional Chinese medicine, and double-stranded RNA treatments, have been employed to suppress CSBV infection, their practical applicabilities are constrained due to their poor effectiveness. In recent years, specific egg yolk antibodies (EYA) have been increasingly utilized in passive immunotherapy for infectious diseases without any side effects. According to both laboratory research and practical use, EYA have demonstrated superior protection for bees against CSBV infection. This review provided an in-depth analysis of the issues and drawbacks in this field in addition to provide a thorough summary of current advancements in CSBV studies. Some promising strategies for the synergistic study of EYA against CSBV, including the exploitation of novel antibody drugs, novel TCM monomer/formula determination, and development of nucleotide drugs, are also proposed in this review. Furthermore, the prospects for the future perspectives of EYA research and applications are presented. Collectively, EYA would terminate CSBV infection soon, as well as will provide scientific guidance and references to control and manage other viral infections in apiculture.
    Matched MeSH terms: Bees
  8. Manickavasagam G, Saaid M, Lim V, Saad MIZM, Azmi NAS, Osman R
    J Food Sci, 2023 Apr;88(4):1466-1481.
    PMID: 36922718 DOI: 10.1111/1750-3841.16535
    The popularity of Malaysian stingless bee honey is rising among health-conscious individuals; thus, chemical and physical evaluations of Malaysian stingless bee honey are vital to ensure the honey has achieved the optimum limits set by Malaysian and international regulatory standards so that it can be commercialized locally and internationally. Therefore, in the present study, the physicochemical characteristics (moisture content, total dissolved solids, pH, free acidity, electrical conductivity, and ash content), antioxidant properties (total phenolic and flavonoid contents), and 5-hydroxymethylfurfural (5-HMF) of Heterotrigona itama (H. itama) honey from different sites in Peninsular Malaysia were investigated. Subsequently, the correlation between these chemical and physical parameters was studied using Spearman correlation coefficients. The significant difference between H. itama honey from different topographical origins was studied using univariate analysis (one-way ANOVA followed by post hoc Tukey's test). The discrimination pattern of 45 honey samples based on their topographical origins was evaluated using cluster analysis (heatmap and dendrogram) and chemometrics analysis (partial least squares-discriminant analysis). Results showed that some samples of certain parameters (electrical conductivity, free acidity, and moisture content) have exceeded the limit set by the international regulatory standard. However, the 5-HMF content of all samples was within the allowed range. A statistically significant difference (p 
    Matched MeSH terms: Bees
  9. Yap VL, Tan LF, Rajagopal M, Wiart C, Selvaraja M, Leong MY, et al.
    BMC Complement Med Ther, 2023 Mar 28;23(1):93.
    PMID: 36978110 DOI: 10.1186/s12906-023-03921-0
    BACKGROUND: Scientific literature has demonstrated the association of free radicals in the aetiology of various chronic diseases. Hence, the identification of potent antioxidants remains a useful task. The combination of multiple herbs in polyherbal formulations (PHF) is often associated with greater therapeutic efficacy due to synergistic interactions. However, antagonism can occur in natural product mixtures and the resultant antioxidant potential might not always be the additive value of the antioxidant properties of each component. In this study, we aimed to evaluate the phytochemicals, antioxidative potential and interaction among the herbs in TC-16, a new PHF comprising Curcuma longa L., Zingiber officinale var. Bentong, Piper nigrum L., Citrofortunella microcarpa (Bunge) Wijnands and Apis dorsata honey.

    METHODS: TC-16 was screened for phytochemicals. Phenolic and flavonoid contents of TC-16 and its individual ingredients were determined, followed by assessment of antioxidant properties using in vitro assays including 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and β-carotene bleaching (BCB) assays. Interactions among the herbs were also investigated by calculating the difference in antioxidant activity and combination index.

    RESULTS: Alkaloids, flavonoids, terpenoids, saponins and glycosides were present in TC-16. TC-16 possessed the highest phenolic (46.14 ± 1.40 mg GAE/g) and flavonoid (132.69 ± 1.43 mg CE/g) contents following C. longa. Synergistic antioxidant activity among the herbs was evident in ORAC and BCB assays which uses mainly hydrogen atom transfer-based antioxidant mechanisms.

    CONCLUSIONS: TC-16 demonstrated roles in combating free radicals. In a PHF, synergistic interaction among the herbs is observed in some but not all mechanisms. Mechanisms showing synergistic interactions should be highlighted to maximise the beneficial property of the PHF.

    Matched MeSH terms: Bees
  10. Hashim KN, Chin KY, Ahmad F
    Molecules, 2023 Mar 20;28(6).
    PMID: 36985762 DOI: 10.3390/molecules28062790
    Metabolic syndrome (MetS) is composed of central obesity, hyperglycemia, dyslipidemia and hypertension that increase an individual's tendency to develop type 2 diabetes mellitus and cardiovascular diseases. Kelulut honey (KH) produced by stingless bee species has a rich phenolic profile. Recent studies have demonstrated that KH could suppress components of MetS, but its mechanisms of action are unknown. A total of 18 male Wistar rats were randomly divided into control rats (C group) (n = 6), MetS rats fed with a high carbohydrate high fat (HCHF) diet (HCHF group) (n = 6), and MetS rats fed with HCHF diet and treated with KH (HCHF + KH group) (n = 6). The HCHF + KH group received 1.0 g/kg/day KH via oral gavage from week 9 to 16 after HCHF diet initiation. Compared to the C group, the MetS group experienced a significant increase in body weight, body mass index, systolic (SBP) and diastolic blood pressure (DBP), serum triglyceride (TG) and leptin, as well as the area and perimeter of adipocyte cells at the end of the study. The MetS group also experienced a significant decrease in serum HDL levels versus the C group. KH supplementation reversed the changes in serum TG, HDL, leptin, adiponectin and corticosterone levels, SBP, DBP, as well as adipose tissue 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) level, area and perimeter at the end of the study. In addition, histological observations also showed that KH administration reduced fat deposition within hepatocytes, and prevented deterioration of pancreatic islet and renal glomerulus. In conclusion, KH is effective in preventing MetS by suppressing leptin, corticosterone and 11βHSD1 levels while elevating adiponectin levels.
    Matched MeSH terms: Bees
  11. Goh LPW, Jawan R, Faik AAM, Gansau JA
    J Med Life, 2023 Jan;16(1):16-21.
    PMID: 36873121 DOI: 10.25122/jml-2022-0160
    Stingless bees, also known as meliponines, live in beehives. However, reports on the distribution of stingless bees are scattered, resulting in a lack of precision. Honey and propolis are the main components that can be harvested from their beehive, with a great commercial value of up to 610 million USD. Despite the enormous potential profits, discrepancies in their bioactivities have been observed worldwide, leading to a lack of confidence. Therefore, this review provided oversight on the potential of stingless bee products and highlighted the differences between stingless bees in Asia, Australia, Africa, and America. The bioactivity of stingless bee products is diverse and exhibits great potential as an antimicrobial agent or in various diseases such as diabetes, cardiovascular disease, cancers, and oral problems.
    Matched MeSH terms: Bees*
  12. Ikhsan LN, Chin KY, Ahmad F
    Molecules, 2022 Oct 25;27(21).
    PMID: 36364068 DOI: 10.3390/molecules27217243
    Stingless bee honey (SLBH) has a high moisture content, making it more prone to fermentation and leading to honey spoilage. Dehydration of SLBH after harvest is needed to reduce the moisture content. This review compiles the available data on the dehydration methods for SLBH and their effect on its physicochemical properties. This review discovered the dehydration process of vacuum drying at 60 °C and 5% moisture setting, freeze-drying at −54 °C and 5% moisture setting for 24 h, and using a food dehydrator at 55 °C for 18 h could extract >80% water content in SLBH. As a result, these methods could decrease moisture content to <17% and water activity to <0.6. These will prevent the fermentation process and microorganism growth. The hydroxymethylfurfural (HMF) contents remain within the permissible standard of <40 mg/kg. The total phenolic content increased after dehydration by these methods. Therefore, dehydration of SLBH is recommended to increase its benefits.
    Matched MeSH terms: Bees
  13. Raypah ME, Omar AF, Muncan J, Zulkurnain M, Abdul Najib AR
    Molecules, 2022 Apr 03;27(7).
    PMID: 35408723 DOI: 10.3390/molecules27072324
    Honey is a natural product that is considered globally one of the most widely important foods. Various studies on authenticity detection of honey have been fulfilled using visible and near-infrared (Vis-NIR) spectroscopy techniques. However, there are limited studies on stingless bee honey (SBH) despite the increase of market demand for this food product. The objective of this work was to present the potential of Vis-NIR absorbance spectroscopy for profiling, classifying, and quantifying the adulterated SBH. The SBH sample was mixed with various percentages (10−90%) of adulterants, including distilled water, apple cider vinegar, and high fructose syrup. The results showed that the region at 400−1100 nm that is related to the color and water properties of the samples was effective to discriminate and quantify the adulterated SBH. By applying the principal component analysis (PCA) on adulterants and honey samples, the PCA score plot revealed the classification of the adulterants and adulterated SBHs. A partial least squares regression (PLSR) model was developed to quantify the contamination level in the SBH samples. The general PLSR model with the highest coefficient of determination and lowest root means square error of cross-validation (RCV2=0.96 and RMSECV=5.88 %) was acquired. The aquaphotomics analysis of adulteration in SBH with the three adulterants utilizing the short-wavelength NIR region (800−1100 nm) was presented. The structural changes of SBH due to adulteration were described in terms of the changes in the water molecular matrix, and the aquagrams were used to visualize the results. It was revealed that the integration of NIR spectroscopy with aquaphotomics could be used to detect the water molecular structures in the adulterated SBH.
    Matched MeSH terms: Bees
  14. Zawawi N, Zhang J, Hungerford NL, Yates HSA, Webber DC, Farrell M, et al.
    Food Chem, 2022 Mar 30;373(Pt B):131566.
    PMID: 34823933 DOI: 10.1016/j.foodchem.2021.131566
    Stingless bee honey (SBH) of four stingless bee species (Heterotrigona itama, Geniotrigona thoracica, Tetragonula carbonaria, and Tetragonula hockingsi) from two geographic regions (Malaysia and Australia, n = 36) were studied for their physicochemical parameters, including total phenolic and multi-elemental contents. Sugar analysis confirmed the prominent presence of trehalulose in all samples. All SBH failed to meet the CODEX Standard for honey moisture, free acidity, and total fructose plus glucose levels. One-way ANOVA, principal component analysis (PCA) and hierarchical component analysis (HCA) confirm distinctive differences between Australian and Malaysian SBH with Australian SBH having significantly (P 
    Matched MeSH terms: Bees
  15. Syed Yaacob SN, Huyop F, Misson M, Abdul Wahab R, Huda N
    PeerJ, 2022;10:e13053.
    PMID: 35345581 DOI: 10.7717/peerj.13053
    BACKGROUND: Honey produced by Heterotrigona itama is highly preferred among consumers due to its high-value as a functional food and beneficial lactic acid bacteria (LAB) reservoir. Fructophilic lactic acid bacteria (FLAB) are a group of LAB with unique growth characteristics and are regarded as promising producers of bioactive compounds. Hence, it is not surprising that LAB, especially FLAB, may be involved with the excellent bioactivity of H. itama honey. With the trending consumer preference for H. itama honey coupled with increasing awareness for healthy food, the genomic background of FLAB isolated from this honey must, therefore, be clearly understood. In this study, one FLAB strain designated as Sy-1 was isolated from freshly collected H. itama honey. Its FLAB behavior and genomic features were investigated to uncover functional genes that could add value to functional food.

    METHODS: The fructophilic characteristics of strain Sy-1 were determined, and the genome was sequenced using Illumina iSeq100 and Oxford Nanopore. The average nucleotide identity and phylogenetic analyses based on 16S rRNA, 92 core genes, and whole-genome sequence were performed to unravel the phylogenetic position of strain Sy-1. NCBI Prokaryotic Genome Annotation Pipeline annotated the genome, while the EggNOG-mapper, BLASTKoala, and GHOSTKoala were used to add functional genes and pathways information.

    RESULTS: Strain Sy-1 prefers D-fructose over D-glucose and actively metabolizes D-glucose in the presence of electron acceptors. Genomic annotation of strain Sy-1 revealed few genes involved in carbohydrate transport and metabolism, and partial deletion of adhE gene, in line with the characteristic of FLAB. The 16S rRNA gene sequence of strain Sy-1 showed the highest similarity to unknown LAB species isolated from the gut of honeybees. The phylogenetic analyses discovered that strain Sy-1 belonged to the Lactobacillaceae family and formed a separate branch closer to type strain from the genera of Acetilactobacillus and Apilactobacillus. The ANI analysis showed the similarity of the closest relative, Apilactobacillus micheneri Hlig3T. The assembled genome of Sy-1 contains 3 contigs with 2.03 Mbp and a 41% GC content. A total of 1,785 genes were identified, including 1,685 protein-coding genes, 68 tRNA, and 15 rRNA. Interestingly, strain Sy-1 encoded complete genes for the biosynthesis of folate and riboflavin. High-performance liquid chromatography analysis further confirmed the high production of folic acid (1.346 mg/L) by Sy-1.

    DISCUSSION: Based on phylogenetic and biochemical characteristics, strain Sy-1 should be classified as a novel genus in the family of Lactobacillaceae and a new member of FLAB. The genome information coupled with experimental studies supported the ability of strain Sy-1 to produce high folic acid. Our collective findings support the suitable application of FLAB strain Sy-1 in the functional food and pharmaceutical industries.

    Matched MeSH terms: Bees/genetics
  16. Ng WJ, Sit NW, Ooi PA, Ee KY, Lim TM
    Molecules, 2021 Dec 16;26(24).
    PMID: 34946710 DOI: 10.3390/molecules26247628
    Stingless bee honey, specifically honeydew honey, is generally valued for its better health benefits than those of most blossom types. However, scientific studies about the differentiation of stingless bee honey based on honeydew and blossom origins are very limited. In this study, 13C NMR spectroscopy was employed to quantify the seven major sugar tautomers in stingless bee honey samples, and the major sugar compositions of both honeydew and blossom types were found not significantly different. However, several physicochemical properties of honeydew honey including moisture content, free acidity, electrical conductivity, ash content, acetic acid, diastase, hydrogen peroxide, and mineral elements levels were significantly higher; while total soluble solid, proline, and hydroxymethylfurfural were significantly lower than blossom honey. Greater antioxidant capacity in honeydew honey was proven with higher total phenolic compounds, ABTS, DPPH, superoxide radical scavenging activities, peroxyl radical inhibition, iron chelation, and ferric reducing power. Using principal component analysis (PCA), two clusters of stingless bee honey from the honeydew and blossom origin were observed. PCA also revealed that the differentiation between honeydew and blossom origin of stingless bee honey is possible with certain physicochemical and antioxidant parameters. The combination of NMR spectroscopy and chemometrics are suggested to be useful to determine the authenticity and botanical origin of stingless bee honey.
    Matched MeSH terms: Bees*
  17. Fakhlaei R, Selamat J, Razis AFA, Sukor R, Ahmad S, Amani Babadi A, et al.
    Molecules, 2021 Oct 15;26(20).
    PMID: 34684803 DOI: 10.3390/molecules26206222
    Honey is prone to be adulterated through mixing with sugars, cheap and low-quality honey, and other adulterants. Consumption of adulterated honey may cause several health issues such as weight gain, diabetes, and liver and kidney dysfunction. Therefore, studying the impact of consumption of adulterated honey on consumers is critical since there is a lack of study in this field. Hence, the aims of this paper were: (1) to determine the lethal concentration (LC50) of adulterated honey using zebrafish embryo, (2) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish, (3) to determine the effects of adulterated honey on histological changes of zebrafish, and (4) to screen the metabolites profile of adulterated honey by using zebrafish blood serum. The LC50 of Heterotrigona itama honey (acacia honey) and its sugar adulterants (light corn sugar, cane sugar, inverted sugar, and palm sugar in the proportion of 1-3% (w/w) from the total volume) was determined by the toxicological assessment of honey samples on zebrafish embryos (different exposure concentrations in 24, 48, 72, and 96 h postfertilization (hpf)). Pure H. itama honey represents the LC50 of 34.40 ± 1.84 (mg/mL) at 96 hpf, while the inverted sugar represents the lowest LC50 (5.03 ± 0.92 mg/mL) among sugar adulterants. The highest concentration (3%) of sugar adulterants were used to study the toxicology of adulterated honey using adult zebrafish in terms of acute, prolong-acute, and sub-acute tests. The results of the LD50 from the sub-acute toxicity test of pure H. itama honey was 2.33 ± 0.24 (mg/mL). The histological studies of internal organs showed a lesion in the liver, kidney, and spleen of adulterated treated-honey groups compared to the control group. Furthermore, the LC-MS/MS results revealed three endogenous metabolites in both the pure and adulterated honey treated groups, as follows: (1) S-Cysteinosuccinic acid, (2) 2,3-Diphosphoglyceric acid, and (3) Cysteinyl-Tyrosine. The results of this study demonstrated that adulterated honey caused mortality, which contributes to higher toxicity, and also suggested that the zebrafish toxicity test could be a standard method for assessing the potential toxicity of other hazardous food additives. The information gained from this research will permit an evaluation of the potential risk associated with the consumption of adulterated compared to pure honey.
    Matched MeSH terms: Bees
  18. Suleiman JB, Mohamed M, Abu Bakar AB, Nna VU, Zakaria Z, Othman ZA, et al.
    Molecules, 2021 Aug 15;26(16).
    PMID: 34443531 DOI: 10.3390/molecules26164943
    The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.
    Matched MeSH terms: Bees/chemistry*
  19. Sharin SN, Sani MSA, Jaafar MA, Yuswan MH, Kassim NK, Manaf YN, et al.
    Food Chem, 2021 Jun 01;346:128654.
    PMID: 33461823 DOI: 10.1016/j.foodchem.2020.128654
    Identification of honey origin based on specific chemical markers is important for honey authentication. This study is aimed to differentiate Malaysian stingless bee honey from different entomological origins (Heterotrigona bakeri, Geniotrigona thoracica and Tetrigona binghami) based on physicochemical properties (pH, moisture content, ash, total soluble solid and electrical conductivity) and volatile compound profiles. The discrimination pattern of 75 honey samples was observed using Principal Component Analysis (PCA), Hierarchical Clustering Analysis (HCA), Partial Least Square-Discriminant Analysis (PLS-DA), and Support Vector Machine (SVM). The profiles of H. bakeri and G. thoracica honey were close to each other, but clearly separated from T. binghami honey, consistent with their phylogenetic relationship. T. binghami honey is marked by significantly higher electrical conductivity, moisture and ash content, and high abundance of 2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-1-cyclohexene-1-acetaldehyde and ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate. Copaene was proposed as chemical marker for G. thoracica honey. The potential of different parameters that aid in honey authentication was highlighted.
    Matched MeSH terms: Bees/chemistry*
  20. Ekeuku SO, Chin KY
    Molecules, 2021 May 25;26(11).
    PMID: 34070497 DOI: 10.3390/molecules26113156
    Chronic inflammation and oxidative stress are two major mechanisms leading to the imbalance between bone resorption and bone formation rate, and subsequently, bone loss. Thus, functional foods and dietary compounds with antioxidant and anti-inflammatory could protect skeletal health. This review aims to examine the current evidence on the skeletal protective effects of propolis, a resin produced by bees, known to possess antioxidant and anti-inflammatory activities. A literature search was performed using Pubmed, Scopus, and Web of Science to identify studies on the effects of propolis on bone health. The search string used was (i) propolis AND (ii) (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). Eighteen studies were included in the current review. The available experimental studies demonstrated that propolis could prevent bone loss due to periodontitis, dental implantitis, and diabetes in animals. Combined with synthetic and natural grafts, it could also promote fracture healing. Propolis protects bone health by inhibiting osteoclastogenesis and promoting osteoblastogenesis, partly through its antioxidant and anti-inflammatory actions. Despite the promising preclinical results, the skeletal protective effects of propolis are yet to be proven in human studies. This research gap should be bridged before nutraceuticals based on propolis with specific health claims can be developed.
    Matched MeSH terms: Bees
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links