Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Choo BKM, Kundap UP, Faudzi SMM, Abas F, Shaikh MF, Samarut É
    Biomed Pharmacother, 2021 Oct;142:112035.
    PMID: 34411917 DOI: 10.1016/j.biopha.2021.112035
    Seizures are the outward manifestation of abnormally excessive or synchronous brain activity. While seizures can be somewhat symptomatically managed with anti-epileptic drugs (AEDs), many patients are still refractory to the currently available AEDs. As a result, there is a need to identify new molecules with anti-seizure properties. Curcumin is the principle curcuminoid of Curcuma longa, or colloquially turmeric, and has been experimentally proven to have anti-convulsive properties, but its poor bioavailability has dampened further therapeutic interest. Hence, this study aimed to ask if structural analogues of curcumin with an adequate bioavailability could have an anti-seizure effect in vivo. To do so, we tested these analogues following a multipronged approach combining the use of several zebrafish seizure models (chemically-induced and genetic) and complementary assays (behavioural and brain activity). Overall, from the 68 analogues tested, we found 15 different derivatives that were able to significantly decrease the behavioural hyperactivity induced by pentylenetetrazol. Of those, only a few showed an effect on the hyperactivity phenotype of two genetic models of brain seizures that are the gabra1 and gabrg2 knockouts. Two analogues, CA 80(1) and CA 74(1), were able to significantly alleviate brain seizures of gabrg2-mutant larvae. As a result, these analogues are good candidates as novel anti-seizure agents.
    Matched MeSH terms: Behavior, Animal/drug effects
  2. Seddiki LS, Belboukhari N, Ould El Hadj-Khelil A, Sulaiman MR, Sekkoum K, Cheriti A
    J Ethnopharmacol, 2021 Jul 15;275:114137.
    PMID: 33915133 DOI: 10.1016/j.jep.2021.114137
    ETHNOPHARMACOLOGICAL RELEVANCE: Launaea arborescens, its vernacular name is Mol-albina belonging to asteracaea family origin of the southwest of Algeria. This plant is used in folk medicines to treat gastroenteritis, diabetes, child aliment and other diseases; it is taken macerated or boiled.

    AIM: This study aims to evaluate the anti-inflammation an analgesic activity of the aqueous extract of Launaea arborescens (AqELA) and its pathway of action.

    METHODS: the investigation of anti-inflammatory and analgesic effects were done using formalin test, acetic acid test. For mechanism investigation, it was used hot plate test to induce opioid receptors, a histamine and serotonin test to induce edema paw, finally, for the TRPV1 receptor, it was used the capsaicin test.

    RESULTS: The aqueous extract of Launaea arborescens showed a significant inhibition of abdominal writhing test 95% and 100% inhibition of licking paw using acid acetic test and formalin test respectively (EC: 47 mg/kg and 104 mg/kg). The analgesic effect of the aqueous extract of Launaea arborescens showed inhibition of sensation of pain after 120 min compared to morphine effect. The aqueous extract of Launaea arborescens reduced paw volume after 180 min and 120 min for histamine and serotonin respectively with dose-dependent. Concerning of TRPV1 receptors, the inhibition was showed at doses 100 mg and 300 mg.

    CONCLUSION: Our results contribute towards validation of the traditional use of Launaea arborescens for inflammation ailment.

    Matched MeSH terms: Behavior, Animal/drug effects
  3. Sharma N, Khurana N, Muthuraman A, Utreja P
    Eur J Pharmacol, 2021 Jul 15;903:174112.
    PMID: 33901458 DOI: 10.1016/j.ejphar.2021.174112
    In the present study, we investigated the anti-Parkinson's effect of vanillic acid (VA) (12 mg/kg, 25 mg/kg, 50 mg/kg p.o.) against rotenone (2 mg/kg s.c.) induced Parkinson's disease (PD) in rats. The continuous administration of rotenone for 35 days resulted in rigidity in muscles, catalepsy, and decrease in locomotor activity, body weight, and rearing behaviour along with the generation of oxidative stress in the brain (rise in the TBARS, and SAG level and reduced CAT, and GSH levels). Co-treatment of VA and levodopa-carbidopa (100 mg/kg + 25 mg/kg p.o.) lead to a significant (P drug treated animals as compared to rotenone treated group. Histopathological evaluation showed a high number of eosinophilic lesions in the rotenone group which were found to be very less in the VA co-treated group. The study thus proved that co-treatment of VA and levodopa-carbidopa, significantly protected the brain from neuronal damage due to oxidative stress and attenuated the motor defects indicating the possible therapeutic potential of VA as a neuroprotective in PD.
    Matched MeSH terms: Behavior, Animal/drug effects
  4. Hassan R, Othman N, Mansor SM, Müller CP, Hassan Z
    Brain Res Bull, 2021 07;172:139-150.
    PMID: 33901587 DOI: 10.1016/j.brainresbull.2021.04.018
    Mitragyna speciosa, also known as kratom, has been used for mitigating the severity of opioid withdrawal in humans. Its main indole alkaloid, mitragynine, has been considered as a pharmacotherapy for pain conditions and opioid replacement therapy. However, at high doses, chronic mitragynine may also have an addiction potential. The effects of chronic action of mitragynine in the brain are still unknown. The present study developed a mitragynine withdrawal model in rats and used it for a proteomic analysis of mitragynine withdrawal effects. Mitragynine (30 mg/kg, i.p.) was administered daily over a period of 14 days and then withdrawn. A proteomic analysis revealed that from a total of 1524 proteins identified, 31 proteins were upregulated, and 3 proteins were downregulated in the mitragynine withdrawal model. The Rab35 protein expression increased most profoundly in the mitragynine withdrawal group as compared to vehicle group. Therefore, it is proposed that Rab35 in the brain might be considered as a potential biomarker during mitragynine withdrawal and might be valuable target protein in developing new pharmacotherapies in the future.
    Matched MeSH terms: Behavior, Animal/drug effects
  5. Lee HC, Hamzah H, Leong MP, Md Yusof H, Habib O, Zainal Abidin S, et al.
    Sci Rep, 2021 Feb 15;11(1):3847.
    PMID: 33589712 DOI: 10.1038/s41598-021-83222-z
    Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100β mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.
    Matched MeSH terms: Behavior, Animal/drug effects
  6. Japarin RA, Yusoff NH, Hassan Z, Müller CP, Harun N
    Behav Brain Res, 2021 02 05;399:113021.
    PMID: 33227244 DOI: 10.1016/j.bbr.2020.113021
    Kratom is a medicinal plant that exhibits promising results as an opiate substitute. However, there is little information regarding the abuse profile of its main psychoactive constituent, mitragynine (MG), particularly in relapse to drug abuse. Using the place conditioning procedure as a model of relapse, this study aims to evaluate the ability of MG to induce conditioned place preference (CPP) reinstatement in rats. To evaluate the cross-reinstatement effects, MG and morphine were injected to rats that previously extinguished a morphine- or MG-induced CPP. Following a CPP acquisition induced by either MG (10 and 30 mg/kg, i.p.) or morphine (10 mg/kg, i.p.), rats were subjected to repeated CPP extinction sessions. A low dose priming injection of MG or morphine produced a reinstatement of the previously extinguished CPP. In the second experiment of this study, a priming injection of morphine (1, 3 and 10 mg/kg, i.p.) dose-dependently reinstated an MG-induced CPP. Likewise, a priming injection of MG (3, 10 and 30 mg/kg, i.p.) was able to dose-dependently reinstate a morphine-induced CPP. The present study demonstrates a cross-reinstatement effect between MG and morphine, thereby suggesting a similar interaction in their rewarding motivational properties. The findings from this study also suggesting that a priming exposure to kratom and an opioid may cause relapse for a previously abused drug.
    Matched MeSH terms: Behavior, Animal/drug effects
  7. Nna VU, Abu Bakar AB, Ahmad A, Mohamed M
    Arch Physiol Biochem, 2021 Feb;127(1):51-60.
    PMID: 31072137 DOI: 10.1080/13813455.2019.1610778
    CONTEXT: Lactate is the preferred energy substrate for developing testicular germ cells. Diabetes is associated with impaired testicular lactate transport/utilisation, and poor sexual behaviour.

    OBJECTIVE: To examine the effects of metformin on parameters involved in testicular lactate production, transport/utilisation, and sexual behaviour in diabetic state.

    METHODS: Male Sprague-Dawley rats were assigned into normal control (NC), diabetic control (DC), and metformin-treated diabetic group (n = 6/group). Metformin (300 mg/kg b.w./day) was administrated orally for 4 weeks.

    RESULTS: Intra-testicular glucose and lactate levels, and lactate dehydrogenase (LDH) activity increased, while the mRNA transcript levels of genes responsible for testicular glucose and lactate transport/utilisation (glucose transporter 3, monocarboxylate transporter 4 (MCT4), MCT2, and LDH type C) decreased in DC group. Furthermore, penile nitric oxide increased, while cyclic guanosine monophosphate decreased, with impaired sexual behaviour in DC group. Treatment with metformin improved these parameters.

    CONCLUSIONS: Metformin increases testicular lactate transport/utilisation and improves sexual behaviour in diabetic state.

    Matched MeSH terms: Sexual Behavior, Animal/drug effects*
  8. Harun AM, Awang H, Noor NFM, Makhatar NM, Yusoff ME, Affandi NDN, et al.
    Biomed Res Int, 2021;2021:6173143.
    PMID: 34859102 DOI: 10.1155/2021/6173143
    BACKGROUND: Potential antibacterial substances, such as titanium dioxide (TiO2), are being extensively studied throughout the research world. A modified hydrothermal nanotitania extraction was shown to inhibit Staphylococcus aureus growth in the laboratory. However, the toxicity effect of the extract on rats is unknown. In this study, we observed the effects of a modified hydrothermal nanotitania extraction on the skin and behavior of Sprague-Dawley rats.

    METHODS: Sprague-Dawley (Rattus norvegicus) rats were used as the experimental animals. The skin around the dorsum of the tested animals was shaved and pasted with 0.1 mg and 0.5 mg of the nanotitania extraction. The color and condition of the pasted area and the behavior of the animals were observed.

    RESULTS: 0.1 mg nanotitania extraction application on the dorsum of the rat produced no skin color changes at day 1, day 3, day 5, or day 7 postapplication. There were no changes in their behavior up to day 7 with no skin rashes or skin scratches seen or fur changes. However, 0.5 mg of nanotitania extraction resulted in redness and less fur regrowth at day 7.

    CONCLUSIONS: A 0.1 mg modified nanotitania extraction was observed to have no effect on the skin of Sprague-Dawley rats.

    Matched MeSH terms: Behavior, Animal/drug effects
  9. Tiang N, Ahad MA, Murugaiyah V, Hassan Z
    J Pharm Pharmacol, 2020 Nov;72(11):1629-1644.
    PMID: 32743849 DOI: 10.1111/jphp.13345
    OBJECTIVES: Xanthones isolated from the pericarp of Garcinia mangostana has been reported to exhibit neuroprotective effect.

    METHODS: In this study, the effect of xanthone-enriched fraction of Garcinia mangostana (XEFGM) and α-mangostin (α-MG) were investigated on cognitive functions of the chronic cerebral hypoperfusion (CCH) rats.

    KEY FINDINGS: HPLC analysis revealed that XEFGM contained 55.84% of α-MG. Acute oral administration of XEFGM (25, 50 and 100 mg/kg) and α-MG (25 and 50 mg/kg) before locomotor activity and Morris water maze (MWM) tests showed no significant difference between the groups for locomotor activity.

    CONCLUSIONS: However, α-MG (50 mg/kg) and XEFGM (100 mg/kg) reversed the cognitive impairment induced by CCH in MWM test. α-MG (50 mg/kg) was further tested upon sub-acute 14-day treatment in CCH rats. Cognitive improvement was shown in MWM test but not in long-term potentiation (LTP). BDNF but not CaMKII was found to be down-regulated in CCH rats; however, both parameters were not affected by α-MG. In conclusion, α-MG ameliorated learning and memory deficits in both acute and sub-acute treatments in CCH rats by improving the spatial learning but not hippocampal LTP. Hence, α-MG may be a promising lead compound for CCH-associated neurodegenerative diseases, including vascular dementia and Alzheimer's disease.

    Matched MeSH terms: Behavior, Animal/drug effects*
  10. Chong PS, Khairuddin S, Tse ACK, Hiew LF, Lau CL, Tipoe GL, et al.
    Sci Rep, 2020 09 10;10(1):14945.
    PMID: 32913245 DOI: 10.1038/s41598-020-71966-z
    Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although several studies have demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), its mechanisms in cerebellar ataxia remain largely unknown. Here, we investigated the neuroprotective effects of H.E. treatment in an animal model of 3-acetylpyridine (3-AP)-induced cerebellar ataxia. Animals administered 3-AP injection exhibited remarkable impairments in motor coordination and balance. There were no significant effects of 25 mg/kg H.E. on the 3-AP treatment group compared to the 3-AP saline group. Interestingly, there was also no significant difference in the 3-AP treatment group compared to the non-3-AP control, indicating a potential rescue of motor deficits. Our results revealed that 25 mg/kg H.E. normalised the neuroplasticity-related gene expression to the level of non-3-AP control. These findings were further supported by increased protein expressions of pERK1/2-pCREB-PSD95 as well as neuroprotective effects on cerebellar Purkinje cells in the 3-AP treatment group compared to the 3-AP saline group. In conclusion, our findings suggest that H.E. potentially rescued behavioural motor deficits through the neuroprotective mechanisms of ERK-CREB-PSD95 in an animal model of 3-AP-induced cerebellar ataxia.
    Matched MeSH terms: Behavior, Animal/drug effects*
  11. Nna VU, Bakar ABA, Ahmad A, Umar UZ, Suleiman JB, Zakaria Z, et al.
    Andrology, 2020 05;8(3):731-746.
    PMID: 31816190 DOI: 10.1111/andr.12739
    BACKGROUND: Diabetes mellitus is one of the risk factors for male subfertility/infertility. Malaysian propolis is reported to decrease hyperglycaemia in diabetic state.

    OBJECTIVES: The present study investigated the protective effect of Malaysian propolis on diabetes-induced subfertility/infertility. Additionally, its combined beneficial effects with metformin were investigated.

    MATERIALS AND METHODS: Forty adult male Sprague Dawley rats were randomly assigned into five groups, namely normal control, diabetic control, diabetic + Malaysian propolis (300 mg/k.g. b.w.), diabetic + metformin (300 mg/kg b.w.) and diabetic + Malaysian propolis + metformin. Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.) and treatment lasted for 4 weeks. During the 4th week, mating behavioural experiments were performed using sexually receptive female rats. Thereafter, fertility parameters were assessed in the female rats.

    RESULTS: Malaysian propolis increased serum and intratesticular free testosterone levels, up-regulated the mRNA levels of AR and luteinizing hormone receptor, up-regulated the mRNA and protein levels of StAR, CYP11A1, CYP17A1, 3β-HSD and 17β-HSD in the testes of diabetic rats. Furthermore, Malaysian propolis up-regulated testicular MCT2, MCT4 and lactate dehydrogenase type C mRNA levels, in addition to improving sperm parameters (count, motility, viability and normal morphology) and decreasing sperm nDNA fragmentation in diabetic rats. Malaysian propolis improved mating behaviour by increasing penile guanosine monophosphate levels. Malaysian propolis also improved fertility outcome as seen with decreases in pre- and post-implantation losses, increases in gravid uterine weight, litter size per dam and foetal weight. Malaysian propolis's effects were comparable to metformin. However, their combination yielded better results relative to the monotherapeutic interventions.

    CONCLUSION: Malaysian propolis improves fertility potential in diabetic state by targeting steroidogenesis, testicular lactate metabolism, spermatogenesis and mating behaviour, with better effects when co-administered with metformin. Therefore, Malaysian propolis shows a promising complementary effect with metformin in mitigating Diabetes mellitus-induced subfertility/infertility.

    Matched MeSH terms: Sexual Behavior, Animal/drug effects
  12. Abd Aziz NAW, Iezhitsa I, Agarwal R, Abdul Kadir RF, Abd Latiff A, Ismail NM
    Neurol Res, 2020 Mar;42(3):189-208.
    PMID: 32013788 DOI: 10.1080/01616412.2020.1716470
    Objective:Trans-resveratrol has been shown to have neuroprotective effects and could be a promising therapeutic agent in the treatment of intracerebral haemorrhage (ICH). This study aimed to investigate the involvement of the adenosine A1 receptor (A1R) in trans-resveratrol-induced neuroprotection in rats with collagenase-induced ICH.Methods: Sixty male Sprague-Dawley rats weighing 330-380 g were randomly divided into five groups (n = 12): (i) control, (ii) sham-operated rats, (iii) ICH rats pretreated with vehicle (0.1% DMSO saline, i.c.v.), (iv) ICH rats pretreated with trans-resveratrol (0.9 µg, i.c.v.) and (v) ICH rats pretreated with trans-resveratrol (0.9 µg) and the A1R antagonist, DPCPX (2.5 µg, i.c.v.). Thirty minutes after pretreatment, ICH was induced by intrastriatal injection of collagenase (0.04 U). Forty-eight hours after ICH, the rats were assessed using a variety of neurobehavioural tests. Subsequently, rats were sacrificed and brains were subjected to gross morphological examination of the haematoma area and histological examination of the damaged area.Results: Severe neurobehavioural deficits and haematoma with diffuse oedema were observed after intrastriatal collagenase injection. Pretreatment with trans-resveratrol partially restored general locomotor activity, muscle strength and coordination, which was accompanied with reduction of haematoma volume by 73.22% (P < 0.05) and damaged area by 60.77% (P < 0.05) in comparison to the vehicle-pretreated ICH group. The trans-resveratrol-induced improvement in neurobehavioural outcomes and morphological features of brain tissues was inhibited by DPCPX pretreatment.Conclusion: This study demonstrates that the A1R activation is possibly the mechanism underlying the trans-resveratrol-induced neurological and neurobehavioural protection in rats with ICH.
    Matched MeSH terms: Behavior, Animal/drug effects*
  13. Paudel YN, Angelopoulou E, Piperi C, Shaikh MF, Othman I
    Pharmacol Res, 2020 02;152:104593.
    PMID: 31843673 DOI: 10.1016/j.phrs.2019.104593
    Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and Lewy pathology. PD is a major concern of today's aging population and has emerged as a global health burden. Despite the rapid advances in PD research over the past decades, the gold standard therapy provides only symptomatic relief and fails to halt disease progression. Therefore, exploring novel disease-modifying therapeutic strategies is highly demanded. Metformin, which is currently used as a first-line therapy for type 2 diabetes mellitus (T2DM), has recently demonstrated to exert a neuroprotective role in several neurodegenerative disorders including PD, both in vitro and in vivo. In this review, we explore the neuroprotective potential of metformin based on emerging evidence from pre-clinical and clinical studies. Regarding the underlying molecular mechanisms, metformin has been shown to inhibit α-synuclein (SNCA) phosphorylation and aggregation, prevent mitochondrial dysfunction, attenuate oxidative stress, modulate autophagy mainly via AMP-activated protein kinase (AMPK) activation, as well as prevent neurodegeneration and neuroinflammation. Overall, the neuroprotective effects of metformin in PD pathogenesis present a novel promising therapeutic strategy that might overcome the limitations of current PD treatment.
    Matched MeSH terms: Behavior, Animal/drug effects
  14. Saremi K, Rad SK, Khalilzadeh M, Hussaini J, Majid NA
    Acta Biochim Biophys Sin (Shanghai), 2020 Jan 02;52(1):26-37.
    PMID: 31889181 DOI: 10.1093/abbs/gmz140
    Chlorine is shown to possess anti-gastric ulcer activity, since it can inactivate Helicobacter pylori, which is regarded as one of the most common risk factors for causing gastric problems. In the current study, the gastroprotective property of a novel dichloro-substituted Schiff base complex, 2, 2'- [-1, 2-cyclohexanediylbis(nitriloethylidyne)] bis(4-chlorophenol) (CNCP), against alcohol-induced gastric lesion in SD rats was assessed. SD rats were divided into four groups, i.e. normal, ulcer control, testing, and reference groups. Ulcer area, gastric wall mucus, and also gastric acidity of the animal stomachs were measured. In addition, antioxidant activity of CNCP was evaluated and its safe dose was identified. Immunohistochemistry staining was also carried to evaluate two important proteins, i.e. Bcl2-associated X protein (Bax) and heat shock protein 70 (HSP70). Moreover, the activities of super oxide dismutase and catalase, as well as the levels of prostaglandin E2 (PGE2) and malondialdehyde (MDA) were also measured. Antioxidant activity of CNCP was approved via the aforementioned experiments. Histological evaluations showed that the compound possesses stomach epithelial defense activity. Additionally, periodic acid-Schiff staining exhibited over-expression of HSP70 and down-expression of Bax protein in the CNCP-treated rats. Moreover, CNCP caused deceased MDA level and elevated PGE2 level, and at the same time increased the activities of the two enzymes.
    Matched MeSH terms: Behavior, Animal/drug effects
  15. Yusof HM, Ali NM, Yeap SK, Ho WY, Beh BK, Koh SP, et al.
    BMC Complement Altern Med, 2019 Dec 19;19(1):373.
    PMID: 31856816 DOI: 10.1186/s12906-019-2791-2
    BACKGROUND: Tempeh is a widely known fermented soybean that contains elevated level of bioactive contents. Our previous study has shown that anaerobic fermented Nutrient Enriched Soybean Tempeh (NESTE) with increase amino acid and antioxidant levels possessed better hepatoprotective effect than raw soybean.

    METHODS: In this study, the anti-inflammatory effect of the NESTE aqueous extract and raw soybean aqueous extract (SBE) were evaluated by quantifying the inhibition of IL-1β, TNF-α and nitric oxide (NO) secretion in LPS treated RAW 264.7 cell in vitro. On the other hand, in vivo oral acute toxicity effect of the extract was tested on mice at the dose of 5000 mg/kg body weight. In vivo oral analgesic effect of both aqueous extracts at 200 and 1000 mg/kg body weight was evaluated by the hot plate test.

    RESULTS: In the in vitro anti-inflammatory study, 5 mg/mL NESTE was able to inhibit 25.50 ± 2.20%, 35.88 ± 3.20% and 28.50 ± 3.50% of NO, IL-1β and TNF-α production in LPS treated RAW 264.7 cells without inducing cytotoxic effect on the cells. However, this effect was lower than 4 μg/mL of curcumin, which inhibited NO, IL-1β and TNF-α production by 89.50 ± 5.00%, 78.80 ± 6.20% and 87.30 ± 4.00%, respectively. In addition, 1.5 to 2.5-fold increase of latency period up to 120 min for mice in the hot plate test was achieved by 1000 mg/kg NESTE. The analgesic effect of NESTE was better than 400 mg/kg of acetyl salicylic acid, which only increased ~ 1.7-fold of latency period up to 90 min. Moreover, NESTE did not show acute toxicity (no LD50) up to 5000 mg/kg body weight.

    CONCLUSION: NESTE is a nutritious food ingredient with potential anti-inflammatory and analgesic effects.

    Matched MeSH terms: Behavior, Animal/drug effects
  16. Shamshir RA, Wee SL
    J Insect Physiol, 2019 09 26;119:103949.
    PMID: 31563620 DOI: 10.1016/j.jinsphys.2019.103949
    Certain male fruit flies from the genera Bactrocera and Zeugodacus (Diptera: Tephritidae) actively forage for floral semiochemicals produced by some endemic Bulbophyllum orchids found in tropical and subtropical forests. These floral semiochemicals are largely classified as either phenylbutanoids (e.g., raspberry ketone (RK)) or phenylpropanoids (e.g., methyl eugenol (ME)). Zingerone (ZN) is a phenylbutanoid recently found that structurally resembles ME and RK, both of which are phytochemicals commonly used as male attractants in fruit fly control programmes. It was previously shown that feeding on ME and RK increased the mating success of certain tephritid fruit flies, specifically in B. dorsalis and B. tryoni males, respectively, through enhancement of sexual signaling. However, ZN, which acts as a metabolic enhancer to increase male courtship activity in B. tryoni, did not show the same effect. As fruit fly-phytochemical lure interactions are unique and species-specific phenomena, this study seeks to elucidate the ecological significance of ZN feeding to Zeugodacus tau in terms of sexual signaling. We demonstrate here that ZN feeding by Z. tau males enhanced female attraction and subsequent mating success by increasing male courtship, and the attractiveness of the sexual signals in both wind tunnel and semi-field cage bioassays. In addition, we also demonstrated temporal effects on male behaviour in relation to the amount of lure intake. However, feeding on ZN did not appear to affect the total time spent in copula for Z. tau. This is the first report showing an important role of ZN in increasing courtship activity as well as enhancement of sexual signaling in Z. tau males.
    Matched MeSH terms: Sexual Behavior, Animal/drug effects*
  17. Ismail CAN, Suppian R, Abd Aziz CB, Haris K, Long I
    Diabetes Metab J, 2019 Apr;43(2):222-235.
    PMID: 30604591 DOI: 10.4093/dmj.2018.0020
    BACKGROUND: This study investigated the role of NR2B in a modulated pain process in the painful diabetic neuropathy (PDN) rat using various pain stimuli.

    METHODS: Thirty-two Sprague-Dawley male rats were randomly allocated into four groups (n=8): control, diabetes mellitus (DM) rats and diabetic rats treated with ifenprodil at a lower dose (0.5 μg/day) (I 0.5) or higher dose (1.0 μg/day) (I 1.0). DM was induced by a single injection of streptozotocin at 60 mg/kg on day 0 of experimentation. Diabetic status was assessed on day 3 of the experimentation. The responses on both tactile and thermal stimuli were assessed on day 0 (baseline), day 14 (pre-intervention), and day 22 (post-intervention). Ifenprodil was given intrathecally for 7 days from day 15 until day 21. On day 23, 5% formalin was injected into the rats' hind paw and the nociceptive responses were recorded for 1 hour. The rats were sacrificed 72 hours post-formalin injection and an analysis of the spinal NR2B expression was performed.

    RESULTS: DM rats showed a significant reduction in pain threshold in response to the tactile and thermal stimuli and higher nociceptive response during the formalin test accompanied by the higher expression of phosphorylated spinal NR2B in both sides of the spinal cord. Ifenprodil treatment for both doses showed anti-allodynic and anti-nociceptive effects with lower expression of phosphorylated and total spinal NR2B.

    CONCLUSION: We suggest that the pain process in the streptozotocin-induced diabetic rat that has been modulated is associated with the higher phosphorylation of the spinal NR2B expression in the development of PDN, which is similar to other models of neuropathic rats.

    Matched MeSH terms: Behavior, Animal/drug effects
  18. Abdalla YOA, Nyamathulla S, Shamsuddin N, Arshad NM, Mun KS, Awang K, et al.
    Toxicol Appl Pharmacol, 2018 10 01;356:204-213.
    PMID: 30138658 DOI: 10.1016/j.taap.2018.08.014
    1'-S-1'-acetoxychavicol acetate (ACA) has been previously reported to reduce tumor volume in nude mice, at an effective dose of 1.56 mg/kg body weight. However, the detailed toxicological profile for ACA has not yet been performed. Herein, we investigated the toxicity of intravenous administration of ACA in male and female Sprague-Dawley rats, both acutely (with single doses of 2.00, 4.00 and 6.66 mg/kg body weight, for 14 days), and sub-acutely (with weekly injections of 0.66, 1.33, and 2.22 mg/kg, for 28 days). In both toxicity studies, treatment with ACA did not affect behavior, food/water intake or body weight, nor did it induce any changes in clinically relevant hematological and biochemical parameters or mortality, suggesting that the LD50 of ACA was higher than 6.66 mg/kg body weight, regardless of sex. Sub-acutely, there was however, mild focal inflammation of kidneys and lobular hepatitis, but these were not associated with significant functional adverse effects. Therefore, the no-observed-adverse-effect level (NOAEL) for intravenous administration of ACA in the present 28-day sub-acute study was 2.22 mg/kg body weight, in both male and female rats. These findings provide useful information regarding the safety of ACA use in a healthy, non-tumor-bearing rat model.
    Matched MeSH terms: Behavior, Animal/drug effects
  19. Binti Mohd Yusuf Yeo NA, Muthuraju S, Wong JH, Mohammed FR, Senik MH, Zhang J, et al.
    Brain Behav, 2018 09;8(9):e01093.
    PMID: 30105867 DOI: 10.1002/brb3.1093
    INTRODUCTION: Centella asiatica is an herbal plant that contains phytochemicals that are widely believed to have positive effects on cognitive function. The adolescent stage is a critical development period for the maturation of brain processes that encompass changes in physical and psychological systems. However, the effect of C. asiatica has not been extensively studied in adolescents. The aim of this study was therefore to investigate the effects of a C. asiatica extract on the enhancement of learning and memory in adolescent rats.

    METHODS: The locomotor activity, learning, and memory were assessed by using open field test and water T-maze test. This study also examined changes in neuronal cell morphology using cresyl violet and apoptosis staining. We also performed immunohistochemical study to analyse the expression of the glutamate AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) GluA1 subunit and the GABA receptor (γ-Aminobutyric Acid) subtype GABAA α1 subunit in the hippocampus of the same animals.

    RESULTS: We found no significant changes in locomotor activity (p > 0.05). The water T-maze data showed that 30 mg/kg dose significantly (p  0.05). Histological data revealed no neuronal morphological changes. Immunohistochemical analysis revealed increased expression of the AMPA GluA1 receptor subunit but there was no effect on GABAA receptor α1 subunit expression in the CA1 and CA2 subregions of the hippocampus.

    CONCLUSIONS: The C. asiatica extract therefore improved hippocampus-dependent spatial learning and memory in a dose-dependent manner in rats through the GluA1-containing AMPA receptor in the CA1 and CA2 sub regions of the hippocampus.

    Matched MeSH terms: Behavior, Animal/drug effects
  20. Kamarudin N, Hisamuddin N, Ong HM, Ahmad Azmi AF, Leong SW, Abas F, et al.
    Molecules, 2018 Aug 21;23(9).
    PMID: 30134576 DOI: 10.3390/molecules23092099
    Curcuminoids derived from turmeric rhizome have been reported to exhibit antinociceptive, antioxidant and anti-inflammatory activities. We evaluated the peripheral and central antinociceptive activities of 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), a novel synthetic curcuminoid analogue at 0.1, 0.3, 1 and 3 mg/kg (intraperitoneal), through chemical and thermal models of nociception. The effects of DHHPD on the vanilloid and glutamatergic systems were evaluated through the capsaicin- and glutamate-induced paw licking tests. Results showed that DHHPD significantly (p < 0.05) attenuated the writhing response produced by the 0.8% acetic acid injection. In addition, 1 and 3 mg/kg of DHHPD significantly (p < 0.05) reduced the licking time spent by each mouse in both phases of the 2.5% formalin test and increased the response latency of mice on the hot-plate. However, the effect produced in the latter was not reversed by naloxone, a non-selective opioid receptor antagonist. Despite this, DHHPD decreased the licking latency of mice in the capsaicin- and glutamate-induced paw licking tests in a dose response manner. In conclusion, DHHPD showed excellent peripheral and central antinociceptive activities possibly by attenuation of the synthesis and/or release of pro-inflammatory mediators in addition to modulation of the vanilloid and glutamatergic systems without an apparent effect on the opioidergic system.
    Matched MeSH terms: Behavior, Animal/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links