Displaying publications 1 - 20 of 75 in total

Abstract:
Sort:
  1. Ahmad NA, Goh PS, Zakaria NAS, Naim R, Abdullah MS, Ismail AF, et al.
    Chemosphere, 2024 Apr;353:141108.
    PMID: 38423147 DOI: 10.1016/j.chemosphere.2024.141108
    Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.
    Matched MeSH terms: Benzhydryl Compounds*
  2. Ismael LQ, Keong YY, Bahari H, Lan CA, Yin KB
    Mol Biol Rep, 2024 Feb 01;51(1):271.
    PMID: 38302795 DOI: 10.1007/s11033-023-09080-2
    BACKGROUND: Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity.

    METHODS: Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively.

    RESULTS: The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment.

    CONCLUSION: The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.

    Matched MeSH terms: Benzhydryl Compounds/toxicity
  3. Mayne KJ, Staplin N, Keane DF, Wanner C, Brenner S, Cejka V, et al.
    J Am Soc Nephrol, 2024 Feb 01;35(2):202-215.
    PMID: 38082486 DOI: 10.1681/ASN.0000000000000271
    SIGNIFICANCE STATEMENT: SGLT2 inhibitors reduce risk of kidney progression, AKI, and cardiovascular disease, but the mechanisms of benefit are incompletely understood. Bioimpedance spectroscopy can estimate body water and fat mass. One quarter of the EMPA-KIDNEY bioimpedance substudy CKD population had clinically significant levels of bioimpedance-derived "Fluid Overload" at recruitment. Empagliflozin induced a prompt and sustained reduction in "Fluid Overload," irrespective of sex, diabetes, and baseline N-terminal pro B-type natriuretic peptide or eGFR. No significant effect on bioimpedance-derived fat mass was observed. The effects of SGLT2 inhibitors on body water may be one of the contributing mechanisms by which they mediate effects on cardiovascular risk.

    BACKGROUND: CKD is associated with fluid excess that can be estimated by bioimpedance spectroscopy. We aimed to assess effects of sodium glucose co-transporter 2 inhibition on bioimpedance-derived "Fluid Overload" and adiposity in a CKD population.

    METHODS: EMPA-KIDNEY was a double-blind placebo-controlled trial of empagliflozin 10 mg once daily in patients with CKD at risk of progression. In a substudy, bioimpedance measurements were added to the main trial procedures at randomization and at 2- and 18-month follow-up visits. The substudy's primary outcome was the study-average difference in absolute "Fluid Overload" (an estimate of excess extracellular water) analyzed using a mixed model repeated measures approach.

    RESULTS: The 660 substudy participants were broadly representative of the 6609-participant trial population. Substudy mean baseline absolute "Fluid Overload" was 0.4±1.7 L. Compared with placebo, the overall mean absolute "Fluid Overload" difference among those allocated empagliflozin was -0.24 L (95% confidence interval [CI], -0.38 to -0.11), with similar sized differences at 2 and 18 months, and in prespecified subgroups. Total body water differences comprised between-group differences in extracellular water of -0.49 L (95% CI, -0.69 to -0.30, including the -0.24 L "Fluid Overload" difference) and a -0.30 L (95% CI, -0.57 to -0.03) difference in intracellular water. There was no significant effect of empagliflozin on bioimpedance-derived adipose tissue mass (-0.28 kg [95% CI, -1.41 to 0.85]). The between-group difference in weight was -0.7 kg (95% CI, -1.3 to -0.1).

    CONCLUSIONS: In a broad range of patients with CKD, empagliflozin resulted in a sustained reduction in a bioimpedance-derived estimate of fluid overload, with no statistically significant effect on fat mass.

    TRIAL REGISTRATION: Clinicaltrials.gov: NCT03594110 ; EuDRACT: 2017-002971-24 ( https://eudract.ema.europa.eu/ ).

    Matched MeSH terms: Benzhydryl Compounds/adverse effects
  4. Sukatis FF, Looi LJ, Lim HN, Abdul Rahman MB, Mohd Zaki MR, Aris AZ
    Environ Pollut, 2024 Jan 15;341:122980.
    PMID: 37992953 DOI: 10.1016/j.envpol.2023.122980
    The presence of emerging water pollutants such as endocrine-disrupting compounds (EDCs), including 17-ethynylestradiol (EE2), bisphenol A (BPA), and perfluorooctanoic acid (PFOA), in contaminated water sources poses significant environmental and health challenges. This study aims to address this issue by investigating the efficiency of novel calcium-based metal-organic frameworks, known as mixed-linker calcium-based metal-organic frameworks (Ca-MIX), in adsorbing these endocrine-disrupting compounds. This study analyzed the influence of influent concentration, bed height, and flow rate on pollutant removal, with bed height emerging as a crucial factor. From the breakthrough curves, it was determined that the column maximum adsorption capacities followed the order of 17-ethynylestradiol (101.52 μg/g; 40%) > bisphenol A (99.07 μg/g; 39%) > perfluorooctanoic acid (81.28 μg/g; 32%). Three models were used to predict the adsorption process, with the Yan model outperforming the other models. This suggests the potential of mixed-linker calcium-based metal-organic frameworks for removing endocrine-disrupting compounds from water, using the Yan model as an effective predictor. Overall, this study provides valuable insights for the development of effective water treatment methods using mixed-linker calcium-based metal-organic frameworks to remove endocrine-disrupting compounds from contaminated water sources.
    Matched MeSH terms: Benzhydryl Compounds/analysis
  5. EMPA-KIDNEY Collaborative Group
    Lancet Diabetes Endocrinol, 2024 Jan;12(1):51-60.
    PMID: 38061372 DOI: 10.1016/S2213-8587(23)00322-4
    BACKGROUND: The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population.

    METHODS: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110.

    FINDINGS: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62-0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16-1·59), representing a 50% (42-58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1).

    INTERPRETATION: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease.

    FUNDING: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council.

    Matched MeSH terms: Benzhydryl Compounds/pharmacology; Benzhydryl Compounds/therapeutic use
  6. Abdulhameed AS, Wu R, Musa SA, Agha HM, ALOthman ZA, Jawad AH, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128267.
    PMID: 37992917 DOI: 10.1016/j.ijbiomac.2023.128267
    In this study, chitosan/nano SiO2 (CTS/NS) was chemically modified with bisphenol A diglycidyl ether (BADGE) cross-linker-assisted hydrothermal process to create an effective adsorbent, CTS-BADGE/NS, for the removal of reactive orange 16 (RO16) dye from aquatic systems. Box-Behnken design (BBD) was used to optimize the adsorption process by varying the adsorbent dose (0.02-0.1 g/100 mL), pH (4-10), and time (20-360 min). The adsorption isotherm results indicated that the Langmuir model fits the experimental data well, suggesting that the adsorption process involves a monolayer formation of RO16 on the surface of CTS-BADGE/NS. The kinetic modeling of RO16 adsorption by CTS-BADGE/NS demonstrated that the pseudo-first-order model fits the adsorption data. CTS-BADGE/NS achieved an adsorption capacity of 97.8 mg/g for RO16 dye at optimum desirability functions of dosage 0.099 g/100 mL, solution pH of 4.44, and temperature of 25 °C. Overall, the π-π electron donor-acceptor system significantly improved the adsorption performance of the CTS-BADGE/NS. The results of the regeneration investigation demonstrate that the CTS-BADGE/NS exhibits effective adsorption of RO16, even after undergoing five consecutive cycles. The results of this study suggest that the developed CTS-BADGE/NS composite can be a promising adsorbent for water purification applications.
    Matched MeSH terms: Benzhydryl Compounds*
  7. Zainuddin AH, Roslan MQJ, Razak MR, Yusoff FM, Haron DEM, Aris AZ
    Mar Pollut Bull, 2023 Jul;192:115019.
    PMID: 37201347 DOI: 10.1016/j.marpolbul.2023.115019
    Bisphenol analogues are prevalent globally because of rampant usage and imprecise processing techniques, prompting alerts about environmental and health hazards. The method employed in this study by solid phase extraction (SPE) and liquid chromatography-tandem quadrupole mass spectrometer (LC-MS/MS) for both quantification and qualitative analysis of the bisphenol compounds in the surface water samples. The coastal and estuarine surface water of Port Dickson and Lukut ranges from 1.32 ng/L to 1890.51 ng/L of bisphenol analogues. BPF mean concentration at 1143.88 ng/L is the highest, followed by BPA and BPS at 59.01 ng/L and 10.96 ng/L, respectively. Based on RQm for bisphenol analogues, the highest for BPF at 2.49 (RQ > 1, high risk), followed by BPS at 0.12 (0.1 
    Matched MeSH terms: Benzhydryl Compounds/analysis
  8. The EMPA-KIDNEY Collaborative Group, Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al.
    N Engl J Med, 2023 Jan 12;388(2):117-127.
    PMID: 36331190 DOI: 10.1056/NEJMoa2204233
    BACKGROUND: The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients.

    METHODS: We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m2 of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m2 with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to <10 ml per minute per 1.73 m2, a sustained decrease in eGFR of ≥40% from baseline, or death from renal causes) or death from cardiovascular causes.

    RESULTS: A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P<0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P = 0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups.

    CONCLUSIONS: Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo. (Funded by Boehringer Ingelheim and others; EMPA-KIDNEY ClinicalTrials.gov number, NCT03594110; EudraCT number, 2017-002971-24.).

    Matched MeSH terms: Benzhydryl Compounds/adverse effects; Benzhydryl Compounds/therapeutic use
  9. Kataria N, Bhushan D, Gupta R, Rajendran S, Teo MYM, Khoo KS
    Environ Pollut, 2022 Dec 15;315:120319.
    PMID: 36183872 DOI: 10.1016/j.envpol.2022.120319
    Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.
    Matched MeSH terms: Benzhydryl Compounds/analysis; Benzhydryl Compounds/toxicity
  10. Prabhu NB, Adiga D, Kabekkodu SP, Bhat SK, Satyamoorthy K, Rai PS
    Environ Toxicol Pharmacol, 2022 Nov;96:104010.
    PMID: 36334871 DOI: 10.1016/j.etap.2022.104010
    Bisphenol A (BPA) mimics estrogen and consequently suspected to be detrimental to female reproductive system. Biomonitoring confirms the BPA burden in body leading to a complex condition called polycystic ovarian syndrome (PCOS) which is frequently attributed to female infertility. Due to unclear precise molecular pathomechanisms of BPA in PCOS, we intend to examine the molecular mechanisms of the reproductive, endocrine, mitochondrial features, and cellular senescence in BPA-treated rats. We analyzed vaginal smears and ovarian follicles using microscope, assessed sex hormones by ELISA, analyzed BPA target gene expression by semi-quantitative RT-PCR, assessed senescence induction by β-galactosidase staining and immunofluorescence in BPA-treated rats. Our data showed hormonal imbalance, impaired folliculogenesis, abnormal expression patterns of target genes, CDKN2A overexpression and enhanced ROS levels in BPA-treated rats. This study provides insights on the effects of BPA exposure on ovulatory, hormonal, mitochondrial dysfunction, and senescence that benefit in better understanding of PCOS induced by BPA.
    Matched MeSH terms: Benzhydryl Compounds/toxicity
  11. Yahaya N, Huang ZA, Yan B, Chen DDY
    Food Chem, 2022 Mar 15;372:131220.
    PMID: 34607048 DOI: 10.1016/j.foodchem.2021.131220
    A simple and sensitive method for the determination of bisphenol A and its analogues at the ng/mL level in bottled tea beverages is presented. This method utilized a dynamic pH junction to focus the analyte into a more concentrated zone, based on the electrophoretic mobility difference of analytes in the sample matrix and background electrolytes in capillary electrophoresis coupled to mass spectrometry (CE-MS). The optimised analyte focusing led to enhanced signal detection with average peak heights for five bisphenols of 53-170 folds higher than conventional injections. Under optimised conditions, the method showed good linearity in the range of 0.1-100 ng/mL, excellent limits of detection (0.03-0.04 ng/mL), good analyte recovery (80.3-118.1%) with acceptable relative standard deviations (<12%). The limits of quantifications were below the maximum permissible content of bisphenol A set by the European Commission for this product. This method was used to quantitatively analyse bisphenols in six different kinds of bottled tea beverages, making it a promising tool for practical applications.
    Matched MeSH terms: Benzhydryl Compounds
  12. Zaid SSM, Othman S, Kassim NM
    Biomed Pharmacother, 2021 Aug;140:111757.
    PMID: 34044283 DOI: 10.1016/j.biopha.2021.111757
    BACKGROUND: Numerous scientific studies have found that young women are at a high risk of reproductive infertility due to their routine exposure to numerous bisphenol A (BPA) products. This risk is highly associated with the production of reactive oxygen species from BPA products. Ficus deltoidea, which has strong antioxidant properties, was selected as a potential protective agent to counter the detrimental effects of BPA in the rat uterus.

    METHODS: Female Sprague-Dawley rats were allocated into four groups (n = 8) as follows: (i) the Normal Control group (NC), (ii) the BPA-exposed group (PC), (iii) the group concurrently treated with BPA and F. deltoidea (FC) and (iv) the group treated with F. deltoidea alone (F).

    RESULTS: After 6 weeks of concurrent treatment with F. deltoidea, uterine abnormalities in the BPA-exposed rats showed a significant improvement. Specifically, the size of stromal cells increased; interstitial spaces between stromal cells expanded; the histology of the glandular epithelium and the myometrium appeared normal and mitotic figures were present. The suppressive effects of BPA on the expression levels of sex steroid receptors (ERα and ERβ) and the immunity gene C3 were significantly normalised by F. deltoidea treatment. The role of F. deltoidea as an antioxidant agent was proven by the significant reduction in malondialdehyde level in BPA-exposed rats. Moreover, in BPA-exposed rats, concurrent treatment with F. deltoidea could normalise the level of the gonadotropin hormone, which could be associated with an increase in the percentage of rats with a normal oestrous cycle.

    CONCLUSION: F. deltoidea has the potential to counter the toxic effects of BPA on the female reproductive system. These protective effects might be due to the phytochemical properties of F. deltoidea. Therefore, future study is warranted to identify the bioactive components that contribute to the protective effects of F. deltoidea.

    Matched MeSH terms: Benzhydryl Compounds/toxicity*
  13. Jin M, Dang J, Paudel YN, Wang X, Wang B, Wang L, et al.
    Sci Total Environ, 2021 Jul 01;776:145963.
    PMID: 33639463 DOI: 10.1016/j.scitotenv.2021.145963
    Fluorene-9-bisphenol (BHPF) is a bisphenol A substitute, which has been introduced for the production of so-called 'bisphenol A (BPA)-free' plastics. However, it has been reported that BHPF can enter living organisms through using commercial plastic bottles and cause adverse effects. To date, the majority of the toxicologic study of BHPF focused on investigating its doses above the toxicological threshold. Here, we studied the effects of BHPF on development, locomotion, neuron differentiation of the central nervous system (CNS), and the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish exposed to different doses of BHPF ranging from 1/5 of LD1 to LD50 (300, 500, 750, 1500, 3000, and 4500 nM). As a result, the possible hormetic effects of BHPF on regulating the HPT axis were revealed, in which low-dose BHPF positively affected the HPT axis while this regulation was inhibited as the dose increased. Underlying mechanism investigation suggested that BHPF disrupted myelination through affecting HPT axis including related genes expression and TH levels, thus causing neurotoxic characteristics. Collectively, this study provides the full understanding of the environmental impact of BHPF and its toxicity on living organisms, highlighting a substantial and generalized ongoing dose-response relationship with great implications for the usage and risk assessment of BHPF.
    Matched MeSH terms: Benzhydryl Compounds
  14. M Hanif A, Bushra R, Ismail NE, Bano R, Abedin S, Alam S, et al.
    Pak J Pharm Sci, 2021 May;34(3(Supplementary)):1081-1087.
    PMID: 34602436
    The current investigation is based on efficient method development for the quantification of empagliflozin in raw and pharmaceutical dosage forms, as no pharmacopoeial method for the drug is available so far. The developed analytical method was validated as per ICH guidelines. C18 column with mobile phase (pH 4.8) consisted of 0.1% trifluoroacetic acid solution and acetonitrile (70:30 v/v) was used for drug analysis. The calibration plot showed good linear regression (r2>0.999) over the concentration of 0.025-30 μg mL-1. The LOD and LOQ were found to be 0.020 μg mL-1 and 0.061 μg mL-1, respectively. The percentage recovery was estimated between 98.0 to 100.13%. Accuracy and precision data were found to be less than 2%, indicating the suitability of method for routine analysis in pharmaceutical industries. Moreover, the drug solution was found to be stable in refrigerator and ambient room temperature with mean % accuracy of >98%. Empagliflozin contents were also tested in both the raw API and marketed tablet brands using this newly developed method. The mean assay of raw empagliflozin and tablet brands were ranged from 99.29%±1.12 to 100.95%±1.69 and 97.18%±1.59 to 98.92%±1.00 respectively. Based on these findings, the present investigated approach is suitable for quantification of empagliflozin in raw and pharmaceutical dosage forms.
    Matched MeSH terms: Benzhydryl Compounds/analysis*
  15. Shehab ZN, Jamil NR, Aris AZ
    Sci Rep, 2020 11 23;10(1):20360.
    PMID: 33230250 DOI: 10.1038/s41598-020-77454-8
    Phase distribution of emerging organic contaminants is highly influential in their presence, fate and transport in surface water. Therefore, it is crucial to determine their state, partitioning behaviour and tendencies in water environments. In this study, Bisphenol A was investigated in both colloidal and soluble phases in water. BPA concentrations ranged between 1.13 and 5.52 ng L-1 in the soluble phase and n.d-2.06 ng L-1 in the colloidal phase, respectively. BPA was dominant in the soluble phase, however, the colloidal contribution ranged between 0 and 24% which implied that colloids can play a significant role in controlling BPA's transportation in water. Urban and industrial areas were the main sources of BPA while forest areas displayed lower levels outside the populated domains. pH levels were between 6.3 and 7.4 which might have affected BPA's solubility in water to some extent. The particle size distribution showed that the majority of the particles in river samples were smaller than 1.8 µm in diameter with a small presence of nanoparticles. Zeta potential varied between - 25 and - 18 mV, and these negative values suggested instability of particles. Furthermore, BPA was positively correlated with BOD, COD and NH3-N which might indicate that these organic compounds were released concurrently with BPA. RQ assessment showed low levels of risk towards algae and fish in the study area.
    Matched MeSH terms: Benzhydryl Compounds
  16. Shehab ZN, Jamil NR, Aris AZ
    J Environ Manage, 2020 Nov 15;274:111141.
    PMID: 32818827 DOI: 10.1016/j.jenvman.2020.111141
    A simplified modelling approach for illustrating the fate of emerging pollutants can improve risk assessment of these chemicals. Once released into aquatic environments, these pollutants will interact with various substances including suspended particles, colloidal or nano particles, which will greatly influence their distribution and ultimate fate. Understanding these interactions in aquatic environments continues to be an important issue because of their possible risk. In this study, bisphenol A (BPA) in the water column of Bentong River, Malaysia, was investigated in both its soluble and colloidal phase. A spatially explicit hydrological model was established to illustrate the associated dispersion processes of colloidal-bound BPA. Modelling results demonstrated the significance of spatial detail in predicting hot spots or peak concentrations of colloidal-bound BPA in the sediment and water columns as well. The magnitude and setting of such spots were system based and depended mainly on flow conditions. The results highlighted the effects of colloidal particles' concentration and density on BPA's removal from the water column. It also demonstrated the tendency of colloidal particles to aggregate and the impact all these processes had on BPA's transport potential and fate in a river water. All scenarios showed that after 7.5-10 km mark BPA's concentration started to reach a steady state with very low concentrations which indicated that a downstream transport of colloidal-bound BPA was less likely due to minute BPA levels.
    Matched MeSH terms: Benzhydryl Compounds
  17. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Sci Rep, 2020 10 20;10(1):17755.
    PMID: 33082440 DOI: 10.1038/s41598-020-74061-5
    Contamination by endocrine disrupting compounds (EDCs) concerns the security and sustainability of a drinking water supply system and human exposure via water consumption. This study analyzed the selected EDCs in source (river water, n = 10) and supply (tap water, n = 155) points and the associated risks. A total of 14 multiclass EDCs was detected in the drinking water supply system in Malaysia. Triclosan (an antimicrobial agent) and 4-octylphenol (a plasticizer) were only detected in the tap water (up to 9.74 and 0.44 ng/L, respectively). Meanwhile, chloramphenicol and 4-nonylphenol in the system were below the method detection limits. Bisphenol A was observed to be highest in tap water at 66.40 ng/L (detection: 100%; median concentration: 0.28 ng/L). There was a significant difference in triclosan contamination between the river and tap water (p 
    Matched MeSH terms: Benzhydryl Compounds/analysis
  18. Subuhi NEAM, Saad SM, Zain NNM, Lim V, Miskam M, Kamaruzaman S, et al.
    J Sep Sci, 2020 Aug;43(16):3294-3303.
    PMID: 32519432 DOI: 10.1002/jssc.201901194
    In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption-based dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte-containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5-500 µg/L with a coefficient of determination of R2  = 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84-120%) and acceptable relative standard deviation (1.8-14.9%, n = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.
    Matched MeSH terms: Benzhydryl Compounds
  19. Cherney DZI, Dekkers CCJ, Barbour SJ, Cattran D, Abdul Gafor AH, Greasley PJ, et al.
    Lancet Diabetes Endocrinol, 2020 07;8(7):582-593.
    PMID: 32559474 DOI: 10.1016/S2213-8587(20)30162-5
    BACKGROUND: SGLT2 inhibition decreases albuminuria and reduces the risk of kidney disease progression in patients with type 2 diabetes. These benefits are unlikely to be mediated by improvements in glycaemic control alone. Therefore, we aimed to examine the kidney effects of the SGLT2 inhibitor dapagliflozin in patients with proteinuric kidney disease without diabetes.

    METHODS: DIAMOND was a randomised, double-blind, placebo-controlled crossover trial done at six hospitals in Canada, Malaysia, and the Netherlands. Eligible participants were adult patients (aged 18-75 years) with chronic kidney disease, without a diagnosis of diabetes, with a 24-h urinary protein excretion greater than 500 mg and less than or equal to 3500 mg and an estimated glomerular filtration rate (eGFR) of at least 25 mL/min per 1·73 m2, and who were on stable renin-angiotensin system blockade. Participants were randomly assigned (1:1) to receive placebo and then dapagliflozin 10 mg per day or vice versa. Each treatment period lasted 6 weeks with a 6-week washout period in between. Participants, investigators, and study personnel were masked to assignment throughout the trial and analysis. The primary outcome was percentage change from baseline in 24-h proteinuria during dapagliflozin treatment relative to placebo. Secondary outcomes were changes in measured GFR (mGFR; via iohexol clearance), bodyweight, blood pressure, and concentrations of neurohormonal biomarkers. Analyses were done in accordance with the intention-to-treat principle. This study is registered with ClinicalTrials.gov, NCT03190694.

    FINDINGS: Between Nov 22, 2017, and April 5, 2019, 58 patients were screened, of whom 53 (mean age 51 years [SD 13]; 32% women) were randomly assigned (27 received dapagliflozin then placebo and 26 received placebo then dapagliflozin). One patient discontinued during the first treatment period. All patients were included in the analysis. Mean baseline mGFR was 58·3 mL/min per 1·73 m2 (SD 23), median proteinuria was 1110 mg per 24 h (IQR 730-1560), and mean HbA1c was 5·6% (SD 0·4). The difference in mean proteinuria change from baseline between dapagliflozin and placebo was 0·9% (95% CI -16·6 to 22·1; p=0·93). Compared with placebo, mGFR was changed with dapagliflozin treatment by -6·6 mL/min per 1·73 m2 (-9·0 to -4·2; p<0·0001) at week 6. This reduction was fully reversible within 6 weeks after dapagliflozin discontinuation. Compared with placebo, bodyweight was reduced by 1·5 kg (0·03-3·0; p=0·046) with dapagliflozin; changes in systolic and diastolic blood pressure and concentrations of neurohormonal biomarkers did not differ significantly between dapagliflozin and placebo treatment. The numbers of patients who had one or more adverse events during dapagliflozin treatment (17 [32%] of 53) and during placebo treatment (13 [25%] of 52) were similar. No hypoglycaemic events were reported and no deaths occurred.

    INTERPRETATION: 6-week treatment with dapagliflozin did not affect proteinuria in patients with chronic kidney disease without diabetes, but did induce an acute and reversible decline in mGFR and a reduction in bodyweight. Long-term clinical trials are underway to determine whether SGLT2 inhibitors can safely reduce the rate of major clinical kidney outcomes in patients with chronic kidney disease with and without diabetes.

    FUNDING: AstraZeneca.

    Matched MeSH terms: Benzhydryl Compounds/adverse effects*
  20. Rasdi Z, Kamaludin R, Ab Rahim S, Syed Ahmad Fuad SB, Othman MHD, Siran R, et al.
    Sci Rep, 2020 Apr 03;10(1):5882.
    PMID: 32246001 DOI: 10.1038/s41598-020-62420-1
    This study aimed to examine the impact of BPA exposure on pregnancy and foetuses on cardiac tissues and the expression of cardiac microRNAs (miRNAs) related to heart development and diseases. Pregnancy is known to be the "critical windows" in determining the offspring physical and cells development in their life after birth. The increment of the risk of cardiovascular disease (CVD) in a later stage of life has been reported by few studies demonstrated from prenatal exposure of BPA. BPA has been shown to alter miRNAs expression profiles for organ development, regeneration and metabolic functions. These alterations have been associated with the risk of CVDs. However, the associations between pregnancy outcomes and miRNAs expression in cardiac of mother- and foetuses-exposed to BPA are still not entirely explored. In BPA-exposed pregnant rat groups, a significant weight gained was observed in comparison to control (p 
    Matched MeSH terms: Benzhydryl Compounds/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links