Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Hassan H, Razak HRA, Saad FFA, Kumar V
    Malays J Med Sci, 2019 Jul;26(4):122-126.
    PMID: 31496901 MyJurnal DOI: 10.21315/mjms2019.26.4.14
    Using radiolabelled peptides that bind, with high affinity and specificity, to receptors on tumour cells is one of the most promising fields in modern molecular imaging and targeted radionuclide therapy (1). In the emergence of molecular imaging and nuclear medicine diagnosis and therapy, albeit theranostic, radiolabelled peptides have become vital tools for in vivo visualisation and monitoring physiological and biochemical processes on molecular and cellular levels (2). This approach may benefit patients in the era of personalised medicine.
    Matched MeSH terms: Biochemical Phenomena
  2. Ng SF, Rouse J, Sanderson D, Eccleston G
    Pharmaceutics, 2010 May 18;2(2):209-223.
    PMID: 27721352
    Synthetic membranes used in Franz diffusion cells for topical formulation quality assessment should provide least resistance to drug diffusion. In this study, the diffusion rates of ibuprofen across thirteen membranes were determined using Franz diffusion cells. Correlation of the membrane thickness, pore size and MWCO with drug fluxes was also made. The drug diffusion results showed that the porous membranes were categorized into high-flux (8-18 mg/cm²/h) and low-flux (0.1-3 mg/cm²/h) membranes. The drug fluxes did not show strong correlations (r² < 0.99) with membrane parameters. Synthetic membranes can give variable drug fluxes, thus investigators should be careful in choosing membrane for formulation quality assessment.
    Matched MeSH terms: Biochemical Phenomena
  3. Lim HP, Liew WYH, Melvin GJH, Jiang ZT
    Materials (Basel), 2021 Mar 29;14(7).
    PMID: 33805462 DOI: 10.3390/ma14071677
    This paper reviews the phase structures and oxidation kinetics of complex Ti-Al alloys at oxidation temperatures in the range of 600-1000 °C. The mass gain and parabolic rate constants of the alloys under isothermal exposure at 100 h (or equivalent to cyclic exposure for 300 cycles) is compared. Of the alloying elements investigated, Si appeared to be the most effective in improving the oxidation resistance of Ti-Al alloys at high temperatures. The effect of alloying elements on the mechanical properties of Ti-Al alloys is also discussed. Significant improvement of the mechanical properties of Ti-Al alloys by element additions has been observed through the formation of new phases, grain refinement, and solid solution strengthening.
    Matched MeSH terms: Biochemical Phenomena
  4. Arif MA, Mohamad MS, Abd Latif MS, Deris S, Remli MA, Mohd Daud K, et al.
    Comput Biol Med, 2018 11 01;102:112-119.
    PMID: 30267898 DOI: 10.1016/j.compbiomed.2018.09.015
    Metabolic engineering involves the modification and alteration of metabolic pathways to improve the production of desired substance. The modification can be made using in silico gene knockout simulation that is able to predict and analyse the disrupted genes which may enhance the metabolites production. Global optimization algorithms have been widely used for identifying gene knockout strategies. However, their productions were less than theoretical maximum and the algorithms are easily trapped into local optima. These algorithms also require a very large computation time to obtain acceptable results. This is due to the complexity of the metabolic models which are high dimensional and contain thousands of reactions. In this paper, a hybrid algorithm of Cuckoo Search and Minimization of Metabolic Adjustment is proposed to overcome the aforementioned problems. The hybrid algorithm searches for the near-optimal set of gene knockouts that leads to the overproduction of metabolites. Computational experiments on two sets of genome-scale metabolic models demonstrate that the proposed algorithm is better than the previous works in terms of growth rate, Biomass Product Couple Yield, and computation time.
    Matched MeSH terms: Biochemical Phenomena
  5. Lee HS, Singh JK, Ismail MA
    Sci Rep, 2017 02 03;7:41935.
    PMID: 28157233 DOI: 10.1038/srep41935
    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.
    Matched MeSH terms: Biochemical Phenomena
  6. Abdullah A, Deris S, Mohamad MS, Anwar S
    PLoS One, 2013;8(4):e61258.
    PMID: 23593445 DOI: 10.1371/journal.pone.0061258
    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
    Matched MeSH terms: Biochemical Phenomena*
  7. Kumarasingha R, Preston S, Yeo TC, Lim DS, Tu CL, Palombo EA, et al.
    Parasit Vectors, 2016;9(1):187.
    PMID: 27036205 DOI: 10.1186/s13071-016-1458-9
    Parasitic roundworms (nematodes) cause substantial morbidity and mortality in livestock animals globally, and considerable productivity losses to farmers. The control of these nematodes has relied largely on the use of a limited number of anthelmintics. However, resistance to many of these these anthelmintics is now widespread, and, therefore, there is a need to find new drugs to ensure sustained and effective treatment and control into the future.
    Matched MeSH terms: Biochemical Phenomena
  8. Salmiati, Salim MR, Hassan RM, Tan KY
    Water Sci Technol, 2007;56(7):33-40.
    PMID: 17951865
    Biochemical products have been widely used for treatment of various types of wastewater. The treatment processes with the addition of biochemical products are quite attractive because of their simplicity, minimal use of equipment, they are environmentally friendly and are suitable for the removal of organic pollutants. The purpose of these products is to enhance the activities of beneficial microbes in order to improve treatment performance. This study was carried out to determine the potential of applying biochemical products in assisting and improving the performance of sewage treatment plants. In this study, four biochemical products, namely: Zeolite, Bio-C, Eco-B and Was-D, were applied to the sewage treatment plant. Analyses were carried out on several water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), oil & grease (O&G), phosphorus (P), ammoniacal nitrogen (AN) and sludge thickness (ST). From the results obtained, it can be seen that the overall performance of the treatment plant improved with most of the parameters studied were found to fulfill the DOE Standard B requirements. The performance of Bio-C was found to give better results than other products.
    Matched MeSH terms: Biochemical Phenomena
  9. Mohamed Ikhtifar Rafi, Cheah, Yoke Kqueen
    MyJurnal
    Bacterial endophytes are found on all types of plants and is a potential source of bioactive compounds which can be utilized to fight against multi-resistant pathogens and could be further develop into new leads for antibiotic development. However, the research done on the bacterial endophytes is relatively new and has potential to grow as it is theorized that each plant has one or more bacterial endophytes inhabiting them. This review aims to review the studies that have been done previously and give new insights on the latest trends in this field of research.
    Matched MeSH terms: Biochemical Phenomena
  10. Yang Y, Mi J, Liang J, Liao X, Ma B, Zou Y, et al.
    Front Microbiol, 2019;10:2506.
    PMID: 31736928 DOI: 10.3389/fmicb.2019.02506
    Despite our continuous improvement in understanding the evolution of antibiotic resistance, the changes in the carbon metabolism during the evolution of antibiotic resistance remains unclear. To investigate the evolution of antibiotic resistance and the changes in carbon metabolism under antibiotic pressure, Escherichia coli K-12 was evolved for 38 passages under a concentration gradient of doxycycline (DOX). The 0th-passage sensitive strain W0, the 20th-passage moderately resistant strain M20, and the 38th-passage highly resistant strain E38 were selected for the determination of biofilm formation, colony area, and carbon metabolism levels, as well as genome and transcriptome sequencing. The MIC of DOX with E. coli significantly increased from 4 to 96 μg/ml, and the IC50 increased from 2.18 ± 0.08 to 64.79 ± 0.75 μg/ml after 38 passages of domestication. Compared with the sensitive strain W0, the biofilm formation amount of the resistant strains M20 and E38 was significantly increased (p < 0.05). Single-nucleotide polymorphisms (SNPs) were distributed in antibiotic resistance-related genes such as ribosome targets, cell membranes, and multiple efflux pumps. In addition, there were no mutated genes related to carbon metabolism. However, the genes involved in the biosynthesis of secondary metabolites and carbon metabolism pathway were downregulated, showing a significant decrease in the metabolic intensity of 23 carbon sources (p < 0.05). The results presented here show that there may be a correlation between the evolution of E. coli DOX resistance and the decrease of carbon metabolism, and the mechanism was worthy of further research, providing a theoretical basis for the prevention and control of microbial resistance.
    Matched MeSH terms: Biochemical Phenomena
  11. Thi S, Lee KM
    Bioresour Technol, 2019 Jun;282:525-529.
    PMID: 30898410 DOI: 10.1016/j.biortech.2019.03.065
    In this work, a novel solvent, deep eutectic solvent (DES) was applied to examine its effectiveness in pretreating OPEFB. Three types of DESs, i.e. choline chloride-lactic acid (ChCl-LA), choline chloride-urea (ChCl-U) and choline chloride-glycerol (ChCl-G) were investigated. The pretreatment performance was based on cellulose digestibility, structural and morphology changes. At molar ratio of 1:2, ChCl-LA attained the highest reducing sugars yield of 20.7%, followed by ChCl-G (20.0%) and ChCl-U (16.9%). FT-IR and SEM results further confirmed the outstanding ability of ChCl-LA due of its ability in cellulose, hemicellulose and lignin disruption, exposing its cellulose fraction to enzymatic hydrolysis. ChCl-LA is also more favorable compare to acid and alkaline solvents as it could prevent sugars loss, use of expensive corrosion resistant equipment and ease products separation.
    Matched MeSH terms: Biochemical Phenomena
  12. Kar SS, Bhat VG, Shenoy VP, Bairy I, Shenoy GG
    Chem Biol Drug Des, 2019 01;93(1):60-66.
    PMID: 30118192 DOI: 10.1111/cbdd.13379
    In our efforts to develop druggable diphenyl ethers as potential antitubercular agents, a series of novel diphenyl ether derivatives (5a-f, 6a-f) were designed and synthesized. The representative compounds showed promising in vitro activity against drug-susceptible, isoniazid-resistant, and multidrug-resistant strains of Mycobacterium tuberculosis with MIC values of 1.56 μg/ml (6b), 6.25 μg/ml (6a-d), and 3.125 μg/ml (6b-c), respectively. All the synthesized compounds exhibited satisfactory safety profile (CC50  > 300 μg/ml) against Vero and HepG2 cells. Reverse phase HPLC method was used to probe the physicochemical properties of the synthesized compounds. This series of compounds demonstrated comparatively low logP values. pKa values of representative compounds indicated that they were weak acids. Additionally, in vitro human liver microsomal stability assay confirmed that the synthesized compounds possessed acceptable stability under study conditions. The present study thus establishes compound 6b as the most promising antitubercular agent with acceptable drug-likeness.
    Matched MeSH terms: Biochemical Phenomena
  13. Noor AF, Soo TCC, Ghani FM, Goh ZH, Khoo LT, Bhassu S
    Heliyon, 2017 Dec;3(12):e00446.
    PMID: 29322096 DOI: 10.1016/j.heliyon.2017.e00446
    Background: Dystrophin, an essential protein functional in the maintenance of muscle structural integrity is known to be responsible for muscle deterioration during white spot syndrome virus (WSSV) infection among prawn species. Previous studies have shown the upregulation of dystrophin protein in Macrobrachium rosenbergii (the giant freshwater prawn) upon white spot syndrome virus (WSSV) infection. The literature has also suggested the important role of calcium ion alterations in causing such muscle diseases. Thus, the interest of this study lies within the linkage between dystrophin functioning, intracellular calcium and white spot syndrome virus (WSSV) infection condition.

    Methods: In this study, the dystrophin gene from M. rosenbergii (MrDys) was first characterised followed by the characterization of dystrophin gene from a closely related shrimp species, Penaeus monodon (PmDys). Dystrophin sequences from different phyla were then used for evolutionary comparison through BLAST analysis, conserved domain analysis and phylogenetic analysis. The changes in mRNA expression levels of dystrophin and the alteration of intracellular calcium concentrations in WSSV infected muscle cells were then studied.

    Results: A 1246 base pair long dystrophin sequence was identified in the giant freshwater prawn, Macrobrachium rosenbergii (MrDys) followed by 1082 base pair long dystrophin sequence in P. monodon (PmDys). Four conserved domains were identified from the thirteen dystrophin sequences compared which were classified into 5 different phyla. From the phylogenetic analysis, aside from PmDys, the characterised MrDys was shown to be most similar to the invertebrate phylum of Nematoda. In addition, an initial down-regulation of dystrophin gene expression followed by eventual up-regulation, together with an increase in intracellular calcium concentration [Ca2+]
    i
    were shown upon WSSV experimental infection.

    Discussion: Both the functionality of the dystrophin protein and the intracellular calcium concentration were affected by WSSV infection which resulted in progressive muscle degeneration. An increased understanding of the role of dystrophin-calcium in MrDys and the interactions between these two components is necessary to prevent or reduce occurrences of muscle degeneration caused by WSSV infection, thereby reducing economic losses in the prawn farming industry from such disease.

    Matched MeSH terms: Biochemical Phenomena
  14. Solhan Yahya, Norinsan Kamil Othman, Abd Razak Daud, Azman Jalar
    Sains Malaysiana, 2014;43:1083-1087.
    The effect of scan rate on the accuracy of corrosion parameter in evaluating the efficiency of rice straw extract as corrosion inhibitor has been studied via potentiodynamic polarization measurement. Scan rate in the range of low (0.1- 0.25 mV s-1), medium (0.5-1.0 mV s-1) and high (1.5-2.0 mV s-1) scan were carried out on the carbon steel in 1 M HCl. The corrosion parameters such as corrosion rate, polarization resistance and corrosion current density have been analyzed through Tafel polarization curve. High scan rate gave poor accuracy of corrosion parameter compared to medium and low scan. Medium scan at 1.0 mV s-1 has been chosen as the optimum scan rate due to the approached steady-state and small disturbance of charged current. As a result, the addition of rice straw extract in 1 M HCl has reduced the values of corrosion current density in both cathodic and anodic reactions signified the corrosion has been inhibited. The efficiency of rice straw extracts as a corrosion inhibitor offer good result as much as 86%.
    Matched MeSH terms: Biochemical Phenomena
  15. Bakry, N.F., Isa, M.I.N., Sarbon, N.M.
    MyJurnal
    This study investigated consequent functional effects (mechanical and physical) on Gelatin/ CMC/Chitosan composite films from the addition of sorbitol. With glycerol as a plasticizer, solutions for Gelatin/CMC/Chitosan composite films containing graduated sorbitol concentrations (0%, 5%, 10%, 15%, 20%, 25% and 30%), were cast on a petri dish and oven dried at 45˚C. The fabricated films were then characterized for tensile strength, elongation at break (EAB) and puncture resistance (mechanical properties); as well as film thickness, water vapor permeability (WVP), thermal properties, light transmittance and transparency (UV and visible light transmission), biodegradability, and X-ray diffraction (physical properties). Results indicated that by increasing sorbitol concentration, melting point and tensile strength decreased overall (p
    Matched MeSH terms: Biochemical Phenomena
  16. Jayusman PA, Budin SB, Ghazali AR, Taib IS, Louis SR
    Pak J Pharm Sci, 2014 Nov;27(6):1873-80.
    PMID: 25362611
    Indiscriminate application of organophosphate (OP) pesticides has led to environmental pollution and severe health problems. The aim of the present study was to evaluate the effect of palm oil tocotrienol-rich fraction (TRF) on biochemical and morphological changes of the liver in rats treated with fenitrothion (FNT), a type of OP pesticide. A total of 28 male Sprague-Dawley rats were divided into four groups; control group, TRF-supplemented group, FNT-treated group and TRF+FNT group. TRF (200 mg/kg) was supplemented 30 minutes prior to FNT (20 mg/kg) administration, both orally for 28 consecutive days. Following 28 days of treatment, plasma biochemical changes and liver morphology were evaluated. The body and absolute liver weights were significantly elevated in TRF+FNT group compared to FNT group. TRF administration significantly decreased the total protein level and restored the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in TRF + FNT group. In contrast, total bilirubin level, γ-glutamyltranferase (GGT) and cholinesterase activity in TRF + FNT group did not significantly differ from FNT group. Administration of TRF also prevented FNT-induced morphological changes of liver as observed by electron microscope. In conclusion, TRF supplementation showed potential protective effect towards biochemical and ultrastructural changes in liver induced by FNT.
    Matched MeSH terms: Biochemical Phenomena
  17. Zulkifly K, Cheng-Yong H, Yun-Ming L, Bayuaji R, Abdullah MMAB, Ahmad SB, et al.
    Materials (Basel), 2021 Apr 15;14(8).
    PMID: 33920865 DOI: 10.3390/ma14081973
    Thermal performance, combustibility, and fire propagation of fly ash-metakaolin (FA-MK) blended geopolymer with the addition of aluminum triphosphate, ATP (Al(H2PO4)3), and monoaluminium phosphate, MAP (AlPO4) were evaluated in this paper. To prepare the geopolymer mix, fly ash and metakaolin with a ratio of 1:1 were added with ATP and MAP in a range of 0-3% by weight. The fire/heat resistance was evaluated by comparing the residual compressive strengths after the elevated temperature exposure. Besides, combustibility and fire propagation tests were conducted to examine the thermal performance and the applicability of the geopolymers as passive fire protection. Experimental results revealed that the blended geopolymers with 1 wt.% of ATP and MAP exhibited higher compressive strength and denser geopolymer matrix than control geopolymers. The effect of ATP and MAP addition was more obvious in unheated geopolymer and little improvement was observed for geopolymer subjected to elevated temperature. ATP and MAP at 3 wt.% did not help in enhancing the elevated-temperature performance of blended geopolymers. Even so, all blended geopolymers, regardless of the addition of ATP and MAP, were regarded as the noncombustible materials with negligible (0-0.1) fire propagation index.
    Matched MeSH terms: Biochemical Phenomena
  18. Mahmud H, Ismail A, Abdul Rahim R, Low KO, Md Illias R
    J Biotechnol, 2019 Apr 20;296:22-31.
    PMID: 30878516 DOI: 10.1016/j.jbiotec.2019.02.013
    In previous studies of Lactococcus lactis, the levels of proteins secreted using heterologous signal peptides were observed to be lower than those obtained using the signal peptide from Usp45, the major secreted lactococcal protein. In this study, G1 (the native signal peptide of CGTase) and the signal peptide M5 (mutant of the G1 signal peptide) were introduced into L. lactis to investigate the effect of signal peptides on lactococcal protein secretion to improve secretion efficiency. The effectiveness of these signal peptides were compared to the Usp45 signal peptide. The highest secretion levels were obtained using the G1 signal peptide. Sequence analysis of signal peptide amino acids revealed that a basic N-terminal signal peptide is not absolutely required for efficient protein export in L. lactis. Moreover, the introduction of a helix-breaking residue in the H-region of the M5 signal peptide caused a reduction in the signal peptide hydrophobicity and decreased protein secretion. In addition, the optimization of cultivation conditions for recombinant G1-CGTase production via response surface methodology (RSM) showed that CGTase activity increased approximately 2.92-fold from 5.01 to 16.89 U/ml compared to the unoptimized conditions.
    Matched MeSH terms: Biochemical Phenomena
  19. Li Y, Van Toan N, Wang Z, Samat KFB, Ono T
    Nanoscale Res Lett, 2021 Apr 20;16(1):64.
    PMID: 33877472 DOI: 10.1186/s11671-021-03524-z
    Porous silicon (Si) is a low thermal conductivity material, which has high potential for thermoelectric devices. However, low output performance of porous Si hinders the development of thermoelectric performance due to low electrical conductivity. The large contact resistance from nonlinear contact between porous Si and metal is one reason for the reduction of electrical conductivity. In this paper, p- and n-type porous Si were formed on Si substrate by metal-assisted chemical etching. To decrease contact resistance, p- and n-type spin on dopants are employed to dope an impurity element into p- and n-type porous Si surface, respectively. Compared to the Si substrate with undoped porous samples, ohmic contact can be obtained, and the electrical conductivity of doped p- and n-type porous Si can be improved to 1160 and 1390 S/m, respectively. Compared with the Si substrate, the special contact resistances for the doped p- and n-type porous Si layer decreases to 1.35 and 1.16 mΩ/cm2, respectively, by increasing the carrier concentration. However, the increase of the carrier concentration induces the decline of the Seebeck coefficient for p- and n-type Si substrates with doped porous Si samples to 491 and 480 μV/K, respectively. Power factor is related to the Seebeck coefficient and electrical conductivity of thermoelectric material, which is one vital factor that evaluates its output performance. Therefore, even though the Seebeck coefficient values of Si substrates with doped porous Si samples decrease, the doped porous Si layer can improve the power factor compared to undoped samples due to the enhancement of electrical conductivity, which facilitates its development for thermoelectric application.
    Matched MeSH terms: Biochemical Phenomena
  20. Clarke AK, Ho HE, Rossi-Ashton JA, Taylor RJK, Unsworth WP
    Chem Asian J, 2019 Mar 25.
    PMID: 30908897 DOI: 10.1002/asia.201900309
    Indoles are amongst the most important class of heteroaromatics in organic chemistry, being commonly found in biologically active natural products and therapeutically useful compounds. The synthesis of indoles is therefore important and several methods for their synthesis that make use of silver(I) catalysts and reagents have been developed in recent years. This Focus Review contains, to the best of our knowledge, a comprehensive coverage of silver-mediated indole forming reactions since the first reaction of this type was reported in 2004.
    Matched MeSH terms: Biochemical Phenomena
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links