Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A
    J Mech Behav Biomed Mater, 2023 Oct;146:106099.
    PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099
    Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  2. Khan MUA, Razak SIA, Rehman S, Hasan A, Qureshi S, Stojanović GM
    Int J Biol Macromol, 2022 Dec 01;222(Pt A):462-472.
    PMID: 36155784 DOI: 10.1016/j.ijbiomac.2022.09.153
    Globally, people suffering from bone disorders are steadily increasing and bone tissue engineering is an advanced approach to treating fractured and defected bone tissues. In this study, we have prepared polymeric nanocomposite by free-radical polymerization from sodium alginate, hydroxyapatite, and silica with different GO amounts. The porous scaffolds were fabricated using the freeze drying technique. The structural, morphological, mechanical, and wetting investigation was conducted by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, universal tensile machine, and water contact angle characterization techniques. The swelling, biodegradation, and water retention were also studied. The biological studies were performed (cell viability, cell adherence, proliferation, and mineralization) against osteoblast cell lines. Scaffolds have exhibited different pore morphology SAG-1 (pore size = 414.61 ± 56 μm and porosity = 81.45 ± 2.17 %) and SAG-4 (pore size = 195.97 ± 82 μm and porosity = 53.82 ± 2.45 %). They have different mechanical behavior as SAG-1 has the least compression strength and compression modulus 2.14 ± 2.35 and 16.51 ± 1.27 MPa. However, SAG-4 has maximum compression strength and compression modulus 13.67 ± 2.63 and 96.16 ± 1.97 MPa with wetting behavior 80.70° and 58.70°, respectively. Similarly, SAG-1 exhibited the least and SAG-4 presented maximum apatite mineral formation, cell adherence, cell viability, and cell proliferation against mouse pre-osteoblast cell lines. The increased GO amount provides different multifunctional materials with different characteristics. Hence, the fabricated scaffolds could be potential scaffold materials to treat and regenerate fracture bone tissues in bone tissue engineering.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  3. Tuminoh H, Hermawan H, Ramlee MH
    J Mech Behav Biomed Mater, 2022 Nov;135:105457.
    PMID: 36116340 DOI: 10.1016/j.jmbbm.2022.105457
    In the last decade, magnesium alloys have been considered as absorbable metals for biomedical applications, while some have reached their clinical use as temporary bone implants. However, their widespread use is still limited by its strength and degradability. One way of improvement can be done by reinforcing magnesium alloys with carbon nanofibres to form composites. This work aims at developing carbon nanofibre-reinforced magnesium-zinc (Mg-Zn/CNF) composites with optimum strength and degradability while ensuring their biocompatibility. A response surface method was used to determine their optimum process parameters (composition, compaction pressure, and sintering temperature), and analyse the resulting properties (elastic modulus, hardness, weight loss, and cytocompatibility). Results showed that the optimal parameters were reached at 1.8% of CNF, 425 MPa of compaction pressure, and 500 °C of sintering temperature, whereby it gave an elastic modulus of 5 GPa, hardness of 60 Hv, and a weight loss of 51% after three days immersion in PBS. The composites exhibited a hydrophobic surface that controlled the liberation of Mg2+ and Zn2+ ions, leading to more than 70% osteoblast cells viability up to seven days of incubation. This study can also serve as a starting point for future researchers interested in finding methods to fabricate Mg-Zn/CNF composites with high mechanical characteristics, corrosion resistance, and biocompatibility.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  4. Lee WH, Rohanizadeh R, Loo CY
    Colloids Surf B Biointerfaces, 2021 Oct;206:111938.
    PMID: 34198233 DOI: 10.1016/j.colsurfb.2021.111938
    This study developed a novel bioactive bone substitute (hydroxyapatite, HA) with improved anti-biofilm activity by functionalizing with curcumin (anti-biofilm compound) which provide sufficient flux of curcumin concentration for 14 days. The released curcumin acts to inhibit biofilm formation and control the number of viable planktonic cells simultaneously. To prepare curcumin-functionalized HA, different concentrations of curcumin (up to 3% w/v) were added simultaneously during the precipitation process of HA. The highest loading (50 mg/g HA) of curcumin onto HA was achieved with 2% w/v of curcumin. Physicochemical characterizations of curcumin-functionalized HA composites revealed that curcumin was successfully incorporated onto HA. Curcumin was sustainably released over 14 days, while higher curcumin release was observed in acidic condition (pH 4.4) compared to physiological (pH 7.4). The cytotoxicity assays revealed that no significant difference on bone cells growth on curcumin-functionalized HA and non-functionalized HA. Curcumin-functionalized HA was effective to inhibit bacterial cell attachment and subsequent biofilm maturation stages. The anti-biofilm effect was stronger against Staphylococcus aureus compared to Pseudomonas aeruginosa. The curcumin-functionalized HA composite significantly delayed the maturation of S. aureus compared to non-functionalized HA in which microcolonies of cells only begin to appear at 96 h. Up to 3.0 log reduction in colony forming unit (CFU)/mL of planktonic cells was noted at 24 h of incubation for both microorganisms. Thus, in this study we have suggested that curcumin loaded HA could be an alternative antimicrobial agent to control the risk of infections in post-surgical implants.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  5. Ebrahimi S, Hanim YU, Sipaut CS, Jan NBA, Arshad SE, How SE
    Int J Mol Sci, 2021 Sep 06;22(17).
    PMID: 34502544 DOI: 10.3390/ijms22179637
    Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  6. Wu XH, Liew YK, Mai CW, Then YY
    Int J Mol Sci, 2021 Mar 24;22(7).
    PMID: 33805207 DOI: 10.3390/ijms22073341
    Medical devices are indispensable in the healthcare setting, ranging from diagnostic tools to therapeutic instruments, and even supporting equipment. However, these medical devices may be associated with life-threatening complications when exposed to blood. To date, medical device-related infections have been a major drawback causing high mortality. Device-induced hemolysis, albeit often neglected, results in negative impacts, including thrombotic events. Various strategies have been approached to overcome these issues, but the outcomes are yet to be considered as successful. Recently, superhydrophobic materials or coatings have been brought to attention in various fields. Superhydrophobic surfaces are proposed to be ideal blood-compatible biomaterials attributed to their beneficial characteristics. Reports have substantiated the blood repellence of a superhydrophobic surface, which helps to prevent damage on blood cells upon cell-surface interaction, thereby alleviating subsequent complications. The anti-biofouling effect of superhydrophobic surfaces is also desired in medical devices as it resists the adhesion of organic substances, such as blood cells and microorganisms. In this review, we will focus on the discussion about the potential contribution of superhydrophobic surfaces on enhancing the hemocompatibility of blood-contacting medical devices.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  7. Venkatraman SK, Choudhary R, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;118:111466.
    PMID: 33255048 DOI: 10.1016/j.msec.2020.111466
    This work is aimed to develop a biocompatible, bactericidal and mechanically stable biomaterial to overcome the challenges associated with calcium phosphate bioceramics. The influence of chemical composition on synthesis temperature, bioactivity, antibacterial activity and mechanical stability of least explored calcium silicate bioceramics was studied. The current study also investigates the biomedical applications of rankinite (Ca3Si2O7) for the first time. Sol-gel combustion method was employed for their preparation using citric acid as a fuel. Differential thermal analysis indicated that the crystallization of larnite and rankinite occurred at 795 °C and 1000 °C respectively. The transformation of secondary phases into the desired product was confirmed by XRD and FT-IR. TEM micrographs showed the particle size of larnite in the range of 100-200 nm. The surface of the samples was entirely covered by the dominant apatite phase within one week of immersion. Moreover, the compressive strength of larnite and rankinite was found to be 143 MPa and 233 MPa even after 28 days of soaking in SBF. Both samples prevented the growth of clinical pathogens at a concentration of 2 mg/mL. Larnite and rankinite supported the adhesion, proliferation and osteogenic differentiation of hBMSCs. The variation in chemical composition was found to influence the properties of larnite and rankinite. The results observed in this work signify that these materials not only exhibit faster biomineralization ability, excellent cytocompatibility but also enhanced mechanical stability and antibacterial properties.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  8. Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;118:111228.
    PMID: 33254956 DOI: 10.1016/j.msec.2020.111228
    Organ repair, regeneration, and transplantation are constantly in demand due to various acute, chronic, congenital, and infectious diseases. Apart from traditional remedies, tissue engineering (TE) is among the most effective methods for the repair of damaged tissues via merging the cells, growth factors, and scaffolds. With regards to TE scaffold fabrication technology, polyurethane (PU), a high-performance medical grade synthetic polymer and bioactive material has gained significant attention. PU possesses exclusive biocompatibility, biodegradability, and modifiable chemical, mechanical and thermal properties, owing to its unique structure-properties relationship. During the past few decades, PU TE scaffold bioactive properties have been incorporated or enhanced with biodegradable, electroactive, surface-functionalised, ayurvedic products, ceramics, glass, growth factors, metals, and natural polymers, resulting in the formation of modified polyurethanes (MPUs). This review focuses on the recent advances of PU/MPU scaffolds, especially on the biomedical applications in soft and hard tissue engineering and regenerative medicine. The scientific issues with regards to the PU/MPU scaffolds, such as biodegradation, electroactivity, surface functionalisation, and incorporation of active moieties are also highlighted along with some suggestions for future work.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  9. Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, et al.
    J Tissue Eng Regen Med, 2020 10;14(10):1488-1501.
    PMID: 32761978 DOI: 10.1002/term.3115
    It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.
    Matched MeSH terms: Biocompatible Materials/pharmacology*
  10. Siow KS, Abdul Rahman AS, Ng PY, Majlis BY
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110225.
    PMID: 31761201 DOI: 10.1016/j.msec.2019.110225
    Role of sulfur (S) and nitrogen (N) groups in promoting cell adhesion or commonly known as biocompatibility, is well established, but their role in reducing bacterial attachment and growth is less explored or not well-understood. Natural sulfur-based compounds, i.e. sulfide, sulfoxide and sulfinic groups, have shown to inhibit bacterial adhesion and biofilm formation. Hence, we mimicked these surfaces by plasma polymerizing thiophene (ppT) and air-plasma treating this ppT to achieve coatings with S of similar oxidation states as natural compounds (ppT-air). In addition, the effects of these N and S groups from ppT-air were also compared with the biocompatible amine-amide from n-heptylamine plasma polymer. Crystal violet assay and live and dead fluorescence staining of E. coli and S. aureus showed that all the N and S coated surfaces generated, including ppHA, ppT and ppT-air, produced similarly potent, growth reduction of both bacteria by approximately 65% at 72 h compared to untreated glass control. The ability of osteogenic differentiation in Wharton's jelly mesenchymal stem cells (WJ-MSCs) were also used to test the cell biocompatibility of these surfaces. Alkaline phosphatase assay and scanning electron microscopy imaging of these WJ-MSCs growths indicated that ppHA, and ppT-air were cell-friendly surfaces, with ppHA showing the highest osteogenic activity. In summary, the N and S containing surfaces could reduce bacteria growth while promoting mammalian cell growth, thus serve as potential candidate surfaces to be explored further for biomaterial applications.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  11. Taguchi K, Chuang VTG, Hashimoto M, Nakayama M, Sakuragi M, Enoki Y, et al.
    Chem Pharm Bull (Tokyo), 2020;68(8):766-772.
    PMID: 32741918 DOI: 10.1248/cpb.c20-00222
    Lactoferrin (Lf) nanoparticles have been developed as a carrier of drugs and gene. Two main methods, desolvation technique and emulsification method, for preparation of protein nanoparticles have been reported so far, but most of the previous reports of Lf nanoparticles preparation are limited to emulsification method. In this study, we investigated the optimal conditions by desolvation technique for the preparation of glutaraldehyde-crosslinked bovine Lf (bLf) nanoparticles within the size range of 100-200 nm, and evaluated their properties as a carrier for oral and intravenous drug delivery. The experimental results of dynamic light scattering and Transmission Electron Microscope suggested that glutaraldehyde-crosslinked bLf nanoparticles with 150 nm in size could be produced by addition of 2-propanol as the desolvating solvent into the bLf solution adjusted to pH 6, followed by crosslinking with glutaraldehyde. These cross-linked bLf nanoparticles were found to be compatible to blood components and resistant against rapid degradation by pepsin. Thus, cross-linked bLf nanoparticles prepared by desolvation technique can be applied as a drug carrier for intravenous administration and oral delivery.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  12. Chahal S, Kumar A, Hussian FSJ
    J Biomater Sci Polym Ed, 2019 10;30(14):1308-1355.
    PMID: 31181982 DOI: 10.1080/09205063.2019.1630699
    Electrospinning is a promising and versatile technique that is used to fabricate polymeric nanofibrous scaffolds for bone tissue engineering. Ideal scaffolds should be biocompatible and bioactive with appropriate surface chemistry, good mechanical properties and should mimic the natural extracellular matrix (ECM) of bone. Selection of the most appropriate material to produce a scaffold is an important step towards the construction of a tissue engineered product. Bone tissue engineering is an interdisciplinary field, where the principles of engineering are applied on bone-related biochemical reactions. Scaffolds, cells, growth factors, and their interrelation in microenvironment are the major concerns in bone tissue engineering. This review covers the latest development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. It includes the brief details to bone tissue engineering along with bone structure and ideal bone scaffolds requirements. Details about various engineered materials and methodologies used for bone scaffolds development were discussed. Description of electrospinning technique and its parameters relating their fabrication, advantages, and applications in bone tissue engineering were also presented. The use of synthetic and natural polymers based electrospun nanofibrous scaffolds for bone tissue engineering and their biomineralization processes were discussed and reviewed comprehensively. Finally, we give conclusion along with perspectives and challenges of biomimetic scaffolds for bone tissue engineering based on electrospun nanofibers.
    Matched MeSH terms: Biocompatible Materials/pharmacology*
  13. Dayaghi E, Bakhsheshi-Rad HR, Hamzah E, Akhavan-Farid A, Ismail AF, Aziz M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Sep;102:53-65.
    PMID: 31147024 DOI: 10.1016/j.msec.2019.04.010
    Recently, porous magnesium and its alloys are receiving great consideration as biocompatible and biodegradable scaffolds for bone tissue engineering application. However, they presented poor antibacterial performance and corrosion resistance which limited their clinical applications. In this study, Mg-Zn (MZ) scaffold containing different concentrations of tetracycline (MZ-xTC, x = 1, 5 and 10%) were fabricated by space holder technique to meet the desirable antibacterial activity and corrosion resistance properties. The MZ-TC contains total porosity of 63-65% with pore sizes in the range of 600-800 μm in order to accommodate bone cells. The MZ scaffold presented higher compressive strength and corrosion resistance compared to pure Mg scaffold. However, tetracycline incorporation has less significant effect on the mechanical and corrosion properties of the scaffolds. Moreover, MZ-xTC scaffolds drug release profiles show an initial immediate release which is followed by more stable release patterns. The bioactivity test reveals that the MZ-xTC scaffolds are capable of developing the formation of HA layers in simulated body fluid (SBF). Next, Staphylococcus aureus and Escherichia coli bacteria were utilized to assess the antimicrobial activity of the MZ-xTC scaffolds. The findings indicate that those scaffolds that incorporate a high level concentration of tetracycline are tougher against bacterial organization than MZ scaffolds. However, the MTT assay demonstrates that the MZ scaffolds containing 1 to 5% tetracycline are more effective to sustain cell viability, whereas MZ-10TC shows some toxicity. The alkaline phosphatase (ALP) activity of the MZ-(1-5)TC was considerably higher than that of MZ-10TC on the 3 and 7 days, implying higher osteoblastic differentiation. All the findings suggest that the MZ-xTC scaffolds containing 1 to 5% tetracycline is a promising candidate for bone tissue healing due to excellent antibacterial activity and biocompatibility.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  14. Zulkifli FH, Hussain FSJ, Harun WSW, Yusoff MM
    Int J Biol Macromol, 2019 Feb 01;122:562-571.
    PMID: 30365990 DOI: 10.1016/j.ijbiomac.2018.10.156
    This study is focusing to develop a porous biocompatible scaffold using hydroxyethyl cellulose (HEC) and poly (vinyl alcohol) (PVA) with improved cellular adhesion profiles and stability. The combination of HEC and PVA were synthesized using freeze-drying technique and characterized using SEM, ATR-FTIR, TGA, DSC, and UTM. Pore size of HEC/PVA (2-40 μm) scaffolds showed diameter in a range of both pure HEC (2-20 μm) and PVA (14-70 μm). All scaffolds revealed high porosity above 85%. The water uptake of HEC was controlled by PVA cooperation in the polymer matrix. After 7 days, all blended scaffolds showed low degradation rate with the increased of PVA composition. The FTIR and TGA results explicit possible chemical interactions and mass loss of blended scaffolds, respectively. The Tg values of DSC curved in range of HEC and PVA represented the miscibility of HEC/PVA blend polymers. Higher Young's modulus was obtained with the increasing of HEC value. Cell-scaffolds interaction demonstrated that human fibroblast (hFB) cells adhered to polymer matrices with better cell proliferation observed after 7 days of cultivation. These results suggested that biocompatible of HEC/PVA scaffolds fabricated by freeze-drying method might be suitable for skin tissue engineering applications.
    Matched MeSH terms: Biocompatible Materials/pharmacology*
  15. Arshad R, Sohail MF, Sarwar HS, Saeed H, Ali I, Akhtar S, et al.
    PLoS One, 2019;14(6):e0217079.
    PMID: 31170179 DOI: 10.1371/journal.pone.0217079
    Post-operative surgical site infections (SSI) present a serious threat and may lead to complications. Currently available dressings for SSI lack mucoadhesion, safety, efficacy and most importantly patient compliance. We aimed to address these concerns by developing a bioactive thiolated chitosan-alginate bandage embedded with zinc oxide nanoparticles (ZnO-NPs) for localized topical treatment of SSI. The FTIR, XRD, DSC and TGA of bandage confirmed the compatibility of ingredients and modifications made. The porosity, swelling index and lysozyme degradation showed good properties for wound healing and biodegradation. Moreover, in-vitro antibacterial activity showed higher bactericidal effect as compared to ZnO-NPs free bandage. In-vivo wound healing in murine model showed significant improved tissue generation and speedy wound healing as compared to positive and negative controls. Over all, thiolated bandage showed potential as an advanced therapeutic agent for treating surgical site infections, meeting the required features of an ideal surgical dressing.
    Matched MeSH terms: Biocompatible Materials/pharmacology*
  16. Pourshahrestani S, Kadri NA, Zeimaran E, Towler MR
    Biomater Sci, 2018 Dec 18;7(1):31-50.
    PMID: 30374499 DOI: 10.1039/c8bm01041b
    Immediate control of uncontrolled bleeding and infection are essential for saving lives in both combat and civilian arenas. Inorganic well-ordered mesoporous silica and bioactive glasses have recently shown great promise for accelerating hemostasis and infection control. However, to date, there has been no comprehensive report assessing their specific mechanism of action in accelerating the hemostasis process and exerting an antibacterial effect. After providing a brief overview of the hemostasis process, this review presents a critical overview of the recently developed inorganic mesoporous silica and bioactive glass-based materials proposed for hemostatic clinical applications and specifically investigates their unique characteristics that render them applicable for hemostatic applications and preventing infections. This article also identifies promising new research directions that should be undertaken to ascertain the effectiveness of these materials for hemostatic applications.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  17. MubarakAli D, LewisOscar F, Gopinath V, Alharbi NS, Alharbi SA, Thajuddin N
    Microb Pathog, 2018 Jan;114:323-327.
    PMID: 29229504 DOI: 10.1016/j.micpath.2017.11.043
    Chitosan is the second most abundant polymer obtained from the byproduct of seafood. Chitosan and its derivatives and chitosan loaded drugs are the recent area of interest against microbial pathogenesis. The cationic chitosan nanoparticles (ChNPs) interact with the anionic surfaces of the microbial cell membrane, which promotes antimicrobial activity. Although, ChNPs are potential against pathogenic microbes, selection of adaptable, suitable and cost effective synthesis method is much important. In the present study, ChNPs were synthesized adopting ionic gelation using sodium tripolyphosphate as a cross linking agent and characterized by FTIR, DLS, SEM and TEM analysis. ChNPs were investigated for antimicrobial activity against bacterial (Escherichia coli and Staphylococcus aureus) and fungal (Candida albicans) pathogens. ChNPs showed bactericidal activity at the lower minimum inhibitory concentration of about 40-80 μg mL-1. Interestingly, ChNPs exhibits biocompatible antioxidant property by inhibiting DPPH free radicals at 76% and also proven to be a potential candidate against the microbial pathogenesis with an inevitable applications in biomedicine.
    Matched MeSH terms: Biocompatible Materials/pharmacology*
  18. Hussain Z, Thu HE, Shuid AN, Katas H, Hussain F
    Curr Drug Targets, 2018;19(5):527-550.
    PMID: 28676002 DOI: 10.2174/1389450118666170704132523
    BACKGROUND: Diabetic foot ulcers (DFUs) are the chronic, non-healing complications of diabetic mellitus which compels a significant burden to the patients and the healthcare system. Peripheral vascular disease, diabetic neuropathy, and abnormal cellular and cytokine/chemokine activity are among the prime players which exacerbate the severity and prevent wound repair. Unlike acute wounds, DFUs impose a substantial challenge to the conventional wound dressings and demand the development of novel and advanced wound healing modalities. In general, an ideal wound dressing should provide a moist wound environment, offer protection from secondary infections, eliminate wound exudate and stimulate tissue regeneration.

    OBJECTIVE: To date, numerous conventional wound dressings are employed for the management of DFUs but there is a lack of absolute and versatile choice. The current review was therefore aimed to summarize and critically discuss the available evidences related to pharmaceutical and therapeutic viability of polymer-based dressings for the treatment of DFUs.

    RESULTS: A versatile range of naturally-originated polymers including chitosan (CS), hyaluronic acid (HA), cellulose, alginate, dextran, collagen, gelatin, elastin, fibrin and silk fibroin have been utilized for the treatment of DFUs. These polymers have been used in the form of hydrogels, films, hydrocolloids, foams, membranes, scaffolds, microparticles, and nanoparticles. Moreover, the wound healing viability and clinical applicability of various mutually modified, semi-synthetic or synthetic polymers have also been critically discussed.

    CONCLUSION: In summary, this review enlightens the most recent developments in polymer-based wound dressings with special emphasis on advanced polymeric biomaterials, innovative therapeutic strategies and delivery approaches for the treatment of DFUs.

    Matched MeSH terms: Biocompatible Materials/pharmacology*
  19. Thomas B, Gupta K
    J Esthet Restor Dent, 2017 Nov 12;29(6):435-441.
    PMID: 28703476 DOI: 10.1111/jerd.12317
    OBJECTIVE: Nano-hydroxyapatite-added GIC has been developed to improve the physical properties of conventional GIC. However, biological response of periodontal cells to this potentially useful cervical restorative material has been unexplored. The aim of this study was to investigate the in vitro response of human periodontal ligament fibroblasts to hydroxyapatite-added GIC.

    MATERIALS AND METHODS: Three categories of materials, namely, test group 1 (cGIC or type IX GIC), test group 2 (HA-GIC or hydroxyapatite-added GIC), and positive control (glass cover slips) were incubated with human periodontal ligament fibroblasts. The samples were viewed under scanning electron microscope to study the morphological characteristics of fibroblasts. Additionally, elemental analysis was performed to differentiate between the two test groups based on surface chemical composition.

    RESULTS: Test group 1 (cGIC) exhibited cells with curled up morphology, indicative of poor attachment to the substrate. Test group 2 (Ha-GIC) exhibited cells with flattened morphology and numerous cellular extensions such as lamellipodia and blebs, indicative of good attachment to the substrate. The test group 2 (Ha-GIC) demonstrated higher surface elemental percentages of calcium and phosphorus.

    CONCLUSION: Within the limitations of this study, it may be concluded that hydroxyapatite-added GIC is more biocompatible than conventional GIC (type IX), probably attributed to high elemental percentages of calcium and phosphorus.

    CLINICAL SIGNIFICANCE: The search for an ideal cervical restorative dental material has been ever elusive. Hydroxyapatite-added GIC is a simple and economical dental material to fabricate from basic conventional GIC. The results from this study strengthen its candidature for cervical and root surface restorations which may later require soft tissue augmentation. The possibility of connective tissue adhesion to this material is an exciting prospect in the field of periorestorative dentistry.

    Matched MeSH terms: Biocompatible Materials/pharmacology
  20. Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N
    J Biomater Sci Polym Ed, 2017 Nov;28(16):1966-1983.
    PMID: 28777694 DOI: 10.1080/09205063.2017.1364100
    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p 
    Matched MeSH terms: Biocompatible Materials/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links