Displaying publications 1 - 20 of 477 in total

Abstract:
Sort:
  1. Karamba KI, Ahmad SA, Zulkharnain A, Yasid NA, Ibrahim S, Shukor MY
    3 Biotech, 2018 Jan;8(1):11.
    PMID: 29259886 DOI: 10.1007/s13205-017-1025-x
    The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination (R2) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration (Sm) of 713.4 and empirical constant (n) of 1.516. Tessier and Aiba fitted the experimental data with a R2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
    Matched MeSH terms: Biodegradation, Environmental
  2. Hafshejani MK, Ogugbue CJ, Morad N
    3 Biotech, 2014 Dec;4(6):605-619.
    PMID: 28324306 DOI: 10.1007/s13205-013-0192-7
    The decolorization and degradation of Direct Blue 71 were investigated using a mono culture of Pseudomonas aeruginosa. The bacterium was able to decolorize the dye medium to 70.43 % within 48 h under microaerophilic conditions. The medium was then aerated for 24 h to promote the biodegradation of the aromatic amines generated from azo bond cleavage. Reduction in total organic carbon in dye medium was 42.58 % in the microaerophilic stage and 78.39 % in the aerobic stage. The degradation metabolites formed were studied using UV-vis techniques, high performance liquid chromatography, Fourier transform infra red spectroscopy and nuclear magnetic resonance spectroscopy analysis. Data obtained provide evidence for the formation of aromatic amines and their subsequent oxidative biodegradation by a single strain of P. aeruginosa during successive microaerophilic/aerobic stages in the same flask. The influence of incubation temperature (20-45 °C), medium pH (5-10) and initial dye concentration (25-150 mg/L) on decolorization was evaluated to greatly influence decolorization extent. The optimal decolorization conditions were determined by response surface methodology based on three-variable central composite design to obtain maximum decolorization and to determine the significance and interaction effect of the variables on decolorization. The optimal conditions of response were found to be 35.15 °C, pH 8.01 and 49.95 mg/L dye concentration giving an experimental decolorization value of 84.80 %. Very high regression coefficient between the variables and the response (R(2) = 0.9624) indicated a good evaluation of experimental data by polynomial regression model.
    Matched MeSH terms: Biodegradation, Environmental
  3. Manogaran M, Shukor MY, Yasid NA, Khalil KA, Ahmad SA
    3 Biotech, 2018 Feb;8(2):108.
    PMID: 29430369 DOI: 10.1007/s13205-018-1123-4
    The herbicide glyphosate is often used to control weeds in agricultural lands. However, despite its ability to effectively kill weeds at low cost, health problems are still reported due to its toxicity level. The removal of glyphosate from the environment is usually done by microbiological process since chemical process of degradation is ineffective due to the presence of highly stable bonds. Therefore, finding glyphosate-degrading microorganisms in the soil of interest is crucial to remediate this glyphosate.Burkholderia vietnamiensisstrain AQ5-12 was found to have glyphosate-degrading ability. Optimisation of biodegradation condition was carried out utilising one factor at a time (OFAT) and response surface methodology (RSM). Five parameters including carbon and nitrogen source, pH, temperature and glyphosate concentration were optimised. Based on OFAT result, glyphosate degradation was observed to be optimum at fructose concentration of 6, 0.5 g/L ammonia sulphate, pH 6.5, temperature of 32 °C and glyphosate concentration at 100 ppm. Meanwhile, RSM resulted in a better degradation with 92.32% of 100 ppm glyphosate compared to OFAT. The bacterium was seen to tolerate up to 500 ppm glyphosate while increasing concentration results in reduced degradation and bacterial growth rate.
    Matched MeSH terms: Biodegradation, Environmental
  4. Manogaran M, Ahmad SA, Yasid NA, Yakasai HM, Shukor MY
    3 Biotech, 2018 Feb;8(2):117.
    PMID: 29430378 DOI: 10.1007/s13205-018-1141-2
    In this novel study, we report on the use of two molybdenum-reducing bacteria with the ability to utilise the herbicide glyphosate as the phosphorus source. The bacteria reduced sodium molybdate to molybdenum blue (Mo-blue), a colloidal and insoluble product, which is less toxic. The characterisation of the molybdenum-reducing bacteria was carried out using resting cells immersed in low-phosphate molybdenum media. Two glyphosate-degrading bacteria, namelyBurkholderia vietnamiensisAQ5-12 andBurkholderiasp. AQ5-13, were able to use glyphosate as a phosphorous source to support molybdenum reduction to Mo-blue. The bacteria optimally reduced molybdenum between the pHs of 6.25 and 8. The optimum concentrations of molybdate for strainBurkholderia vietnamiensis strainAQ5-12 was observed to be between 40 and 60 mM, while forBurkholderiasp. AQ5-13, the optimum molybdate concentration occurred between 40 and 50 mM. Furthermore, 5 mM of phosphate was seen as the optimum concentration supporting molybdenum reduction for both bacteria. The optimum temperature aiding Mo-blue formation ranged from 30 to 40 °C forBurkholderia vietnamiensis strainAQ5-12, whereas forBurkholderiasp. AQ5-13, the range was from 35 to 40 °C. Glucose was the best electron donor for supporting molybdate reduction, followed by sucrose, fructose and galactose for both strains. Ammonium sulphate was the best nitrogen source in supporting molybdenum reduction. Interestingly, increasing the glyphosate concentrations beyond 100 and 300 ppm forBurkholderia vietnamiensis strainAQ5-12 andBurkholderiasp. AQ5-13, respectively, significantly inhibited molybdenum reduction. The ability of these bacteria to reduce molybdenum while degrading glyphosate is a useful process for the bioremediation of both toxicants.
    Matched MeSH terms: Biodegradation, Environmental
  5. Teoh WK, Salleh FM, Shahir S
    3 Biotech, 2017 Jun;7(2):97.
    PMID: 28560637 DOI: 10.1007/s13205-017-0740-7
    Microbial arsenite oxidation is an essential biogeochemical process whereby more toxic arsenite is oxidized to the less toxic arsenate. Thiomonas strains represent an important arsenite oxidizer found ubiquitous in acid mine drainage. In the present study, the arsenite oxidase gene (aioBA) was cloned from Thiomonas delicata DSM 16361, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant Aio consisted of two subunits with the respective molecular weights of 91 and 21 kDa according to SDS-PAGE. Aio catalysis was optimum at pH 5.5 and 50-55 °C. Aio exhibited stability under acidic conditions (pH 2.5-6). The V max and K m values of the enzyme were found to be 4 µmol min(-1) mg(-1) and 14.2 µM, respectively. SDS and Triton X-100 were found to inhibit the enzyme activity. The homology model of Aio showed correlation with the acidophilic adaptation of the enzyme. This is the first characterization studies of Aio from a species belonging to the Thiomonas genus. The arsenite oxidase was found to be among the acid-tolerant Aio reported to date and has the potential to be used for biosensor and bioremediation applications in acidic environments.
    Matched MeSH terms: Biodegradation, Environmental
  6. Raju G, Mas Haris MRH, Azura AR, Ahmed Mohamed Eid AM
    ACS Omega, 2020 Nov 10;5(44):28760-28766.
    PMID: 33195929 DOI: 10.1021/acsomega.0c04081
    The slow-release mechanism of copper into soil followed by soil biodegradation was studied using the chitosan (CTS)/epoxidized natural rubber (ENR) biocomposite. The biocomposite was prepared by homogenizing CTS in ENR50 (ENR with about 50% epoxy content) latex in the presence of curing agents and acetic acid. It was found that the adsorption property of the biocomposite was very much influenced by chitosan loading, where 20phrCTS-t-ENR biocomposite can absorb 76.31% of Cu(II) ions. The desorption study indicates that the copper (II) ion can be released at a very slow and control phase as proven by the kinetic study using zero-order, first-order, Higuchi, and Korsmeyer Peppas equations. The slow-release studies comply with the Higuchi square-root equation, indicating that the release process is diffusion-controlled. Results of desorption and biodegradation process suggest that this biocomposite has the potential use of being a slow-release matrix in the field of agriculture.
    Matched MeSH terms: Biodegradation, Environmental
  7. Khadijah, O., Lee, K.K., Abdullah, M.F.F.
    ASM Science Journal, 2010;4(2):103-112.
    MyJurnal
    Two sequential statistical experimental designs were used to screen and investigate the dependence of the amount of biodegradation of Procion Red MX-8B (PR-MX8B) on the fermentation variables. Fourteen factors were screened using the Plackett-Burman design. Among these factors, the most significant variables which included yeast extract, corn steep solids and starch influencing PR-MX8B decolourisation were statistically elucidated for optimization. The optimum concentrations of 5.00 g/l yeast extract, 2.99 g/l starch and 1.89 g/l corn steep solids were predicted by applying the Box-Behnken design to the second order polynomial model fitted to the results obtained. The best predicted optimal conditions verified experimentally yielded 72.11% while the predicted value from the polynomial model was 79.17%. The experimental values were in good agreement with the predicted values with a 90.81% degree of accuracy.
    Matched MeSH terms: Biodegradation, Environmental
  8. Ong SA, Lim PE, Seng CE
    Ann Chim, 2004 Jan-Feb;94(1-2):85-92.
    PMID: 15141467
    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates.
    Matched MeSH terms: Biodegradation, Environmental
  9. Razak NN, Annuar MS
    Appl Biochem Biotechnol, 2014 Mar;172(6):2932-44.
    PMID: 24464534 DOI: 10.1007/s12010-014-0731-7
    Free laccase and fungal biomass from white-rot fungi were compared in the thermokinetics study of the laccase-catalyzed decolorization of an azo dye, i.e., Trypan Blue. The decolorization in both systems followed a first-order kinetics. The apparent first-order rate constant, k1', value increases with temperature. Apparent activation energy of decolorization was similar for both systems at ∼ 22 kJ mol(-1), while energy for laccase inactivation was 18 kJ mol(-1). Although both systems were endothermic, fungal biomass showed higher enthalpy, entropy, and Gibbs free energy changes for the decolorization compared to free laccase. On the other hand, free laccase showed reaction spontaneity over a wider range of temperature (ΔT = 40 K) as opposed to fungal biomass (ΔT = 15 K). Comparison of entropy change (ΔS) values indicated metabolism of the dye by the biomass.
    Matched MeSH terms: Biodegradation, Environmental
  10. Mohd Bahari Z, Ali Hamood Altowayti W, Ibrahim Z, Jaafar J, Shahir S
    Appl Biochem Biotechnol, 2013 Dec;171(8):2247-61.
    PMID: 24037600 DOI: 10.1007/s12010-013-0490-x
    The ability of non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment to adsorb As (III) from aqueous solution in batch experiments was investigated as a function of contact time, initial As (III) concentration, pH, temperature and biomass dosage. Langmuir model fitted the equilibrium data better in comparison to Freundlich isotherm. The maximum biosorption capacity of the sorbent, as obtained from the Langmuir isotherm, was 153.41 mg/g. The sorption kinetic of As (III) biosorption followed well the pseudo-second-order rate equation. The Fourier transform infrared spectroscopy analysis indicated the involvement of hydroxyl, amide and amine groups in As (III) biosorption process. Field emission scanning electron microscopy-energy dispersive X-ray analysis of the non-living B. cereus SZ2 biomass demonstrated distinct cell morphological changes with significant amounts of As adsorbed onto the cells compared to non-treated cells. Desorption of 94 % As (III) was achieved at acidic pH 1 showing the capability of non-living biomass B. cereus SZ2 as potential biosorbent in removal of As (III) from arsenic-contaminated mining effluent.
    Matched MeSH terms: Biodegradation, Environmental*
  11. Ansari NF, Amirul AA
    Appl Biochem Biotechnol, 2013 Jun;170(3):690-709.
    PMID: 23604967 DOI: 10.1007/s12010-013-0216-0
    Polyhydroxyalkanoates (PHAs) are hydrophobic biodegradable thermoplastics that have received considerable attention in biomedical applications due to their biocompatibility, mechanical properties, and biodegradability. In this study, the degradation rate was regulated by optimizing the interaction of parameters that influence the enzymatic degradation of P(3HB) film using response surface methodology (RSM). The RSM model was experimentally validated yielding a maximum 21 % weight loss, which represents onefold increment in percentage weight loss in comparison with the conventional method. By using the optimized condition, the enzymatic degradation by an extracellular PHA depolymerase from Acidovorax sp. DP5 was studied at 37 °C and pH 9.0 on different types of PHA films with various monomer compositions. Surface modification of scaffold was employed using enzymatic technique to create highly porous scaffold with a large surface to volume ratio, which makes them attractive as potential tissue scaffold in biomedical field. Scanning electron microscopy revealed that the surface of salt-leached films was more porous compared with the solvent-cast films, and hence, increased the degradation rate of salt-leached films. Apparently, enzymatic degradation behaviors of PHA films were determined by several factors such as monomer composition, crystallinity, molecular weight, porosity, and roughness of the surface. The hydrophilicity and water uptake of degraded salt-leached film of P(3HB-co-70%4HB) were enhanced by incorporating chitosan or alginate. Salt-leached technique followed by partial enzymatic degradation would enhance the cell attachment and suitable for biomedical as a scaffold.
    Matched MeSH terms: Biodegradation, Environmental
  12. Salim YS, Sharon A, Vigneswari S, Mohamad Ibrahim MN, Amirul AA
    Appl Biochem Biotechnol, 2012 May;167(2):314-26.
    PMID: 22544728 DOI: 10.1007/s12010-012-9688-6
    This paper investigates the degradation of polyhydroxyalkanoates and its biofiber composites in both soil and lake environment. Time-dependent changes in the weight loss of films were monitored. The rate of degradation of poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-23 mol% 4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-9 mol% 3HV-co-19 mol% 4HB)] were investigated. The rate of degradation in the lake is higher compared to that in the soil. The highest rate of degradation in lake environment (15.6% w/w week(-1)) was observed with P(3HB-co-3HV-co-4HB) terpolymer. Additionally, the rate of degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-38 mol% 3HV)] was compared to PHBV biofiber composites containing compatibilizers and empty fruit bunch (EFB). Here, composites with 30% EFB displayed the highest rate of degradation both in the lake (25.6% w/w week(-1)) and soil (15.6% w/w week(-1)) environment.
    Matched MeSH terms: Biodegradation, Environmental
  13. Zakaria ZA, Ahmad WA, Zakaria Z, Razali F, Karim NA, Sum MM, et al.
    Appl Biochem Biotechnol, 2012 Jul;167(6):1641-52.
    PMID: 22350941 DOI: 10.1007/s12010-012-9608-9
    The bacterial reduction of Cr(VI) from industrial wastewater was evaluated using a 2.0-m(3) bioreactor. Liquid pineapple waste was used as a nutrient for the biofilm community formed inside the bioreactor. The use of rubber wood sawdust as packing material was able to immobilize more than 10(6) CFU mL(-1) of Acinetobacter haemolyticus cells after 3 days of contact time. Complete reduction of 15-240 mg L(-1) of Cr(VI) was achieved even after 3 months of bioreactor operation. Cr(VI) was not detected in the final effluent fraction indicating complete removal of Cr from solution from the flocculation/coagulation step and the unlikely re-oxidation of Cr(III) into Cr(VI). Impatiens balsamina L. and Gomphrena globosa L. showed better growth in the presence of soil-sludge mixture compared to Coleus scutellarioides (L.) Benth. Significant amounts of Cr accumulated at different sections of the plants indicate its potential application in Cr phytoremediation effort. The bacterial-based system was also determined not to be detrimental to human health based on the low levels of Cr detected in the hair and nail samples of the plant operators. Thus, it can be said that bacterial-based Cr(VI) treatment system is a feasible alternative to the conventional system especially for lower Cr(VI) concentrations, where sludge generated can be used as growth supplement for ornamental plant as well as not detrimental to the health of the workers.
    Matched MeSH terms: Biodegradation, Environmental
  14. Lim SP, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2005 Jul;126(1):23-33.
    PMID: 16014996
    Bacterial polyhydroxyalkanoates (PHAs) are perceived to be a suitable alternative to petrochemical plastics because they have similar material properties, are environmentally degradable, and are produced from renewable resources. In this study, the in situ degradation of medium-chain-length PHA (PHAMCL) films in tropical forest and mangrove soils was assessed. The PHAMCL was produced by Pseudomonas putida PGA1 using saponified palm kernel oil (SPKO) as the carbon source. After 112 d of burial, there was 16.7% reduction in gross weight of the films buried in acidic forest soil (FS), 3.0% in the ones buried in alkaline forest soil by the side of a stream (FSst) and 4.5% in those buried in mangrove soil (MS). There was a slight decrease in molecular weight for the films buried in FS but not for the films buried in FSst and in MS. However, no changes were observed for the melting temperature, glass transition temperature, monomer compositions, structure, and functional group analyses of the films from any of the burial sites during the test period. This means that the integral properties of the films were maintained during that period and degradation was by surface erosion. Scanning electron microscopy of the films from the three sites revealed holes on the film surfaces which could be attributed to attack by microorganisms and bigger organisms such as detritivores. For comparison purposes, films of polyhydroxybutyrate (PHB), a short-chain-length PHA, and polyethylene (PE) were buried together with the PHAMCL films in all three sites. The PHB films disintegrated completely in MS and lost 73.5% of their initial weight in FSst, but only 4.6% in FS suggesting that water movement played a major role in breaking up the brittle PHB films. The PE films did not register any weight loss in any of the test sites.
    Matched MeSH terms: Biodegradation, Environmental
  15. Ho YH, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):337-47.
    PMID: 12396135
    The medium-chain-length polyhydroxyalkanoate (PHA(MCL)) produced by Pseudomonas putida PGA1 using saponified palm kernel oil as the carbon source could degrade readily in water taken from Kayu Ara River in Selangor, Malaysia. A weight loss of 71.3% of the PHA film occurred in 86 d. The pH of the river water medium fell from 7.5 (at d 0) to 4.7 (at d 86), and there was a net release of CO2. In sterilized river water, the PHA film also lost weight and the pH of the water fell, but to lesser extents. The C8 monomer of the PHA was completely removed after 6 d of immersion in the river water, while the proportions of the other monomers (C10, C12, and C14) were reversed from that of the undegraded PHA. By contrast, the monomer composition of the PHA immersed in sterilized river water did not change significantly from that of the undegraded PHA. Scanning electron microscopy showed physical signs of degradation on the PHA film immersed in the river water, but the film immersed in sterilized river water was relatively unblemished. The results thus indicate that the PHA(MCL) was degraded in tropical river water by biologic as well as nonbiologic means. A significant finding is that shorter-chain monomers were selectively removed throughout the entire PHA molecule, and this suggests enzymatic action.
    Matched MeSH terms: Biodegradation, Environmental
  16. Nhi-Cong LT, Lien DT, Gupta BS, Mai CTN, Ha HP, Nguyet NTM, et al.
    Appl Biochem Biotechnol, 2020 May;191(1):313-330.
    PMID: 31853877 DOI: 10.1007/s12010-019-03203-x
    Oil pollution in marine environment caused by oil spillage has been a main threat to the ecosystem including the ocean life and to the human being. In this research, three indigenous purple photosynthetic strains Rhodopseudomonas sp. DD4, DQ41, and FO2 were isolated from oil-contaminated coastal zones in Vietnam. The cells of these strains were immobilized on different carriers including cinder beads (CB), coconut fiber (CF), and polyurethane foam (PUF) for diesel oil removal from artificial seawater. The mixed biofilm formed by using CB, CF, and PUF as immobilization supports degraded 90, 91, and 95% of diesel oil (DO) with the initial concentration of 17.2 g/L, respectively, after 14 days of incubation. The adsorption of DO on different systems was accountable for the removal of 12-16% hydrocarbons for different carriers. To the best of our knowledge, this is the first report on diesel oil degradation by purple photosynthetic bacterial biofilms on different carriers. Moreover, using carriers attaching purple photosynthetic bacteria to remove diesel oil in large scale is considered as an essential method for the improvement of a cost-effective and efficient bioremediation manner. This study can be a promising approach to eliminate DO from oil-contaminated seawater.
    Matched MeSH terms: Biodegradation, Environmental
  17. Watts MP, Spurr LP, Gan HM, Moreau JW
    Appl Microbiol Biotechnol, 2017 Jul;101(14):5889-5901.
    PMID: 28510801 DOI: 10.1007/s00253-017-8313-6
    Thiocyanate (SCN-) forms as a by-product of cyanidation during gold ore processing and can be degraded by a variety of microorganisms utilizing it as an energy, nitrogen, sulphur and/or carbon source. In complex consortia inhabiting bioreactor systems, a range of metabolisms are sustained by SCN- degradation; however, despite the addition or presence of labile carbon sources in most bioreactor designs to date, autotrophic bacteria have been found to dominate key metabolic functions. In this study, we cultured an autotrophic SCN--degrading consortium directly from gold mine tailings. In a batch-mode bioreactor experiment, this consortium degraded 22 mM SCN-, accumulating ammonium (NH4+) and sulphate (SO42-) as the major end products. The consortium consisted of a diverse microbial community comprised of chemolithoautotrophic members, and despite the absence of an added organic carbon substrate, a significant population of heterotrophic bacteria. The role of eukaryotes in bioreactor systems is often poorly understood; however, we found their 18S rRNA genes to be most closely related to sequences from bacterivorous Amoebozoa. Through combined chemical and phylogenetic analyses, we were able to infer roles for key microbial consortium members during SCN- biodegradation. This study provides a basis for understanding the behaviour of a SCN- degrading bioreactor under autotrophic conditions, an anticipated approach to remediating SCN- at contemporary gold mines.
    Matched MeSH terms: Biodegradation, Environmental
  18. Ong SY, Zainab-L I, Pyary S, Sudesh K
    Appl Microbiol Biotechnol, 2018 Mar;102(5):2117-2127.
    PMID: 29404644 DOI: 10.1007/s00253-018-8788-9
    Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some commonly used petrochemical-based plastics. Therefore, PHA is attractive as a biodegradable thermoplastic. It has always been a challenge to commercialize PHA due to the high cost involved in the biosynthesis of PHA via bacterial fermentation and the subsequent purification of the synthesized PHA from bacterial cells. Innovative enterprise by researchers from various disciplines over several decades successfully reduced the cost of PHA production through the efficient use of cheap and renewable feedstock, precisely controlled fermentation process, and customized bacterial strains. Despite the fact that PHA yields have been improved tremendously, the recovery and purification processes of PHA from bacterial cells remain exhaustive and require large amounts of water and high energy input besides some chemicals. In addition, the residual cell biomass ends up as waste that needs to be treated. We have found that some animals can readily feed on the dried bacterial cells that contain PHA granules. The digestive system of the animals is able to assimilate the bacterial cells but not the PHA granules which are excreted in the form of fecal pellets, thus resulting in partial recovery and purification of PHA. In this mini-review, we will discuss this new concept of biological recovery, the selection of the animal model for biological recovery, and the properties and possible applications of the biologically recovered PHA.
    Matched MeSH terms: Biodegradation, Environmental
  19. Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, et al.
    Appl Microbiol Biotechnol, 2013 Feb;97(4):1475-88.
    PMID: 23324802 DOI: 10.1007/s00253-012-4663-2
    The Bacillaceae family members are a good source of bacteria for bioprocessing and biotransformation involving whole cells or enzymes. In contrast to Bacillus and Geobacillus, Anoxybacillus is a relatively new genus that was proposed in the year 2000. Because these bacteria are alkali-tolerant thermophiles, they are suitable for many industrial applications. More than a decade after the first report of Anoxybacillus, knowledge accumulated from fundamental and applied studies suggests that this genus can serve as a good alternative in many applications related to starch and lignocellulosic biomasses, environmental waste treatment, enzyme technology, and possibly bioenergy production. This current review provides the first summary of past and recent discoveries regarding the isolation of Anoxybacillus, its medium requirements, its proteins that have been characterized and cloned, bioremediation applications, metabolic studies, and genomic analysis. Comparisons to some other members of Bacillaceae and possible future applications of Anoxybacillus are also discussed.
    Matched MeSH terms: Biodegradation, Environmental
  20. Tanimu MI, Mohd Ghazi TI, Harun MR, Idris A
    Appl Microbiol Biotechnol, 2015 May;99(10):4509-20.
    PMID: 25761621 DOI: 10.1007/s00253-015-6486-4
    Foaming problem which occurred occasionally during food waste (FW) anaerobic digestion (AD) was investigated with the Malaysian FW by stepwise increase in organic loading (OL) from 0.5 to 7.5 g VS/L. The FW feedstock with carbon to nitrogen (C/N) ratio of 17 was upgraded to C/N ratio of 26 and 30 by mixing with other wastes. The digestion which was carried out at 37 °C in 1-L batch reactors showed that foam formation initiated at OL of 1.5 g VS/L and was further enhanced as OL of feedstock was increased. The digestion foaming reached its maximum at OL of 5.5 g VS/L and did not increase further even when OL was increased to 7.5 g VS/Ld. Increase in the C/N ratio of feedstock significantly enhanced the microbial degradation activity, leading to better removal of foam causing intermediates and reduced foaming in the reactor by up to 60%.
    Matched MeSH terms: Biodegradation, Environmental
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links