Displaying publications 1 - 20 of 74 in total

Abstract:
Sort:
  1. Tan HW, Tay ST
    Mycoses, 2013 Mar;56(2):150-6.
    PMID: 22882276 DOI: 10.1111/j.1439-0507.2012.02225.x
    Aureobasidin A (AbA) is a cyclic depsipeptide antifungal compound that inhibits a wide range of pathogenic fungi. In this study, the in vitro susceptibility of 92 clinical isolates of various Candida species against AbA was assessed by determining the planktonic and biofilm MICs of the isolates. The MIC(50) and MIC(90) of the planktonic Candida yeast were 1 and 1 μg ml(-1), respectively, whereas the biofilm MIC(50) and MIC(90) of the isolates were 8 and ≥64 μg ml(-1) respectively. This study demonstrates AbA inhibition on filamentation and biofilm development of C. albicans. The production of short hyphae and a lack of filamentation might have impaired biofilm development of AbA-treated cells. The AbA resistance of mature Candidia biofilms (24 h adherent population) was demonstrated in this study.
    Matched MeSH terms: Biofilms/drug effects*
  2. Abdul Rahim ZH, Shaikh S, Hasnor Wan Ismail WN, Wan Harun WH, Razak FA
    J Coll Physicians Surg Pak, 2014 Nov;24(11):796-801.
    PMID: 25404435 DOI: 11.2014/JCPSP.796801
    To determine the effect of a mixture of plant extracts on the adherence and retention of bacteria in dental biofilm.
    Matched MeSH terms: Biofilms/drug effects*
  3. Astuti SD, Puspita PS, Putra AP, Zaidan AH, Fahmi MZ, Syahrom A, et al.
    Lasers Med Sci, 2019 Jul;34(5):929-937.
    PMID: 30413898 DOI: 10.1007/s10103-018-2677-4
    Candida albicans is a normal flora caused fungal infections and has the ability to form biofilms. The aim of this study was to improve the antifungal effect of silver nanoparticles (AgNPs) and the light source for reducing the biofilm survival of C. albicans. AgNPs were prepared by silver nitrate (AgNO3) and trisodium citrate (Na3C6H5O7). To determine the antifungal effect of treatments on C. albicans biofilm, samples were distributed into four groups; L + P+ was treatment with laser irradiation and AgNPs; L + P- was treatment with laser irradiation only; L - P+ was treatment with AgNPs only (control positive); L - P- was no treatment with laser irradiation or AgNPs (control negative). The growth of fungi had been monitored by measuring the optical density at 405 nm with ELISA reader. The particle size of AgNPs was measured by using (particle size analyzer) and the zeta potential of AgNPs was measured by using Malvern zetasizer. The PSA test showed that the particle size of AgNPs was distributed between 7.531-5559.644 nm. The zeta potentials were found lower than - 30 mV with pH of 7, 9 or 11. The reduction percentage was analyzed by ANOVA test. The highest reduction difference was given at a lower level irradiation because irradiation with a density energy of 6.13 ± 0.002 J/cm2 resulted in the biofilm reduction of 7.07 ± 0.23% for the sample without AgNPs compared to the sample with AgNPs that increased the biofilm reduction of 64.48 ± 0.07%. The irradiation with a 450-nm light source had a significant fungicidal effect on C. albicans biofilm. The combination of light source and AgNPs provides an increase of biofilm reduction compared to the light source itself.
    Matched MeSH terms: Biofilms/drug effects*
  4. Valizadeh N, Valian F, Sadeghifard N, Karami S, Pakzad I, Kazemian H, et al.
    Drug Res (Stuttg), 2017 Jul;67(7):385-387.
    PMID: 28320039 DOI: 10.1055/s-0043-102060
    Toxin antitoxin system is a regulatory system that antitoxin inhibits the toxin. We aimed to determine the role of TA loci in biofilm formation in K. pneumoniae clinical and environmental isolates; also inhibition of biofilm formation by Peganum harmala. So, 40 K. pneumoniae clinical and environmental isolates were subjected for PCR to determine the frequency of mazEF, relEB, and mqsRA TA loci. Biofilm formation assay subjected for all isolates. Then, P. harmala was tested against positive biofilm formation strains. Our results demonstrated that relBE TA loci were dominant TA loci; whereas mqsRA TA loci were negative in all isolates. The most environmental isolates showed weak and no biofilm formation while strong and moderate biofilm formation observed in clinical isolates. Biofilm formations by K. pneumoniae in 9 ug/ml concentration were inhibited by P. harmala. In vivo study suggested to be performed to introduce Peganum harmala as anti-biofilm formation in K. pneumoniae.
    Matched MeSH terms: Biofilms/drug effects*
  5. AlMatar M, Makky EA, Var I, Koksal F
    Curr Drug Deliv, 2018;15(4):470-484.
    PMID: 29219055 DOI: 10.2174/1567201815666171207163504
    BACKGROUND: Until recently, one of the main reasons for mortality has been infectious diseases, and bacteria that are drug-resistant have emerged as a result of the wide application, as well as the misuse of antibacterial medications. Having multidrug-resistance, bacteria present a great problem for the efficient management of bacterial infections and this challenge has resulted in the creation of other means of dealing with bacterial diseases. Of late, metallic nanoparticles (NPs), employed as antibacterial agents, have the potential for use against resistance to bacterial drugs.

    OBJECTIVE: The mechanisms of bacterial resistance are described in this review and this is followed by an outline of the features and uses of metallic NPs as antibiotic agents to address bacteria that are antibiotic- sensitive and resistant. Additionally, a general impression of metallic NPs as antibiofilm bactericidal agents is presented.

    CONCLUSION: Biofilms and bacterial strains that are resistant to antibiotics present a grave public health challenge and this has enhanced the need to develop new bactericidal agents. Therefore, nanomaterials are considered as a potential platform for managing bacterial infections.

    Matched MeSH terms: Biofilms/drug effects*
  6. Abbasi MA, Zeb A, Rehman A, Siddiqui SZ, Shah SAA, Shahid M, et al.
    Pak J Pharm Sci, 2020 Jan;33(1):41-47.
    PMID: 32122829
    The current research was commenced by reaction of 1,4-benzodioxane-6-amine (1) with 4-nitrobenzenesulfonyl chloride (2) in the presence of aqueous base under dynamic pH control at 9 to yield N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-nitrobenzenesulfonamide (3) which was further reacted with a series of alkyl/aralkyl halides (4a-i) in polar aprotic solvent using catalytic amount of lithium hydride which acts as base to afford some new N-alkyl/aralkyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-nitrobenzenesulfonamides (5a-i). The projected structures of all the synthesized derivatives were characterized by contemporary techniques i.e., IR, 1H-NMR and EIMS. The biofilm Inhibitory action of all synthesized molecules was carried out against Escherichia coli and Bacillus subtilis. It was inferred from their results that 5f and 5e exhibited suitable inhibitory action against the biofilms of these bacterial strains. Moreover, their cytotoxicity was also checked and it was concluded that these synthesized molecules displayed docile cytotoxicity.
    Matched MeSH terms: Biofilms/drug effects*
  7. Abbasi MA, Fatima Z, Rehman AU, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2019 Sep;32(5):1957-1964.
    PMID: 31813858
    The present study comprises the synthesis of a new series of benzenesulfonamides derived from N-sulfonation of 2-(4-methoxyphenyl)-1-ethanamine (1). The synthesis was initiated by the reaction of 2-(4-methoxyphenyl)-1-ethanamine (1) with benzenesulfonyl chloride (2), to yield N-(4-methoxyphenethyl)benzenesulfonamide (3). This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides (4a-j) in N,N-dimethylformamide (DMF) and in the presence of a weak base lithium hydride (LiH) to obtain various N-(alkyl/aralkyl)-N-(4-methoxyphenethyl) benzenesulfonamides (5a-j). The characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. Elemental analysis also supported this data. The biofilm inhibitory action of all the synthesized compounds was carried out on Escherichia coli and some of the compounds were identified to be very suitable inhibitors of this bacterial strain. Furthermore, the molecules were also tested for their cytotoxicity behavior to assess their utility as less cytotoxic therapeutic agents.
    Matched MeSH terms: Biofilms/drug effects
  8. Loo CY, Lee WH, Lauretani G, Scalia S, Cipolla D, Traini D, et al.
    Pharm Res, 2018 Feb 07;35(3):50.
    PMID: 29417313 DOI: 10.1007/s11095-018-2350-4
    PURPOSE: The failure of chronic therapy with antibiotics to clear persistent respiratory infection is the key morbidity and mortality factor for patients with chronic lung diseases, primarily due to the presence of biofilm in the lungs. It is hypothesised that carbon sources, such as mannitol, could stimulate the metabolic activity of persister cells within biofilms and restore their susceptibility to antibiotics. The aims of the current study are to: (1) establish a representative in vitro model of Pseudomonas aeruginosa biofilm lung infection, and (2) investigate the effects of nebulised mannitol on antibiotic efficacy, focusing on ciprofloxacin, in the eradication of biofilm.

    METHOD: Air interface biofilm was cultured onto Snapwell inserts incorporated into a modified pharmacopeia deposition apparatus, the Anderson Cascade Impactor (ACI). Three different formulations including mannitol only, ciprofloxacin only and combined ciprofloxacin and mannitol were nebulised onto the P. aeruginosa biofilm using the modified ACI. Antibacterial effectiveness was evaluated using colony-forming units counts, biofilm penetration and scanning electron microscopy.

    RESULTS: Nebulised mannitol promotes the dispersion of bacteria from the biofilm and demonstrated a synergistic enhancement of the antibacterial efficacy of ciprofloxacin compared to delivery of antibiotic alone.

    CONCLUSIONS: The combination of ciprofloxacin and mannitol may provide an important new strategy to improve antibiotic therapy for the treatment of chronic lung infections. Furthermore, the development of a representative lung model of bacterial biofilm could potentially be used as a platform for future new antimicrobial pre-clinical screening.

    Matched MeSH terms: Biofilms/drug effects*
  9. Chai WL, Hamimah H, Cheng SC, Sallam AA, Abdullah M
    J Oral Sci, 2007 Jun;49(2):161-6.
    PMID: 17634730
    The purpose of this study was to investigate the antimicrobial efficacy of six groups of antibiotics and calcium hydroxide against Enterococcus faecalis biofilm in a membrane filter model. Two-day-old E. faecalis (ATCC 29212) biofilm was exposed to ampicillin, co-trimoxazole, erythr omycin, oxytetracycline, vancomycin, vancomycin followed by gentamicin, Ca(OH)(2), and phosphate-buffered saline (control). After 1 h of exposure, the antimicrobial activity was neutralized by washing each disc five times in PBS, and then the colony-forming units of the remaining viable bacteria on each disc were counted. The results revealed that only erythromycin, oxytetracycline and Ca(OH)2 showed 100% biofilm kill. An ANOVA with a Bonferroni post hoc test (P < 0.05) detected significant differences among the test agents, except in the ampicillin group versus the co-trimoxazole group. It is concluded that erythromycin, oxytetracycline and Ca(OH)2 are 100% effective in eliminating E. faecalis biofilm, whereas ampicillin, co-trimoxazole, vancomycin, and vancomycin followed by gentamicin are ineffective.
    Matched MeSH terms: Biofilms/drug effects*
  10. Yahya MFZR, Alias Z, Karsani SA
    Protein J, 2017 08;36(4):286-298.
    PMID: 28470375 DOI: 10.1007/s10930-017-9719-9
    Salmonella typhimurium is an important biofilm-forming bacteria. It is known to be resistant to a wide range of antimicrobials. The present study was carried out to evaluate the effects of dimethyl sulfoxide (DMSO) against S. typhimurium biofilm and investigate whole-cell protein expression by biofilm cells following treatment with DMSO. Antibiofilm activities were assessed using pellicle assay, crystal violet assay, colony-forming unit counting and extracellular polymeric substance (EPS) matrix assay whilst differential protein expression was investigated using a combination of one dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, tandem mass spectrometry and bioinformatics. Treatment with 32% DMSO inhibited pellicle formation, biofilm viability, biofilm biomass and several important components of EPS matrix. Subtractive protein profiling identified two unique protein bands (25.4 and 51.2 kDa) which were present only in control biofilm and not in 32% DMSO-treated biofilm. In turn, 29 and 46 proteins were successfully identified from the protein bands of 25.4 and 51.2 kDa respectively. Protein interaction network analysis identified several biological pathways to be affected, including glycolysis, PhoP-PhoQ phosphorelay signalling and flagellar biosynthesis. The present study suggests that DMSO may inhibit multiple biological pathways to control biofilm formation.
    Matched MeSH terms: Biofilms/drug effects*
  11. Pusparajah P, Letchumanan V, Law JW, Ab Mutalib NS, Ong YS, Goh BH, et al.
    Int J Mol Sci, 2021 Aug 28;22(17).
    PMID: 34502269 DOI: 10.3390/ijms22179360
    Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.
    Matched MeSH terms: Biofilms/drug effects*
  12. Mangzira Kemung H, Tan LT, Chan KG, Ser HL, Law JW, Lee LH, et al.
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756432 DOI: 10.3390/molecules25153545
    There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.
    Matched MeSH terms: Biofilms/drug effects*
  13. Ikram HM, Rasool N, Ahmad G, Chotana GA, Musharraf SG, Zubair M, et al.
    Molecules, 2015 Mar 23;20(3):5202-14.
    PMID: 25806546 DOI: 10.3390/molecules20035202
    The present study reports the synthesis of various new derivatives based on 5-aryl-2-bromo-3-hexylthiophene with moderate-to-good yields via a palladium-catalyzed Suzuki cross-coupling reaction. This coupling method involved the reaction of 2,5-dibromo-3-hexylthiophene with several arylboronic acids in order to synthesize corresponding thiophene derivatives under controlled and optimal reaction conditions. The different substituents (CH3, OCH3, Cl, F etc.) present on arylboronic acids are found to have significant electronic effects on the overall properties of new products. The synthesized thiophene molecules were studied for their haemolytic, biofilm inhibition and anti-thrombolytic activities, and almost all products showed potentially good properties. The compound 2-bromo-5-(3-chloro-4-fluorophenyl)-3-hexylthiophenein particular exhibited the highest values for haemolytic and bio-film inhibition activities among all newly synthesized derivatives. In addition, the compound 2-bromo-3-hexyl-5-(4-iodophenyl)thiophene also showed high anti-thrombolytic activity, suggesting the potential medicinal applications of these newly synthesized compounds.
    Matched MeSH terms: Biofilms/drug effects*
  14. Al-Alimi A, Taiyeb-Ali T, Jaafar N, Noor Al-hebshi N
    Biomed Res Int, 2015;2015:291305.
    PMID: 26351631 DOI: 10.1155/2015/291305
    AIM: Qat chewing has been reported to induce subgingival microbial shifts suggestive of prebiotic-like properties. The objective here was to assess the effect of qat chewing on a panel of classical and new putative periopathogens in health and periodontitis.
    MATERIALS AND METHODS: 40 qat chewers and 40 nonchewers, equally stratified by periodontal health status, were recruited. Taqman, real-time PCR was used to quantify total bacteria, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Parvimonas micra, Filifactor alocis, Synergistetes, and TM7s in pooled subgingival biofilm samples. Differences in microbial parameters between the study groups were analysed using ordinal regression.
    RESULTS: In health, the qat chewers harboured significantly lower relative counts of P. gingivalis, T. forsythia, Synergistetes, and TM7s after adjustment for multiple comparisons (P ≤ 0.007). At nominal significance level, they also carried lower counts of TM7s and P. micra (P ≤ 0.05). In periodontitis, the chewers had lower counts of all taxa; however, only T. denticola withstood correction for multiple comparisons (P ≤ 0.0063).
    CONCLUSIONS: Qat chewing is associated with lower proportions of periopathogens, particularly in subjects with healthy periodontium, which supports previous reports of its prebiotic-like properties. This potentially beneficial biological effect can be exploited by attempting to isolate the active fraction.
    Matched MeSH terms: Biofilms/drug effects
  15. Yip CH, Mahalingam S, Wan KL, Nathan S
    PLoS One, 2021;16(6):e0253445.
    PMID: 34161391 DOI: 10.1371/journal.pone.0253445
    Prodigiosin, a red linear tripyrrole pigment, has long been recognised for its antimicrobial property. However, the physiological contribution of prodigiosin to the survival of its producing hosts still remains undefined. Hence, the aim of this study was to investigate the biological role of prodigiosin from Serratia marcescens, particularly in microbial competition through its antimicrobial activity, towards the growth and secreted virulence factors of four clinical pathogenic bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa) as well as Staphylococcus aureus and Escherichia coli. Prodigiosin was first extracted from S. marcescens and its purity confirmed by absorption spectrum, high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). The extracted prodigiosin was antagonistic towards all the tested bacteria. A disc-diffusion assay showed that prodigiosin is more selective towards Gram-positive bacteria and inhibited the growth of MRSA, S. aureus and E. faecalis and Gram-negative E. coli. A minimum inhibitory concentration of 10 μg/μL of prodigiosin was required to inhibit the growth of S. aureus, E. coli and E. faecalis whereas > 10 μg/μL was required to inhibit MRSA growth. We further assessed the effect of prodigiosin towards bacterial virulence factors such as haemolysin and production of protease as well as on biofilm formation. Prodigiosin did not inhibit haemolysis activity of clinically associated bacteria but was able to reduce protease activity for MRSA, E. coli and E. faecalis as well as decrease E. faecalis, Salmonella Typhimurium and E. coli biofilm formation. Results of this study show that in addition to its role in inhibiting bacterial growth, prodigiosin also inhibits the bacterial virulence factor protease production and biofilm formation, two strategies employed by bacteria in response to microbial competition. As clinical pathogens were more resistant to prodigiosin, we propose that prodigiosin is physiologically important for S. marcescens to compete against other bacteria in its natural soil and surface water environments.
    Matched MeSH terms: Biofilms/drug effects*
  16. Santiago C, Lim KH, Loh HS, Ting KN
    PMID: 25880167 DOI: 10.1186/s12906-015-0615-6
    Formation of biofilm is known to enhance the virulence of methicillin-resistance Staphylococcus aureus (MRSA), which is associated with persistent infections in hospital settings. The biofilm layer essentially forms a protective barrier encapsulating the bacterial colony and thus reduces the effectiveness of chemotherapeutics. We have isolated 9EA-FC-B bioactive fraction from Acalypha wilkesiana Müll. Arg. that reverses ampicillin resistant in MRSA through inhibition of the antibiotic resistant protein, penicillin-binding protein 2a (PBP2a). In this study, we aimed to investigate the effects of 9EA-FC-B on MRSA biofilm forming capacity.
    Matched MeSH terms: Biofilms/drug effects*
  17. Wu XH, Liew YK, Mai CW, Then YY
    Int J Mol Sci, 2021 Mar 24;22(7).
    PMID: 33805207 DOI: 10.3390/ijms22073341
    Medical devices are indispensable in the healthcare setting, ranging from diagnostic tools to therapeutic instruments, and even supporting equipment. However, these medical devices may be associated with life-threatening complications when exposed to blood. To date, medical device-related infections have been a major drawback causing high mortality. Device-induced hemolysis, albeit often neglected, results in negative impacts, including thrombotic events. Various strategies have been approached to overcome these issues, but the outcomes are yet to be considered as successful. Recently, superhydrophobic materials or coatings have been brought to attention in various fields. Superhydrophobic surfaces are proposed to be ideal blood-compatible biomaterials attributed to their beneficial characteristics. Reports have substantiated the blood repellence of a superhydrophobic surface, which helps to prevent damage on blood cells upon cell-surface interaction, thereby alleviating subsequent complications. The anti-biofouling effect of superhydrophobic surfaces is also desired in medical devices as it resists the adhesion of organic substances, such as blood cells and microorganisms. In this review, we will focus on the discussion about the potential contribution of superhydrophobic surfaces on enhancing the hemocompatibility of blood-contacting medical devices.
    Matched MeSH terms: Biofilms/drug effects
  18. Wang Y, Lee SM, Dykes GA
    Biofouling, 2013;29(3):307-18.
    PMID: 23528127 DOI: 10.1080/08927014.2013.774377
    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
    Matched MeSH terms: Biofilms/drug effects*
  19. Shafiei Z, Rahim ZHA, Philip K, Thurairajah N, Yaacob H
    Arch Oral Biol, 2020 Jan;109:104554.
    PMID: 31563709 DOI: 10.1016/j.archoralbio.2019.104554
    OBJECTIVE: Psidium sp., Mangifera sp. and Mentha sp. and its mixture (PEM) are known to have antimicrobial and anti-adherence effects.

    DESIGN: Here, we have investigated these individual plant extracts and its synergistic mixture (PEM) for its anti-cariogenic effect to reduce populations of single and mixed-species of Streptococcus sanguinis and Streptococcus mutans in a planktonic or/and biofilm and their others reduced virulence. Bacterial populations in the biofilm after 24 h, hydrophobic cell surface activity to n-hexadecane and pH changes at 5 min' intervals until 90 min of incubation were recorded. Total phenolic content and bioactive compounds in the crude aqueous plant extracts were analysed. Regulatory gene expressions of S. mutans adhesins genes (gtfB, gtfC, gbpB and spaP) upon treatment with PEM were investigated in planktonic and biofilm conditions.

    RESULTS: All plant extracts strongly reduced S. mutans in the biofilm compared to S. sanguinis in single and mixed-species. PEM reduced S. mutans by 84% with S. sanguinis 87% in the mixed population. Psidium sp. and PEM highly reduced cell-surface hydrophobicity of the two bacteria thus reducing adherence and biofilm formation. PEM and Mangifera sp. lowered initial pH change in the mixed populations of S. sanguinis and S. mutans. PEM downregulated the S. mutans gtfB gene expression in the single species planktonic and mixed-species biofilms.

    CONCLUSIONS: The effectiveness of PEM in reducing S. mutans within the biofilm, cell-surface hydrophobicity, acid production and adhesin gene (gtfB) expression in mixed-species with S. sanguinis indicates its potential as an antibacterial agent against dental caries. This is attributed to the phenolic content in the PEM.

    Matched MeSH terms: Biofilms/drug effects*
  20. Chung PY
    Curr Drug Targets, 2017;18(4):414-420.
    PMID: 27758704 DOI: 10.2174/1389450117666161019102025
    Pseudomonas aeruginosa is the most common Gram-negative bacterium associated with nosocomial and life-threatening chronic infections in cystic fibrosis patients. This pathogen is wellknown for its ability to attach to surfaces of indwelling medical devices to form biofilms, which consist of a regular array of extracellular polymers. Tenaciously bound to the surface of devices and inherently resilient to antibiotic treatment, P. aeruginosa poses a serious threat in clinical medicine and contributes to the persistence of chronic infections. Studies on microbial biofilms in the past decade involved mainly the understanding of environment signals, genetic elements and molecular mechanisms in biofilm formation, tolerance and dispersal. The knowledge obtained from the studies of these mechanisms is crucial in the establishment of strategies to eradicate or to prevent biofilm formation. Currently, biofilm infections are usually treated with combinations of antibiotics and surgical removal, in addition to frequent replacement of the infected device. More recently, specific natural sources have been identified as antibiofilm agents against this pathogen. This review will highlight the recent progress made by plant-derived compounds against P. aeruginosa biofilm infections in both in vitro or in vivo models.
    Matched MeSH terms: Biofilms/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links