Displaying publications 1 - 20 of 1429 in total

Abstract:
Sort:
  1. Tan JHS, Yazid F, Kasim NA, Ariffin SHZ, Wahab RMA
    BMC Oral Health, 2024 Mar 02;24(1):298.
    PMID: 38431618 DOI: 10.1186/s12903-024-04056-5
    OBJECTIVES: To determine the efficacy of a newly developed kit in dentine sialophosphoprotein (DSPP) detection and compare it with enzyme-linked immunosorbent assay (ELISA). User acceptance was also determined.

    MATERIALS AND METHODS: This cross-sectional study consisted of 45 subjects who were divided into 3 groups based on the severity of root resorption using radiographs: normal (RO), mild (RM), and severe (RS). DSPP in GCF samples was analyzed using both methods. Questionnaires were distributed to 30 orthodontists to evaluate future user acceptance.

    RESULTS: The sensitivity and specificity of the kit were 0.98 and 0.8 respectively. The DSPP concentrations measured using ELISA were the highest in the RS group (6.33 ± 0.85 ng/mL) followed by RM group (3.77 ± 0.36 ng/mL) and the RO group had the lowest concentration (2.23 ± 0.55 ng/mL). The new kit portrayed similar results as the ELISA, the optical density (OD) values were the highest in the RS group (0.62 ± 0.10) followed by RM group (0.33 ± 0.03) and the RO group (0.19 ± 0.06). The differences among all the groups were statistically significant (p 

    Matched MeSH terms: Biomarkers/analysis
  2. Vasikaran S, Thambiah SC, Tan RZ, Loh TP, APFCB Harmonization of Reference Interval Working Group
    Ann Lab Med, 2024 Mar 01;44(2):126-134.
    PMID: 37869778 DOI: 10.3343/alm.2023.0214
    Bone-turnover marker (BTM) measurements in the blood or urine reflect the bone-remodeling rate and may be useful for studying and clinically managing metabolic bone diseases. Substantial evidence supporting the diagnostic use of BTMs has accumulated in recent years, together with the publication of several guidelines. Most clinical trials and observational and reference-interval studies have been performed in the Northern Hemisphere and have mainly involved Caucasian populations. This review focuses on the available data for populations from the Asia-Pacific region and offers guidance for using BTMs as diagnostic biomarkers in these populations. The procollagen I N-terminal propeptide and β-isomerized C-terminal telopeptide of type-I collagen (measured in plasma) are reference BTMs used for investigating osteoporosis in clinical settings. Premenopausal reference intervals (established for use with Asia-Pacific populations) and reference change values and treatment targets (used to monitor osteoporosis treatment) help guide the management of osteoporosis. Measuring BTMs that are not affected by renal failure, such as the bone-specific isoenzyme alkaline phosphatase and tartrate-resistant acid phosphatase 5b, may be advantageous for patients with advanced chronic kidney disease. Further studies of the use of BTMs in individuals with metabolic bone disease, coupled with the harmonization of commercial assays to provide equivalent results, will further enhance their clinical applications.
    Matched MeSH terms: Biomarkers
  3. Horie Y, Chihaya Y, Yap CK, Ríos JM, Ramaswamy BR, Uaciquete D
    PMID: 38218565 DOI: 10.1016/j.cbpc.2024.109836
    Phthalate and non-phthalate plasticizers are used in polymer materials, such as plastic and rubber. It has recently been found that diisobutyl adipate (DIBA), which is considered an environmentally safe non-phthalate plasticizer, potentially acts as a thyroid disruptor in fish. Here, we investigated the sexual hormone effects of DIBA based on the expression levels of genes that respond to endocrine disruption and sexual hormone activity in the livers and gonads, and on gonadal sexual differentiation in Japanese medaka. Compared with the control group, the mRNA expression of chgH, vtg1, vtg2, and esr1 was significantly suppressed in the livers of DIBA exposed XX individuals. Furthermore, the mRNA expression of gsdf was significantly upregulated and downregulated in the gonads of XX and XY individuals, respectively. The mRNA expressions of esr1 and esr2b were significantly suppressed by DIBA exposure in the gonads of both XX and XY individuals. These observations suggest that DIBA has potential androgenic activity in Japanese medaka. However, normal testes and ovaries were observed in respective XY and XX medaka after DIBA exposure; therefore, these results suggest that DIBA may have weak androgenic activity.
    Matched MeSH terms: Biomarkers/metabolism
  4. Jahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, et al.
    J Pathol, 2024 Mar;262(3):271-288.
    PMID: 38230434 DOI: 10.1002/path.6238
    Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  5. Lim HJ, Saha T, Ooi CW
    Talanta, 2024 Feb 01;268(Pt 2):125376.
    PMID: 37951180 DOI: 10.1016/j.talanta.2023.125376
    Serum levels of dengue virus (DENV) non-structural 1 (NS1) antigen can serve as a valuable prognostic indicator of severe dengue infections. A quartz crystal microbalance (QCM)-based biosensor with a biomimetic recognition element was designed to quantitatively detect DENV NS1 as an early disease biomarker. To mitigate the reliance on costly viral antigens during the molecular imprinting process, a synthetic peptide mimicking a DENV NS1 epitope was used as a surrogate template for the synthesis of an epitope-imprinted polydopamine (EMIPDA) sensing film on the biosensor surface. The maximal frequency shift for DENV NS1 was obtained with an EMIPDA film synthesised using 5 mg mL-1 of dopamine monomer and 0.5 mg mL-1 of peptide template. The EMIPDA-QCM biosensor achieved low detection and quantitation limits of 0.091 μg mL-1 and 0.436 μg mL-1, respectively, allowing acute-phase detection of dengue and prognosis of the disease progression. The EMIPDA-QCM biosensor exhibited remarkable selectivity with up to 68-fold larger frequency responses towards DENV NS1 compared to a major serum protein. The site-specific imprinting approach not only enhanced the biosensing performance but also enabled a 26-fold cost reduction for biosensor functionalisation, providing a cost-effective strategy for label-free biosensing of the dengue biomarker via the biopolymer film.
    Matched MeSH terms: Biomarkers
  6. Ahmadipour M, Bhattacharya A, Sarafbidabad M, Syuhada Sazali E, Krishna Ghoshal S, Satgunam M, et al.
    Clin Chim Acta, 2024 Feb 01;554:117788.
    PMID: 38246211 DOI: 10.1016/j.cca.2024.117788
    Cancer is a complex pathophysiological condition causing millions of deaths each year. Early diagnosis is essential especially for pancreatic cancer. Existing diagnostic tools rely on circulating biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA). Unfortunately, these markers are nonspecific and may be increased in a variety of disorders. Accordingly, diagnosis of pancreatic cancer generally involves more invasive approaches such as biopsy as well as imaging studies. Recent advances in biosensor technology have allowed the development of precise diagnostic tools having enhanced analytical sensitivity and specificity. Herein we examine these advances in the detection of cancer in general and in pancreatic cancer specifically. Furthermore, we highlight novel technologies in the measurement of CA19-9 and CEA and explore their future application in the early detection of pancreatic cancer.
    Matched MeSH terms: Biomarkers, Tumor
  7. Md Shah MN, Azman RR, Chan WY, Ng KH
    Can Assoc Radiol J, 2024 Feb;75(1):92-97.
    PMID: 37075322 DOI: 10.1177/08465371231171700
    The past two decades have seen a significant increase in the use of CT, with a corresponding rise in the mean population radiation dose. This rise in CT use has caused improved diagnostic certainty in conditions that were not previously routinely evaluated using CT, such as headaches, back pain, and chest pain. Unused data, unrelated to the primary diagnosis, embedded within these scans have the potential to provide organ-specific measurements that can be used to prognosticate or risk-profile patients for a wide variety of conditions. The recent increased availability of computing power, expertise and software for automated segmentation and measurements, assisted by artificial intelligence, provides a conducive environment for the deployment of these analyses into routine use. Data gathering from CT has the potential to add value to examinations and help offset the public perception of harm from radiation exposure. We review the potential for the collection of these data and propose the incorporation of this strategy into routine clinical practice.
    Matched MeSH terms: Biomarkers
  8. Mueller W, Jones K, Fuhrimann S, Ahmad ZNBS, Sams C, Harding AH, et al.
    Environ Res, 2024 Feb 01;242:117651.
    PMID: 37996007 DOI: 10.1016/j.envres.2023.117651
    BACKGROUND: Long-term exposure to pesticides is often assessed using semi-quantitative models. To improve these models, a better understanding of how occupational factors determine exposure (e.g., as estimated by biomonitoring) would be valuable.

    METHODS: Urine samples were collected from pesticide applicators in Malaysia, Uganda, and the UK during mixing/application days (and also during non-application days in Uganda). Samples were collected pre- and post-activity on the same day and analysed for biomarkers of active ingredients (AIs), including synthetic pyrethroids (via the metabolite 3-phenoxybenzoic acid [3-PBA]) and glyphosate, as well as creatinine. We performed multilevel Tobit regression models for each study to assess the relationship between exposure modifying factors (e.g., mixing/application of AI, duration of activity, personal protective equipment [PPE]) and urinary biomarkers of exposure.

    RESULTS: From the Malaysia, Uganda, and UK studies, 81, 84, and 106 study participants provided 162, 384 and 212 urine samples, respectively. Pyrethroid use on the sampling day was most common in Malaysia (n = 38; 47%), and glyphosate use was most prevalent in the UK (n = 93; 88%). Median pre- and post-activity 3-PBA concentrations were similar, with higher median concentrations post-compared to pre-activity for glyphosate samples in the UK (1.7 to 0.5 μg/L) and Uganda (7.6 to 0.8 μg/L) (glyphosate was not used in the Malaysia study). There was evidence from individual studies that higher urinary biomarker concentrations were associated with mixing/application of the AI on the day of urine sampling, longer duration of mixing/application, lower PPE protection, and less education/literacy, but no factor was consistently associated with exposure across biomarkers in the three studies.

    CONCLUSIONS: Our results suggest a need for AI-specific interpretation of exposure modifying factors as the relevance of exposure routes, levels of detection, and farming systems/practices may be very context and AI-specific.

    Matched MeSH terms: Biomarkers/urine
  9. Zhao MM, Awang Z, Jumuddin FAB
    Asian Pac J Cancer Prev, 2024 Feb 01;25(2):603-608.
    PMID: 38415547 DOI: 10.31557/APJCP.2024.25.2.603
    OBJECTIVE: To analyze the high expression of peroxisome membrane protein 4 (PXMP4) in hepatocellular carcinoma (HCC) and its clinical significance.

    METHODS: The expression of PXMP4 mRNA in HCC tissues and corresponding adjacent tissues was detected by Q-PCR, and the expression of PXMP4 protein was detected by Western blot and immunohistochemistry. The correlation of PXMP4 protein expression with clinicopathological features and prognosis of HCC was analyzed.

    RESULTS: The expression levels of PXMP4 mRNA and protein in HCC tissues were significantly higher than those in adjacent tissues (P < 0.05), and its high expression was significantly correlated with tumor differentiation, lymph node metastasis, depth of invasion and TNM stage (P < 0.05). Patients with high expression of PXMP4 had a poor prognosis (P < 0.05).

    CONCLUSION: The high expression of PXMP4 may promote the occurrence and development of HCC, and inhibition of PXMP4 may be one of the potential molecular targets for targeted therapy of HCC.

    Matched MeSH terms: Biomarkers, Tumor/genetics
  10. Lee SH, Brianna
    Pathol Res Pract, 2024 Feb;254:155073.
    PMID: 38218039 DOI: 10.1016/j.prp.2023.155073
    Breast cancer has become the most diagnosed cancer worldwide in 2020 with high morbidity and mortality rates. The alarming increase in breast cancer incidence has sprung many researchers to focus on developing novel screening tests to identify early breast cancer which will allow clinicians to provide timely and effective treatments. With much evidence supporting the notion that the deregulation of miRNAs (a class of non-coding RNA) greatly contributes to cancer initiation and progression, the promising role of miRNAs as cancer biomarkers is gaining traction in the research world. Among the upregulated miRNAs identified in breast carcinogenesis, miR-21 was shown to be significantly expressed in breast cancer tissues and bodily fluids of breast cancer patients. Therein, this review paper aims to provide an overview of breast cancer, the role and significance of miR-21 in breast cancer pathogenesis, and its potential as a breast cancer biomarker. The paper also discusses the current types of tumor biomarkers and their limitations, the presence of miR-21 in extracellular vesicles and plasma, screening methods available for miRNA detection along with some challenges faced in developing diagnostic miR-21 testing for breast cancer to provide readers with a comprehensive outlook based on using miR-21 in clinical settings.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  11. Rahman SFA, Arshad MKM, Gopinath SCB, Fathil MFM, Sarry F, Ibau C, et al.
    Mikrochim Acta, 2024 Jan 31;191(2):118.
    PMID: 38296851 DOI: 10.1007/s00604-024-06189-4
    Highly specific detection of tumor-associated biomarkers remains a challenge in the diagnosis of prostate cancer. In this research, Maackia amurensis (MAA) was used as a recognition element in the functionalization of an electrochemical impedance-spectroscopy biosensor without a label to identify cancer-associated aberrant glycosylation prostate-specific antigen (PSA). The lectin was immobilized on gold-interdigitated microelectrodes. Furthermore, the biosensor's impedance response was used to assess the establishment of a complex binding between MAA and PSA-containing glycans. With a small sample volume, the functionalized interdigitated impedimetric-based (IIB) biosensor exhibited high sensitivity, rapid response, and repeatability. PSA glycoprotein detection was performed by measuring electron transfer resistance values within a concentration range 0.01-100 ng/mL, with a detection limit of 3.574 pg/mL. In this study, the ability of MAA to preferentially recognize α2,3-linked sialic acid in serum PSA was proven, suggesting a potential platform for the development of lectin-based, miniaturized, and cost effective IIB biosensors for future disease detection.
    Matched MeSH terms: Biomarkers, Tumor
  12. Sito H, Tan SC
    Mol Biol Rep, 2024 Jan 13;51(1):102.
    PMID: 38217759 DOI: 10.1007/s11033-023-08915-2
    Platinum-based chemotherapy (PBC) is a widely used treatment for various solid tumors, including non-small cell lung cancer (NSCLC). However, its efficacy is often compromised by the emergence of drug resistance in patients. There is growing evidence that genetic variations may influence the susceptibility of NSCLC patients to develop resistance to PBC. Here, we provide a comprehensive overview of the mechanisms underlying platinum drug resistance and highlight the important role that genetic polymorphisms play in this process. This paper discussed the genetic variants that regulate DNA repair, cellular movement, drug transport, metabolic processing, and immune response, with a focus on their effects on response to PBC. The potential applications of these genetic polymorphisms as predictive indicators in clinical practice are explored, as are the challenges associated with their implementation.
    Matched MeSH terms: Biomarkers
  13. Hussein AM, Sharifai AG, Alia OM, Abualigah L, Almotairi KH, Abujayyab SKM, et al.
    Sci Rep, 2024 Jan 04;14(1):534.
    PMID: 38177156 DOI: 10.1038/s41598-023-47038-3
    The most widely used method for detecting Coronavirus Disease 2019 (COVID-19) is real-time polymerase chain reaction. However, this method has several drawbacks, including high cost, lengthy turnaround time for results, and the potential for false-negative results due to limited sensitivity. To address these issues, additional technologies such as computed tomography (CT) or X-rays have been employed for diagnosing the disease. Chest X-rays are more commonly used than CT scans due to the widespread availability of X-ray machines, lower ionizing radiation, and lower cost of equipment. COVID-19 presents certain radiological biomarkers that can be observed through chest X-rays, making it necessary for radiologists to manually search for these biomarkers. However, this process is time-consuming and prone to errors. Therefore, there is a critical need to develop an automated system for evaluating chest X-rays. Deep learning techniques can be employed to expedite this process. In this study, a deep learning-based method called Custom Convolutional Neural Network (Custom-CNN) is proposed for identifying COVID-19 infection in chest X-rays. The Custom-CNN model consists of eight weighted layers and utilizes strategies like dropout and batch normalization to enhance performance and reduce overfitting. The proposed approach achieved a classification accuracy of 98.19% and aims to accurately classify COVID-19, normal, and pneumonia samples.
    Matched MeSH terms: Biomarkers
  14. Maizatul-Suriza M, Dickinson M, Al-Jaf B, Madihah AZ
    World J Microbiol Biotechnol, 2024 Jan 02;40(2):55.
    PMID: 38165501 DOI: 10.1007/s11274-023-03860-5
    Phytophthora palmivora has caused disease in many crops including oil palm in the South America region. The pathogen has had a significant economic impact on oil palm cultivation in Colombia, and therefore poses a threat to oil palm cultivation in other regions of the World, especially in Southeast Asia, the largest producer of the crop. This study aimed to look at the ability of isolates from Malaysia, Colombia, and other regions to cross-infect Malaysian oil palm, durian, and cocoa and to develop specific biomarkers and assays for identification, detection, and diagnosis of P. palmivora as a key component for the oil palm biosecurity continuum in order to contain the disease especially at the ports of entry. We have developed specific molecular biomarkers to identify and detect Phytophthora palmivora using polymerase chain reaction (PCR) and real-time loop mediated isothermal amplification (rt-LAMP) in various sample types such as soil and plants. The limit of detection (DNA template, pure culture assay) for the PCR assay is 5.94 × 10-2 ng µl-1 and for rt-LAMP is 9.28 × 10-4 ng µl-1. Diagnosis using rt-LAMP can be achieved within 30 min of incubation. In addition, PCR primer pair AV3F/AV3R developed successfully distinguished the Colombian and Malaysian P. palmivora isolates.
    Matched MeSH terms: Biomarkers
  15. Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, et al.
    Pathol Res Pract, 2024 Jan;253:155037.
    PMID: 38160482 DOI: 10.1016/j.prp.2023.155037
    Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
    Matched MeSH terms: Biomarkers/metabolism
  16. Seriramulu VP, Suppiah S, Lee HH, Jang JH, Omar NF, Mohan SN, et al.
    Med J Malaysia, 2024 Jan;79(1):102-110.
    PMID: 38287765
    INTRODUCTION: Magnetic resonance spectroscopy (MRS) has an emerging role as a neuroimaging tool for the detection of biomarkers of Alzheimer's disease (AD). To date, MRS has been established as one of the diagnostic tools for various diseases such as breast cancer and fatty liver, as well as brain tumours. However, its utility in neurodegenerative diseases is still in the experimental stages. The potential role of the modality has not been fully explored, as there is diverse information regarding the aberrations in the brain metabolites caused by normal ageing versus neurodegenerative disorders.

    MATERIALS AND METHODS: A literature search was carried out to gather eligible studies from the following widely sourced electronic databases such as Scopus, PubMed and Google Scholar using the combination of the following keywords: AD, MRS, brain metabolites, deep learning (DL), machine learning (ML) and artificial intelligence (AI); having the aim of taking the readers through the advancements in the usage of MRS analysis and related AI applications for the detection of AD.

    RESULTS: We elaborate on the MRS data acquisition, processing, analysis, and interpretation techniques. Recommendation is made for MRS parameters that can obtain the best quality spectrum for fingerprinting the brain metabolomics composition in AD. Furthermore, we summarise ML and DL techniques that have been utilised to estimate the uncertainty in the machine-predicted metabolite content, as well as streamline the process of displaying results of metabolites derangement that occurs as part of ageing.

    CONCLUSION: MRS has a role as a non-invasive tool for the detection of brain metabolite biomarkers that indicate brain metabolic health, which can be integral in the management of AD.

    Matched MeSH terms: Biomarkers
  17. Suleman AA, Abd Ghani F, Fadhlina NZ, Rafidah H
    Med J Malaysia, 2024 Jan;79(1):95-101.
    PMID: 38287764
    INTRODUCTION: Immunoglobulin A (IgA) nephropathy (IgAN) results from abnormal accumulation of immune complexes containing galactose deficient IgA1 (Gd-IgA1) in the kidneys. About 40% of patients develop end-stage kidney disease within 20 years of renal biopsy. At present, the diagnosis and risk stratification of patients (using the international IgAN risk prediction tool) rely on renal biopsy, which is an invasive procedure. Also, treatment decisions are still dependent on proteinuria, which is not specific for IgA nephropathy. We discussed the role of serum and urine Gd- IgA1 in the diagnosis of IgAN, its association with disease progression and changes with treatment in patients with IgA nephropathy.

    MATERIALS AND METHODS: A systematic search of PubMed and Scopus databases was done to identify the articles that are relevant to the topic including systematic reviews and original articles.

    RESULTS: Several studies showed that both serum and urine Gd-IgA1 differentiate IgA nephropathy patients from healthy people and other glomerulonephropathies. Thus, it is useful as a less invasive diagnostic biomarker, although detection methods varied between studies with different sensitivities. There are various reports of its use as a prognostic parameter. Evidence is emerging for its use as a monitoring parameter for treatment.

    CONCLUSION: Galactose deficient IgA1 is a promising biomarker in the management of IgA nephropathy, although a more robust and standardised means of estimation is required.

    Matched MeSH terms: Biomarkers
  18. Zhang H, Ramamoorthy A, Rengarajan T, Iyappan P, Alahmadi TA, Wainwright M, et al.
    J Biochem Mol Toxicol, 2024 Jan;38(1):e23578.
    PMID: 37927152 DOI: 10.1002/jbt.23578
    Lung cancer is one of the most common cancers in men. Although many diagnostic and treatment regimens have been followed in the treatment for lung cancer, increasing mortality rate due to lung cancer is depressing and hence requires alternative plant based therapeutics with with less side-effects. Myrtenol exhibits anti-inflammatory and antioxidant properties. Hence we intended to study the effect of Myrtenol on B(a)P-induced lung cancer. Our study showed that B(a)P lowered hematological count, decreased phagocyte and avidity indices, nitroblue tetrazolium (NBT) reduction, levels of immunoglubulins, antioxidant levels, whereas Myrtenol treatment restored them back to normal levels. On the other hand, xenobiotic and liver dysfunction marker enzymes and pro-inflammatory cytokines were elevated on B(a)P exposure, which retuned back to normal by Myrtenol. This study thus describes the immunomodulatory and antioxidant effects of Myrtenol on B[a]P-induced immune destruction.
    Matched MeSH terms: Biomarkers, Tumor/metabolism
  19. Mediani A, Baharum SN
    Methods Mol Biol, 2024;2745:77-90.
    PMID: 38060180 DOI: 10.1007/978-1-0716-3577-3_5
    Metabolomics can provide diagnostic, prognostic, and therapeutic biomarker profiles of individual patients because a large number of metabolites can be simultaneously measured in biological samples in an unbiased manner. Minor stimuli can result in substantial alterations, making it a valuable target for analysis. Due to the complexity and sensitivity of the metabolome, studies must be devised to maintain consistency, minimize subject-to-subject variation, and maximize information recovery. This effort has been aided by technological advances in experimental design, rodent models, and instrumentation. Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy of biofluids, such as plasma, urine, and faeces provide the opportunity to identify biomarker change patterns that reflect the physiological or pathological status of an individual patient. Metabolomics has the ultimate potential to be useful in a clinical context, where it could be used to predict treatment response and survival and for early disease diagnosis. During drug treatment, an individual's metabolic status could be monitored and used to predict deleterious effects. Therefore, metabolomics has the potential to improve disease diagnosis, treatment, and follow-up care. In this chapter, we demonstrate how a metabolomics study can be used to diagnose a disease by classifying patients as either healthy or pathological, while accounting for individual variation.
    Matched MeSH terms: Biomarkers/metabolism
  20. Kwa AL, Aninda Sidharta BR, Son DN, Zirpe K, Periyasamy P, Plongla R, et al.
    Expert Rev Anti Infect Ther, 2024;22(1-3):45-58.
    PMID: 38112181 DOI: 10.1080/14787210.2023.2296066
    INTRODUCTION: The South-East Asian (SEA) region and India are highly susceptible to antibiotic resistance, which is caused due to lack of antimicrobial stewardship (AMS) knowledge, uncontrolled use of antibiotics, and poor infection control. Nonadherence to national/local guidelines, developed to combat antimicrobial resistance, is a major concern. A virtual advisory board was conducted to understand the current AMS standards and challenges in its implementation in these regions.

    AREAS COVERED: Procalcitonin (PCT)-guided antibiotic use was discussed in various clinical conditions across initiation, management, and discontinuation stages. Most experts strongly recommended using PCT-driven antibiotic therapy among patients with lower respiratory tract infections, sepsis, and COVID-19. However, additional research is required to understand the optimal use of PCT in patients with organ transplantation and cancer patients with febrile neutropenia. Implementation of the solutions discussed in this review can help improve PCT utilization in guiding AMS in these regions and reducing challenges.

    EXPERT OPINION: Experts strongly support the inclusion of PCT in AMS. They believe that PCT in combination with other clinical data to guide antibiotic therapy may result in more personalized and precise targeted antibiotic treatment. The future of PCT in antibiotic treatment is promising and may result in effective utilization of this biomarker.

    Matched MeSH terms: Biomarkers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links