Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Ahmed H, Paterson I, Aziz SA, Cremona O, Robinson M, Carrozzo M, et al.
    J Oral Pathol Med, 2023 Sep;52(8):710-717.
    PMID: 37339783 DOI: 10.1111/jop.13460
    BACKGROUND: Most oral squamous cell carcinoma patients present with late-stage disease. Early detection of the disease is considered to be the most effective way of improving patient outcomes. Several biomarkers have been identified as indicators of oral cancer development and progression; however, none have been translated into clinical practice. In this study, we have investigated the role of Epsin3, an endocytic adaptor protein, and Notch1, a transmembrane signalling protein, in oral carcinogenesis with a view to explore their potential as biomarkers.

    METHODS: Oral cancer cell lines and a normal oral keratinocyte cell line were used together with tissue samples of normal oral mucosa (n = 21), oral epithelial dysplasia (n = 74) and early stage (Stages I and II) oral squamous cell carcinoma (n = 31). Immunocytochemical staining, immunoblotting and real-time quantitative polymerase chain reaction (PCR) were performed to assess protein as well as gene expression levels.

    RESULTS: The expression levels of Epsin3 and Notch1 mRNA and protein are variable across different oral squamous cell carcinoma derived cell lines. Epsin3 was upregulated in oral epithelial dysplasia and oral squamous cell carcinoma tissues compared with normal epithelium. Overexpression of Epsin3 resulted in a significant reduction of Notch1 expression in oral squamous cell carcinoma. Notch1 was generally downregulated in the dysplasia and oral squamous cell carcinoma samples.

    CONCLUSION: Epsin3 is upregulated in oral epithelial dysplasia and oral squamous cell carcinoma and has the potential to be used as a biomarker for oral epithelial dysplasia. Notch signalling is downregulated in oral squamous cell carcinoma, possibly through an Epsin3-induced de-activation pathway.

    Matched MeSH terms: Biomarkers, Tumor/analysis
  2. Nwanaji-Enwerem JC, Chung FF, Van der Laan L, Novoloaca A, Cuenin C, Johansson H, et al.
    Clin Epigenetics, 2021 12 17;13(1):224.
    PMID: 34920739 DOI: 10.1186/s13148-021-01218-y
    Metformin and weight loss relationships with epigenetic age measures-biological aging biomarkers-remain understudied. We performed a post-hoc analysis of a randomized controlled trial among overweight/obese breast cancer survivors (N = 192) assigned to metformin, placebo, weight loss with metformin, or weight loss with placebo interventions for 6 months. Epigenetic age was correlated with chronological age (r = 0.20-0.86; P 
    Matched MeSH terms: Biomarkers, Tumor/analysis
  3. Abd Rahman SF, Md Arshad MK, Gopinath SCB, Fathil MFM, Sarry F, Ibau C
    Chem Commun (Camb), 2021 Sep 23;57(76):9640-9655.
    PMID: 34473143 DOI: 10.1039/d1cc03080a
    Prostate cancer is currently diagnosed using the conventional gold standard methods using prostate-specific antigen (PSA) as the selective biomarker. However, lack of precision in PSA screening has resulted in needless biopsies and delays the treatment of potentially fatal prostate cancer. Thus, identification of glycans as novel biomarkers for the early detection of prostate cancer has attracted considerable attention due to their reliable diagnostic platform compared with the current PSA systems. Therefore, biosensing technologies that provide point-of-care diagnostics have demonstrated the ability to detect various analytes, including glycosylated micro- and macro-molecules, thereby enabling versatile detection methodologies. This highlight article discusses recent advances in the biosensor-based detection of prostate cancer glycan biomarkers and the innovative strategies for the conjugation of nanomaterials adapted to biosensing platforms. Finally, the article is concluded with prospects and challenges of prostate cancer biosensors and recommendations to overcome the issues associated with prostate cancer diagnosis.
    Matched MeSH terms: Biomarkers, Tumor/analysis*
  4. Govindaraj PK, Kallarakkal TG, Mohd Zain R, Tilakaratne WM, Lew HL
    PLoS One, 2021;16(12):e0261575.
    PMID: 34941961 DOI: 10.1371/journal.pone.0261575
    BACKGROUND: Local relapse of oral squamous cell carcinoma in non-involved mucosal surgical margins indicated possibility of field alteration in the margins, which could be predicted with certain biomarkers. The objectives were to evaluate the expression of Ki-67, Cornulin and ISG15 in non-involved mucosal surgical margins and the association of clinicopathological prognosticators with local relapse in oral squamous cell carcinoma.

    METHODS: Surgical margins from the study (relapse) group (n = 23), control (non-relapse) group (n = 32) and normal oral mucosa (n = 5) were immunohistochemically stained using Ki-67, Cornulin and ISG15 antibodies. Association between expression of markers and clinicopathological prognosticators with local relapse in oral squamous cell carcinoma was analyzed statistically.

    RESULTS: The study group surgical margins demonstrated significantly decreased Cornulin expression (p = 0.032). Low Cornulin expression was significantly associated with local relapse (p = 0.004) and non-tongue primary tumor (p = 0.013). Although not significantly associated with local relapse, expression of Ki-67 was significantly reduced in female patients (p = 0.041). Age above 57.5 years, Chinese & Indian ethnicity, alcohol consumption, epithelial dysplasia in surgical margins, and type III and IV patterns of invasion of tumor were also significantly related to local relapse. Regression analysis showed low expression of Cornulin (p = 0.018), and increased patient's age (p = 0.008) were predictors of local relapse in oral squamous cell carcinoma, with 34-fold risk and 18-fold risk, respectively. Expression of Ki-67 and ISG15 did not show significant association with local relapse in oral squamous cell carcinoma.

    CONCLUSION: Low expression of Cornulin is an independent predictor of relapse in oral squamous cell carcinoma.

    Matched MeSH terms: Biomarkers, Tumor/analysis
  5. Okubo Y, Nukada S, Shibata Y, Osaka K, Yoshioka E, Suzuki M, et al.
    Malays J Pathol, 2020 Dec;42(3):449-453.
    PMID: 33361728
    INTRODUCTION: Solitary fibrous tumour (SFT) is a rare mesenchymal tumour with intermediate malignant potential. Although this tumour arises in several sites, prostatic SFT is an extremely rare neoplasm and may prove confusing owing to the lack of clinical experience because of tumour rarity. The diagnosis may be further difficult because SFTs can manifest positive immunoreactivity for CD34 and progesterone receptor, which are known markers of prostatic stromal tumours. Herein, we describe a case of prostatic SFT that was difficult to differentiate from a prostatic stromal tumour of uncertain malignant potential because of positive immunoreactivity to CD34 and progesterone receptor.

    CASE REPORT: A 40-year-old Japanese man presented with lower abdominal pain. Computed tomography revealed a prostatic mass; furthermore, prostate core needle biopsy revealed proliferating bland spindle cells, without necrosis or prominent mitoses. Tumour cells were positive for CD34 and progesterone receptor on immunohistochemical analysis; thus, a prostatic stromal tumour of uncertain malignant potential was initially suspected. However, as the tumour cells showed positive immunoreactivity for STAT6, the final diagnosis was an SFT of the prostate. The patient underwent tumour resection, and at the 6-month postoperative follow-up, neither local recurrence nor distant metastasis occurred.

    CONCLUSION: For an accurate diagnosis of an SFT of the prostate, STAT6 immunohistochemistry should be conducted for all mesenchymal tumours of the prostate. When STAT6 immunohistochemical analysis is unfeasible, pathologists should be aware that the morphological and immunohistochemical characteristics of SFT variable from case to case and diagnose with combined analysis of several immunohistochemical markers.

    Matched MeSH terms: Biomarkers, Tumor/analysis*
  6. Muhammad Yusuf AN, Raja Ali RA, Muhammad Nawawi KN, Mokhtar NM
    Malays J Pathol, 2020 Dec;42(3):377-384.
    PMID: 33361718
    INTRODUCTION: Recent studies have published the roles of exosomal miRNAs in the pathogenesis of various type of malignancies and can be developed as potential biomarkers for diagnostic, prognostic and therapeutic purposes. The aim of this study was to identify the expression level of selected miRNAs (miR-182, miR-301a, and miR-373) in exosomes of the serum and ascitic fluid in patients with non-alcoholic steatohepatitis (NASH)-related liver cirrhosis with or without hepatocellular carcinoma (HCC).

    MATERIALS AND METHODS: A literature search was performed to identify potential miRNAs involved in the pathogenesis of HCC. Unpaired serum and ascitic fluid were obtained from 52 patients with NASH related liver cirrhosis (n=26 for each group of with and without HCC). Exosomal miRNA was isolated from all samples. Expression levels of miR-182, miR-301a and miR- 373 were determined using quantitative real-time PCR.

    RESULTS: Serum-derived exosomal mir-182, miR-301a and miR-373 were significantly up-regulated with fold change of 1.77, 2.52, and 1.67 (p< 0.05) respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC. We identified the expression levels of ascitic fluid-derived exosomal mir-182, miR-301a, and miR-373 were significantly up-regulated with fold change of 1.6, 1.94 and 2.13 respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC (p <0.05). There was poor correlation expression of all the selected exosomal miRNA between serum- and ascitic fluid-derived in HCC group.

    CONCLUSIONS: This preliminary data showed significant increase in the expression levels of exosomal miR-182, miR-301a and miR- 373 in both serum and ascetic fluid suggesting the possible roles of these miRNAs as circulating biomarkers for NASH-induced liver cirrhosis with hepatocellular carcinoma.

    Matched MeSH terms: Biomarkers, Tumor/analysis
  7. Ibau C, Arshad MKM, Gopinath SCB, Nuzaihan M N M, Fathil MFM, Shamsuddin SA
    Int J Biol Macromol, 2020 Nov 01;162:1924-1936.
    PMID: 32822729 DOI: 10.1016/j.ijbiomac.2020.08.125
    This work explores Electrochemical Impedance Spectroscopy (EIS) detection for a highly-sensitive quantification of prostate-specific antigen (PSA) in Faradaic (f-EIS) and non-Faradaic modes (nf-EIS). Immobilization of monoclonal antibody specific to PSA (anti-PSA) was performed using 1-ethyl-3-dimethylaminopropylcarbodiimide hydrochloride and N-hydroxysuccinimide crosslinking agents in order to conjugate carboxylic (-COOH) terminated group of 16-Mercaptoundecanoic acid with amine (-NH3+) on anti-PSA epitope. This approach offers simple and efficient approach to form a strong, covalently bound thiol-gold (SAu) for a reliable SAM layer formation. Studies on the topographic of pristine Au-IDE surface were performed by Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy techniques, meanwhile a 3-dimensional optical surface profiler, Atomic Force Microscopy and X-ray Photoelectron Spectroscopy techniques were used to validate the successful functionalization steps on the sensor transducer surface. Detection of PSA in f-EIS mode was carried out by measuring the response in charge transfer resistance (Rct) and impedance change (Z), meanwhile in nf-EIS mode, the changes in device capacitance was monitored. In f-EIS mode, the sensor reveals a logarithmic detection of PSA in a range of 100 ng/ml down to 0.01 ng/ml in Phosphate Buffered Saline with a recorded sensitivity of 2.412 kΩ/log10 ([PSA] ng/ml) and the limit of detection (LOD) down to 0.01 ng/ml. The nf-EIS detection mode yields a logarithmic detection range of 5000 ng/ml down to 0.5 ng/ml, with a sensitivity of 8.570 nF/log10 ([PSA] ng/ml) and an LOD of 0.5 ng/ml. The developed bio-assay yields great device stability, specificity to PSA and repeatability of detection that would pave its way for the future development into portable lab-on-chip bio-sensing system.
    Matched MeSH terms: Biomarkers, Tumor/analysis
  8. Rhodes A, Teoh KH, See MH, Ganesan K, Looi LM
    Pathology, 2020 Apr;52(3):385-387.
    PMID: 32107079 DOI: 10.1016/j.pathol.2019.12.006
    Matched MeSH terms: Biomarkers, Tumor/analysis*
  9. Thomas G, Tr S, George S P, Somanathan T, Sarojam S, Krishnankutti N, et al.
    Asian Pac J Cancer Prev, 2020 Feb 01;21(2):309-316.
    PMID: 32102504 DOI: 10.31557/APJCP.2020.21.2.309
    BACKGROUND: Although leukoplakia shows a higher risk for malignant transformation to oral cancer, currently there are no clinically relevant biomarker which can predict the potentially high risk leukoplakia. This study aimed to investigate the genetic alterations such as DNA ploidy, telomerase expression and DNA repair capacity as predictive markers of malignant transformation risk of leukoplakia.

    METHODS: The study was initiated in September 2005 and patients were followed up to March 2014. Two hundred patients with oral leukoplakia, 100 patients with oral cancer and 100 healthy, age and sex matched adults with normal oral mucosa as controls were recruited. The DNA ploidy content was measured by high resolution flow cytometry, level of telomerase expression was identified by TRAP assay and intrinsic DNA repair capacity was measured by mutagen induced chromosome sensitivity assay of cultured peripheral blood lymphocytes. The Chi-square test or Fisher's Exact test was used for comparison of categorical variables between biomarkers. A p value less than or equal to 0.05 was considered as statistically significant. Analysis was performed with SPSS software version 16. Logistic regression was used to find the association between the dependent and three independent variables.

    RESULTS: There was significant difference in the distribution of ploidy status, telomerase activity and DNA repair capacity among control, leukoplakia and oral cancer group (p<0.001). When the molecular markers were compared with histological grading of leukoplakia, both DNA ploidy analysis and telomerase activity showed statistical significance (p<0.001). Both aneuploidy and telomerase positivity was found to coincide with high-risk sites of leukoplakia and were statistically significant (p.

    Matched MeSH terms: Biomarkers, Tumor/analysis*
  10. Seow P, Narayanan V, Romelean RJ, Wong JHD, Win MT, Chandran H, et al.
    Acad Radiol, 2020 02;27(2):180-187.
    PMID: 31155487 DOI: 10.1016/j.acra.2019.04.015
    RATIONALE AND PURPOSE: Our study evaluated the capability of magnetic resonance imaging in- and opposed-phase (IOP) derived lipid fraction as a novel prognostic biomarker of survival outcome in glioma.

    MATERIALS AND METHODS: We analyzed 46 histologically proven glioma (WHO grades II-IV) patients using standard 3T magnetic resonance imaging brain tumor protocol and IOP sequence. Lipid fraction was derived from the IOP sequence signal-loss ratio. The lipid fraction of solid nonenhancing region of glioma was analyzed, using a three-group analysis approach based on volume under surface of receiver-operating characteristics to stratify the prognostic factors into three groups of low, medium, and high lipid fraction. The survival outcome was evaluated, using Kaplan-Meier survival analysis and Cox regression model.

    RESULTS: Significant differences were seen between the three groups (low, medium, and high lipid fraction groups) stratified by the optimal cut-off point for overall survival (OS) (p ≤ 0.01) and time to progression (p ≤ 0.01) for solid nonenhancing region. The group with high lipid fraction had five times higher risk of poor survival and earlier time to progression compared to the low lipid fraction group. The OS plot stratified by lipid fraction also had a strong correlation with OS plot stratified by WHO grade (R = 0.61, p < 0.01), implying association to underlying histopathological changes.

    CONCLUSION: The lipid fraction of solid nonenhancing region showed potential for prognostication of glioma. This method will be a useful adjunct in imaging protocol for treatment stratification and as a prognostic tool in glioma patients.

    Matched MeSH terms: Biomarkers, Tumor/analysis*
  11. Ang PP, Tan GC, Karim N, Wong YP
    Acta Cytol., 2020;64(3):248-255.
    PMID: 31352449 DOI: 10.1159/000501406
    BACKGROUND: Differentiating reactive mesothelial cells from metastatic carcinoma in effusion cytology is a challenging task. The application of at least 4 monoclonal antibodies including 2 epithelial markers (Ber-EP4, MOC-31, CEA, or B72.3) and 2 mesothelial markers (calretinin, WT-1, CK5/6, or HBME-1) are often useful in this distinction; however, it is not readily available in many resource-limited developing countries. Aberrant immunoexpression of enhancer of zeste homolog 2 (EZH2), a transcriptional repressor involved in cancer progression, is observed widely in various malignancy. In this study, we evaluate the diagnostic value of EZH2 as a single reliable immunomarker for malignancy in effusion samples.

    METHODS: A total of 108 pleural, peritoneal, and pericardial effusions/washings diagnosed as unequivocally reactive (n = 41) and metastatic carcinoma (n = 67) by cytomorphology over 18 months were reviewed. Among the metastatic carcinoma cases, 54 were adenocarcinoma and others were squamous cell carcinoma (n = 1), carcinosarcoma (n = 1), and carcinoma of undefined histological subtypes (n = 11). Cell block sections were immunostained by EZH2 (Cell Marque, USA). The percentages of EZH2-immunolabeled cells over the total cells of interest were calculated. Receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cut-off score to define EZH2 immunopositivity.

    RESULTS: A threshold of 8% EZH2-immunolabeled cells allows distinction between malignant and reactive mesothelial cells, with 95.5% sensitivity, 100% specificity, 100% positive predictive value, and 93.2% negative predictive value (p < 0.0001). The area under the curve was 0.988.

    CONCLUSION: EZH2 is a promising diagnostic biomarker for malignancy in effusion cytology which is inexpensive yet trustworthy and could potentially be used routinely in countries under considerable economic constraints.

    Matched MeSH terms: Biomarkers, Tumor/analysis*
  12. Onwe EE, Ghani FA, Abdullah M, Osman M, Zin RRM, Vivian AN, et al.
    Adv Exp Med Biol, 2020;1292:97-112.
    PMID: 32542457 DOI: 10.1007/5584_2020_521
    Colorectal carcinoma (CRC) is a malignancy of epithelial origin in the large bowel. The elucidation of the biological functions of programmed cell death ligand-1 (PD-L1), thymidylate synthase (TYMS), and deleted in colorectal cancer (DCC) biomarkers including their roles in the pathophysiology of CRC - has led to their applications in diagnostic and chemo-pharmaceutics. We investigated whether PD-L1, TYMS, and DCC protein expression in CRC tumors are predictive biomarkers of treatment outcome for CRC patients. The expressions of PD-L1, TYMS, and DCC were evaluated by immunohistochemistry (IHC) in 91 paraffin-embedded samples from patients who underwent colectomy procedure in Hospital Serdang, Selangor, Malaysia. There was high expression of DCC in most cases: 84.6% (77/91). PD-L1 showed low expression in 93.4% (86/91) of cases and high expression in 6.6% (5/91) of cases. Low and high expressions of TYMS were detected in 53.8% (49/91) and 46.2% (42/91) of the CRC cases, respectively. There was a significant association between the TYMS expression and gender (P 
    Matched MeSH terms: Biomarkers, Tumor/analysis*
  13. Samberkar S, Rajandram R, Mun KS, Samberkar P, Danaee M, Zulkafli IS
    Malays J Pathol, 2019 Dec;41(3):233-242.
    PMID: 31901907
    INTRODUCTION: Tissue biomarker carbonic anhydrase IX (CAIX) is purported to have prognostic value for renal cell carcinoma (RCC) but contradicting findings from previous studies have also been documented. This study aims to perform a systematic review and meta-analysis on the role of CAIX in RCC disease progression.

    MATERIALS AND METHODS: Following the preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines, online searches of multiple databases were performed to retrieve articles from their inception until December 2017. Inclusion criteria included all English-based original articles of immunohistochemistry (IHC) studies investigating CAIX expression in human RCC tissue. Four articles were finally selected for meta-analysis with a total of 1964 patients. Standard meta-analysis methods were applied to evaluate the role of CAIX in RCC prognosis. The relative risk (RR) and its 95% confidence interval (CI) were recorded for the association between biomarker and prognosis, and data were analysed using MedCalc statistical software.

    RESULTS: The meta-analysis showed that high CAIX expression was associated with low tumour stage (RR 0.90%, 95% CI 0.849-0.969, p= 0.004), low tumour grade (RR 0.835%, 95% CI 0.732-0.983, p= 0.028), absence of nodal involvement (RR 0.814%, 95% CI 0.712-0.931, p= 0.003) and better ECOS-PS index (RR 0.888%, 95% CI 0.818-0.969, p= 0.007). The high tissue CAIX expression in RCC is hence an indication of an early malignancy with a potential to predict favourable disease progression and outcome.

    CONCLUSION: The measurement of this marker may be beneficial to determine the course of the illness. It is hoped that CAIX can be developed as a specific tissue biomarker for RCC in the near future.

    Matched MeSH terms: Biomarkers, Tumor/analysis*
  14. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P
    Biosens Bioelectron, 2019 Sep 15;141:111434.
    PMID: 31238281 DOI: 10.1016/j.bios.2019.111434
    The pragmatic outcome of a lung cancer diagnosis is closely interrelated in reducing the number of fatal death caused by the world's top cancerous disease. Regardless of the advancement made in understanding lung tumor, and its multimodal treatment, in general the percentage of survival remain low. Late diagnosis of a cancerous cell in patients is the major hurdle for the above circumstances. In the new era of a lung cancer diagnosis with low cost, portable and non-invasive clinical sampling, nanotechnology is at its inflection point where current researches focus on the implementation of biosensor conjugated nanomaterials for the generation of the ideal sensing. The present review encloses the superiority of nanomaterials from zero to three-dimensional nanostructures in its discrete and nanocomposites nanotopography on sensing lung cancer biomarkers. Recent researches conducted on definitive nanomaterials and nanocomposites at multiple dimension with distinctive physiochemical property were focused to subside the cases associated with lung cancer through the development of novel biosensors. The hurdles encountered in the recent research and future preference with prognostic clinical lung cancer diagnosis using multidimensional nanomaterials and its composites are presented.
    Matched MeSH terms: Biomarkers, Tumor/analysis
  15. Siar CH, Ng KH
    Pathology, 2019 Aug;51(5):494-501.
    PMID: 31262562 DOI: 10.1016/j.pathol.2019.04.004
    The ameloblastoma is the most common and clinically significant odontogenic epithelial neoplasm known for its locally-invasive behaviour and high recurrence risk. Epithelial-to-mesenchymal transition (EMT) is a fundamental process whereby epithelial cells lose their epithelial characteristics and gain mesenchymal properties. EMT induction via transcription repression has been investigated in ameloblastoma. However, morphologically evident mesenchymal phenotypic transition remains ill-defined. To determine this, 24 unicystic (UA), 34 solid/multicystic (SA) and 18 recurrent ameloblastoma (RA) were immunohistochemically examined for three EMT-related mesenchymal markers, alpha smooth muscle actin (α-SMA), osteonectin and neuronal cadherin (N-cadherin). All three factors were heterogeneously detected in ameloblastoma samples (α-SMA, n=71/76, 93.4%; osteonectin, n=72/76, 94.7%; N-cadherin, n=24/76, 31.6%). In the tumoural parenchyma, immunoreactive cells were not morphologically distinct from their non-reactive cellular counterparts. Rather, α-SMA and osteonectin predominantly labelled the cytoplasm of central polyhedral > peripheral columnar/cuboidal tumour cells. N-cadherin demonstrated weak-to-moderate circumferential membranous staining in both neoplastic cell types and cytoplasmic expression in spindle-celled epithelium of desmoplastic amelobastoma. For all tumour subsets, α-SMA and osteonectin scored significantly higher in the stroma > parenchyma whilst α-SMA was overexpressed along the tumour invasive front > centre (p<0.05). Stromal N-cadherin scored higher in SA > UA and RA > UA (p<0.05). Other clinicopathological parameters showed no significant associations. Taken together, acquisition of mesenchymal traits without morphologically evident mesenchymal alteration suggests partial EMT in ameloblastoma. Stromal upregulation of these proteins in SA and RA implicates a role in local invasiveness.
    Matched MeSH terms: Biomarkers, Tumor/analysis
  16. McCart Reed AE, Kalaw E, Nones K, Bettington M, Lim M, Bennett J, et al.
    J Pathol, 2019 02;247(2):214-227.
    PMID: 30350370 DOI: 10.1002/path.5184
    Metaplastic breast carcinoma (MBC) is relatively rare but accounts for a significant proportion of global breast cancer mortality. This group is extremely heterogeneous and by definition exhibits metaplastic change to squamous and/or mesenchymal elements, including spindle, squamous, chondroid, osseous, and rhabdomyoid features. Clinically, patients are more likely to present with large primary tumours (higher stage), distant metastases, and overall, have shorter 5-year survival compared to invasive carcinomas of no special type. The current World Health Organisation (WHO) diagnostic classification for this cancer type is based purely on morphology - the biological basis and clinical relevance of its seven sub-categories are currently unclear. By establishing the Asia-Pacific MBC (AP-MBC) Consortium, we amassed a large series of MBCs (n = 347) and analysed the mutation profile of a subset, expression of 14 breast cancer biomarkers, and clinicopathological correlates, contextualising our findings within the WHO guidelines. The most significant indicators of poor prognosis were large tumour size (T3; p = 0.004), loss of cytokeratin expression (lack of staining with pan-cytokeratin AE1/3 antibody; p = 0.007), EGFR overexpression (p = 0.01), and for 'mixed' MBC, the presence of more than three distinct morphological entities (p = 0.007). Conversely, fewer morphological components and EGFR negativity were favourable indicators. Exome sequencing of 30 cases confirmed enrichment of TP53 and PTEN mutations, and intriguingly, concurrent mutations of TP53, PTEN, and PIK3CA. Mutations in neurofibromatosis-1 (NF1) were also overrepresented [16.7% MBCs compared to ∼5% of breast cancers overall; enrichment p = 0.028; mutation significance p = 0.006 (OncodriveFM)], consistent with published case reports implicating germline NF1 mutations in MBC risk. Taken together, we propose a practically minor but clinically significant modification to the guidelines: all WHO_1 mixed-type tumours should have the number of morphologies present recorded, as a mechanism for refining prognosis, and that EGFR and pan-cytokeratin expression are important prognostic markers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Matched MeSH terms: Biomarkers, Tumor/analysis
  17. Lee PY, Low TY, Jamal R
    Adv Clin Chem, 2018 12 27;88:67-89.
    PMID: 30612607 DOI: 10.1016/bs.acc.2018.10.004
    The life span of cancer patients can be prolonged with appropriate therapies if detected early. Mass screening for early detection of cancer, however, requires sensitive and specific biomarkers obtainable from body fluids such as blood or urine. To date, most biomarker discovery programs focus on the proteome rather than the endogenous peptidome. It has been long-established that tumor cells and stromal cells produce tumor resident proteases (TRPs) to remodel the surrounding tumor microenvironment in support of tumor progression. In fact, proteolytic products of TRPs have been shown to correlate with malignant behavior. Being of low molecular weight, these unique peptides can pass through the endothelial barrier of the vasculature into the bloodstream. As such, the cancer peptidome has increasingly become a focus for biomarker discovery. In this review, we discuss on the various aspects of the peptidome in cancer biomarker research.
    Matched MeSH terms: Biomarkers, Tumor/analysis
  18. Naicker MS, Tan GC
    Malays J Pathol, 2018 Dec;40(3):319-323.
    PMID: 30580363
    INTRODUCTION: Clinical decision making becomes difficult when clinical and methodological heterogeneity does not permit synthesis of results of multiple small studies.

    AIM: For studies done in Malaysia, to identity the sample sizes and heterogeneity present in the various studies which used p16 in evaluating lesions of the cervix. To evaluate if it would be possible for a single study to answer the various questions posed by the original authors. To highlight areas where the design features of future studies can be optimised.

    MATERIALS AND METHODS: Various databases were searched using synonyms for p16 AND cervix AND Malaysia. These were assessed for broad conformity to a Diagnostic Test Accuracy format. Methodological and clinical heterogeneity indicators were extracted into standardised fields.

    RESULTS: There were 5 studies eligible for inclusion. Each sought to study different aspects of the disease such as diagnostic grade stratification and pathogenesis. The study type broadly conformed to a Diagnostic Test Accuracy format. The study design used was either consecutive or non-consecutive. Sample size ranged from 75 to 201. Clinical heterogeneity was present in the choice of controls with some using normal and some using inflamed tissue. Methodological heterogeneity in applying the reference test, index test and different antibody clones were present.

    CONCLUSION: There was both clinical and methodological heterogeneity making synthesis of studies difficult. It is possible to design a study which would be able to answer all the questions posed by the original authors with internal validity while at the same time increasing sample size.

    Matched MeSH terms: Biomarkers, Tumor/analysis
  19. Seow P, Wong JHD, Ahmad-Annuar A, Mahajan A, Abdullah NA, Ramli N
    Br J Radiol, 2018 Dec;91(1092):20170930.
    PMID: 29902076 DOI: 10.1259/bjr.20170930
    OBJECTIVE:: The diversity of tumour characteristics among glioma patients, even within same tumour grade, is a big challenge for disease outcome prediction. A possible approach for improved radiological imaging could come from combining information obtained at the molecular level. This review assembles recent evidence highlighting the value of using radiogenomic biomarkers to infer the underlying biology of gliomas and its correlation with imaging features.

    METHODS:: A literature search was done for articles published between 2002 and 2017 on Medline electronic databases. Of 249 titles identified, 38 fulfilled the inclusion criteria, with 14 articles related to quantifiable imaging parameters (heterogeneity, vascularity, diffusion, cell density, infiltrations, perfusion, and metabolite changes) and 24 articles relevant to molecular biomarkers linked to imaging.

    RESULTS:: Genes found to correlate with various imaging phenotypes were EGFR, MGMT, IDH1, VEGF, PDGF, TP53, and Ki-67. EGFR is the most studied gene related to imaging characteristics in the studies reviewed (41.7%), followed by MGMT (20.8%) and IDH1 (16.7%). A summary of the relationship amongst glioma morphology, gene expressions, imaging characteristics, prognosis and therapeutic response are presented.

    CONCLUSION:: The use of radiogenomics can provide insights to understanding tumour biology and the underlying molecular pathways. Certain MRI characteristics that show strong correlations with EGFR, MGMT and IDH1 could be used as imaging biomarkers. Knowing the pathways involved in tumour progression and their associated imaging patterns may assist in diagnosis, prognosis and treatment management, while facilitating personalised medicine.

    ADVANCES IN KNOWLEDGE:: Radiogenomics can offer clinicians better insight into diagnosis, prognosis, and prediction of therapeutic responses of glioma.

    Matched MeSH terms: Biomarkers, Tumor/analysis
  20. Lee PY, Chin SF, Low TY, Jamal R
    J Proteomics, 2018 09 15;187:93-105.
    PMID: 29953962 DOI: 10.1016/j.jprot.2018.06.014
    Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Biomarkers that can facilitate better clinical management of CRC are in high demand to improve patient outcome and to reduce mortality. In this regard, proteomic analysis holds a promising prospect in the hunt of novel biomarkers for CRC and in understanding the mechanisms underlying tumorigenesis. This review aims to provide an overview of the current progress of proteomic research, focusing on discovery and validation of diagnostic biomarkers for CRC. We will summarize the contributions of proteomic strategies to recent discoveries of protein biomarkers for CRC and also briefly discuss the potential and challenges of different proteomic approaches in biomarker discovery and translational applications.
    Matched MeSH terms: Biomarkers, Tumor/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links