Displaying publications 1 - 20 of 101 in total

Abstract:
Sort:
  1. Naidu R, Yadav M, Nair S, Kutty MK
    Br. J. Cancer, 1998 Nov;78(10):1385-90.
    PMID: 9823984
    Expression of c-erbB3 protein was investigated in 104 primary breast carcinomas comprising nine comedo ductal carcinoma in situ (DCIS), 91 invasive ductal carcinomas and four invasive lobular carcinomas using two monoclonal antibodies, RTJ1 and RTJ2. Of the 91 invasive ductal carcinomas, seven contained the comedo DCIS component adjacent to the invasive component. An immunohistochemical technique was used to evaluate the association between expression of c-erbB3 and clinical parameters and tumour markers such as epidermal growth factor receptor (EGFR), c-erbB2, cathepsin-D and p53 in archival formalin-fixed paraffin-embedded tumour tissues. Our results indicated that RTJ1 and RTJ2 gave identical staining patterns and concordant results. It was found that the overexpression of c-erbB3 protein was observed in 67% (6/9) of comedo DCIS, 52% (44/84) of invasive ductal carcinomas, 71% (5/7) of carcinomas containing both the in situ and invasive lesions and 25% (1/4) of invasive lobular carcinomas. A significant relationship (P < 0.05) was observed between strong immunoreactivity of c-erbB3 protein and histological grade, EGFR and cathepsin-D, but not with expression of c-erbB2, p53, oestrogen receptor status, lymph node metastases or age of patient. However, we noted that a high percentage of oestrogen receptor-negative tumours (59%), lymph node-positive tumours (63%) and c-erbB2 (63%) were strongly positive for c-erbB3 protein. We have also documented that a high percentage of EGFR (67%), c-erbB2 (67%), p53 (75%) and cathepsin-D-positive DCIS (60%) were strongly positive for c-erbB3. These observations suggest that overexpression of c-erbB3 protein could play an important role in tumour progression from non-invasive to invasive and, also, that it may have the potential to be used as a marker for poor prognosis of breast cancer.
    Matched MeSH terms: Biomarkers, Tumor/genetics*
  2. Abdulamir AS, Hafidh RR, Kadhim HS, Abubakar F
    PMID: 19243595 DOI: 10.1186/1756-9966-28-27
    The aim of this study is to comparatively elucidate the underlying molecular pathways and clinicopathological criteria in schistosomal bladder tumor (SBT) versus non-schistosomal bladder tumor (NSBT).
    Matched MeSH terms: Biomarkers, Tumor/genetics
  3. Wong PF, Abubakar S
    Oncol Rep, 2010 Jun;23(6):1501-16.
    PMID: 20428803
    The normally high concentration of zinc in normal prostate gland is significantly reduced in malignant prostate tissues, but its precise role in prostate tumorigenesis remains unclear. The present study investigates the growth and transcriptional responses of LNCaP prostate cancer cells to prolonged high Zn2+ treatment. Restoration of high intracellular Zn2+ to LNCaP cells significantly reduced the cell proliferation rate by 42.2+/-7.4% at the exponential growth phase and the efficiency of colony formation on soft agar by 87.2+/-2.5% at week 5 post-treatment. At least 161 LNCaP cell genes responded to the high intracellular Zn2+, including approximately 10.6% genes that negatively regulate cell growth and approximately 16.1% genes that promote cancer cell proliferation. Inhibition of cell growth was transient as normal proliferation rate and colony formation efficiency were restored later even in the continuous presence of high intracellular Zn2+. RT-qPCR showed constitutively higher expression levels of FBL, CD164 and STEAP1 in LNCaP cells. FBL and CD164 were responsive to the treatment with Zn2+ in PNT2 prostate normal cells and were further overexpressed in the prolonged Zn2+-treated LNCaP cells. These observations suggest that in general high Zn2+ has suppressive effects on prostate cancer cell growth but continuous exposure to an environment of high Zn2+ can lead to the overexpression of cancer promoting genes such as FBL and CD164. This could be the antagonistic mechanism used to overcome the initial cell growth inhibitory effects of high Zn2+. These findings support a potential detrimental role of Zn2+ in prostate cancer.
    Matched MeSH terms: Biomarkers, Tumor/genetics*
  4. Liang S, Singh M, Gam LH
    Cancer Biomark, 2010;8(6):319-30.
    PMID: 22072120 DOI: 10.3233/CBM-2011-0221
    Breast cancer is a leading cause of worldwide mortality in females. In Malaysia, breast cancer is the most commonly diagnosed cancer in women. Of these, the Chinese had the most number of breast cancer cases, followed by the Indian and the Malay. The most common type of breast cancer is infiltrating ductal carcinoma (IDC). A proteomic approach was used to identify protein profile changes in cancerous tissues compared with the normal tissues, the tissues were collected from patients of three different ethnicities, i.e. Chinese, Malay and Indian. Ten differentially expressed hydrophobic proteins were identified. We had evaluated the potential of these proteins as biomarker for infiltrating ducal carcinoma (IDC) and the ethnic-specific expression of these proteins was also determined. The data showed that peroxiredoxin-2, heat shock protein 60, protein disulfide isomerase and calreticulin may serve as ethnic-related potential markers for either one or combination of Chinese, Malay and Indian cohorts as their expression levels were significantly high in the cancerous tissues compared to the normal tissues in the ethnic group tested.
    Publication year=2010-2011
    Matched MeSH terms: Biomarkers, Tumor/genetics
  5. Mahdey HM, Ramanathan A, Ismail SM, Abraham MT, Jamaluddin M, Zain RB
    Asian Pac J Cancer Prev, 2011;12(9):2199-204.
    PMID: 22296356
    INTRODUCTION: Several molecular markers have been studied for their usefulness as prognostic markers in oral squamous cell carcinoma (OSCC). One such molecular marker is cyclin D1 which is a proto-oncogene located on 11q13 in humans.

    OBJECTIVE: To explore the feasibility of using cyclin D1 as a prognostic marker in tongue and cheek SCC by the fluorescent-in-situ hybridization (FISH) method.

    METHODS: Fifty paraffin-embedded samples (25 each of cheek and tongue SCCs) were obtained from the archives of the Oral Pathology Diagnostic Laboratory. Sociodemographic data, histopathologic diagnoses, lymph node status and survival data were obtained from the Malaysian Oral Cancer Database and Tissue Bank System (MOCDTBS)coordinated by the Oral Cancer Research and Coordinating Centre (OCRCC), University of Malaya. The FISH technique was used to detect the amplification of cyclin D1 using the Vysis protocol. Statistical correlations of cyclin D1 with site and lymph node status were analyzed using the Fisher exact test. Kaplan-Meier and Log Rank (Mantel-Cox) test were used to analyze cyclin D1 amplification and median survival time.

    RESULTS: Positive amplification of cyclin D1 was detected in 72% (36) of OSCCs. Detection of positive amplification for cyclin D1 was observed in 88% (22) and 56% (14) of the tongue and cheek tumors, respectively, where the difference was statistically significant (P=0.012). Lymph node metastasis of cheek SCCs showed a trend towards a significant association (P= 0.098) with cyclin D1 amplification whereas the lymph node metastasis of tongue SCC was clearly not significant (P=0.593).There was a statistically significant correlation between cyclin D1 positivity and survival rate (P=0.009) for overall SCC cases and (P<0.001) for cheek SCC cases.

    CONCLUSION: The present study found that cyclin D1 amplification may differ in different subsites of OSCC (tongue vs cheek) and its positive amplification implies an overall poor survival in OSCCs, particularly those arising in cheeks.

    Matched MeSH terms: Biomarkers, Tumor/genetics*
  6. Heah KG, Hassan MI, Huat SC
    Asian Pac J Cancer Prev, 2011;12(4):1017-22.
    PMID: 21790244
    INTRODUCTION: Oral squamous cell carcinoma (OSCC) has high local recurrence, partly caused by the lack of clear margin identification on surgical removal of cancerous tissues. Direct visualization by immunostaining and fluorescent in situ hybridization (FISH) in tissue sections gives more definite information about genetic damage at margins with appropriately selected biomarkers.

    AIMS: To determine the usefulness of immunohistochemical techniques and FISH of the tumour suppressor TP 53 gene to identify microinvasion in marginal tissue sections and to relate the possible correlation between protein expression and genetic aberrations in OSCC cases in Malaysia.

    METHODS: Immunohistochemistry and FISH of TP 53 genes were applied on 26 OSCC formalin fixed paraffin embed (FFEP) blocks selected from two oral cancer referral centers in Malaysia.

    RESULTS: For p53 protein immunohistochemistry, 96% of the 26 OSCC studied showed positive immunostaining at the excision margins. In FISH assay, 48.9±9.7% of the cancerous cells were monoploid for p53 probe signals, 41.0±9.5 % were diploid, and 10.2±7.8 % were polyploid. A correlation between p53 immunostaining and TP53 gene aberrations was noted (p< 0.05).

    CONCLUSIONS: Immunohistochemical analysis of p53 protein expression and FISH of TP53 gene could be applied as screening tool for microinvasion of OSCC.

    Matched MeSH terms: Biomarkers, Tumor/genetics*
  7. Vui-Kee K, Mohd Dali AZ, Mohamed Rose I, Ghazali R, Jamal R, Mokhtar NM
    Kaohsiung J. Med. Sci., 2012 May;28(5):243-50.
    PMID: 22531302 DOI: 10.1016/j.kjms.2011.11.007
    Nonepithelial ovarian cancer (NEOC) is a rare cancer that is often misdiagnosed as other malignant tumors. Research on this cancer using fresh tissues is nearly impossible because of its limited number of samples within a limited time provided. The study is to identify potential genes and their molecular pathways related to NEOC using formalin-fixed paraffin embedded samples. Total RNA was extracted from eight archived NEOCs and seven normal ovaries. The RNA samples with RNA integrity number >2.0, purity >1.7 and cycle count value <28 cycles were hybridized to the Illumina Whole-Genome DASL assay (cDNA-mediated annealing, selection, extension, and ligation). We analyzed the results using the GeneSpring GX11.0 and FlexArray software to determine the differentially expressed genes. Microarray results were validated using an immunohistochemistry method. Statistical analysis identified 804 differentially expressed genes with 443 and 361 genes as overexpressed and underexpressed in cancer, respectively. Consistent findings were documented for the overexpression of eukaryotic translation elongation factor 1 alpha 1, E2F transcription factor 2, and fibroblast growth factor receptor 3, except for the down-regulated gene, early growth response 1 (EGR1). The immunopositivity staining for EGR1 was found in the majority of cancer tissues. This finding suggested that the mRNA level of a transcript did not always match with the protein expression in tissues. The current gene profile can be the platform for further exploration of the molecular mechanism of NEOC.
    Matched MeSH terms: Biomarkers, Tumor/genetics*
  8. Yeo KS, Mohidin TB, Ng CC
    C. R. Biol., 2012 Dec;335(12):713-21.
    PMID: 23312294 DOI: 10.1016/j.crvi.2012.11.002
    Epstein-Barr virus (EBV) is a ubiquitous tumor-causing virus which infects more than 90% of the world population asymptomatically. Recent studies suggest that LMP-1, -2A and -2B cooperate in the tumorigenesis of EBV-associated epithelial cancers such as nasopharygeal carcinoma, oral and gastric cancer. In this study, LMPs were expressed in the HEK293T cell line to reveal their oncogenic mechanism via investigation on their involvement in the regulation of the cell cycle and genes that are involved. LMPs were expressed in HEK293T in single and co-expression manner. The transcription of cell cycle arrest genes were examined via real-time PCR. Cell cycle progression was examined via flow cytometry. 14-3-3σ and Reprimo were upregulated in all LMP-1 expressing cells. Moreover, cell cycle arrest at G(2)/M progression was detected in all LMP-1 expressing cells. Therefore, we conclude that LMP-1 may induce cell cycle arrest at G(2)/M progression via upregulation of 14-3-3σ and Reprimo.
    Matched MeSH terms: Biomarkers, Tumor/genetics*
  9. Yehya AH, Yusoff NM, Khalid IA, Mahsin H, Razali RA, Azlina F, et al.
    Asian Pac J Cancer Prev, 2012;13(5):1869-72.
    PMID: 22901138
    BACKGROUND: To assess the diagnostic potential of tumor-associated high molecular weight DNA in stool samples of 32 colorectal cancer (CRC) patients compared to 32 healthy Malaysian volunteers by means of polymerase chain reaction (PCR).

    METHODS: Stool DNA was isolated and tumor-associated high molecular weight DNA (1.476 kb fragment including exons 6-9 of the p53 gene) was amplified using PCR and visualized on ethidium bromide-stained agarose gels.

    RESULTS: Out of 32 CRC patients, 18 were positive for the presence of high molecular weight DNA as compared to none of the healthy individuals, resulting in an overall sensitivity of 56.3% with 100% specificity. Out of 32 patients, 23 had tumor on the left side and 9 on the right side, 16 and 2 being respectively positive. This showed that high molecular weight DNA was significantly (p=0.022) more detectable in patients with left side tumor (69.6% vs 22.2%). Out of 32 patients, 22 had tumors larger than 1.0 cm, 18 of these (81.8%) being positive for long DNA as compared to not a single patient with tumor size smaller than 1.0 cm (p<0.001).

    CONCLUSION: We detected CRC-related high molecular weight p53 DNA in stool samples of CRC patients with an overall sensitivity of 56.3% with 100% specificity, with a strong tumor size dependence.

    Matched MeSH terms: Biomarkers, Tumor/genetics*
  10. Lee HH, Lim CA, Cheong YT, Singh M, Gam LH
    Int J Biol Sci, 2012;8(3):353-62.
    PMID: 22393307 DOI: 10.7150/ijbs.3157
    Breast cancer is the most common cancer among women worldwide. Breast cancer metastasis primarily happens through lymphatic system, where the extent of lymph node metastasis is the major factor influencing staging, prognosis and therapeutic decision of the disease. We aimed to study the protein expression changes in different N (regional lymph nodes) stages of breast cancer. Protein expression profiles of breast cancerous and adjacent normal tissues were mapped by proteomics approach that comprises of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and tandem mass spectrometry (LC-MS/MS) analysis. Calreticulin and tropomyosin alpha 3 chains were the common up-regulated proteins in N0, N1 and N2 stages of breast cancer. Potential biomarker for each N stage was HSP 70 for N0, 80 k protein H precursor and PDI for N1 stage while 78 kDa glucose-regulated protein was found useful for N2 stage. In addition, significant up-regulation of PDI A3 was detected only in the metastasized breast cancer. The up-regulation expression of these proteins in cancerous tissues can potentially use as indicators for diagnosis, treatment and prognosis of different N stages of breast cancer.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  11. Yong FL, Law CW, Wang CW
    BMC Cancer, 2013 Jun 08;13:280.
    PMID: 23758639 DOI: 10.1186/1471-2407-13-280
    BACKGROUND: MicroRNAs (miRNAs) are short, non-coding RNA molecules that act as regulators of gene expression. Circulating blood miRNAs offer great potential as cancer biomarkers. The objective of this study was to correlate the differential expression of miRNAs in tissue and blood in the identification of biomarkers for early detection of colorectal cancer (CRC).

    METHODS: The study was divided into two phases: (I) Marker discovery by miRNA microarray using paired cancer tissues (n = 30) and blood samples (CRC, n = 42; control, n = 18). (II) Marker validation by stem-loop reverse transcription real time PCR using an independent set of paired cancer tissues (n = 30) and blood samples (CRC, n = 70; control, n = 32). Correlation analysis was determined by Pearson's test. Logistic regression and receiver operating characteristics curve analyses were applied to obtain diagnostic utility of the miRNAs.

    RESULTS: Seven miRNAs (miR-150, miR-193a-3p, miR-23a, miR-23b, miR-338-5p, miR-342-3p and miR-483-3p) have been found to be differentially expressed in both tissue and blood samples. Significant positive correlations were observed in the tissue and blood levels of miR-193a-3p, miR-23a and miR-338-5p. Moreover, increased expressions of these miRNAs were detected in the more advanced stages. MiR-193a-3p, miR-23a and miR-338-5p were demonstrated as a classifier for CRC detection, yielding a receiver operating characteristic curve area of 0.887 (80.0% sensitivity, 84.4% specificity and 83.3% accuracy).

    CONCLUSION: Dysregulations in circulating blood miRNAs are reflective of those in colorectal tissues. The triple miRNA classifier of miR-193a-3p, miR-23a and miR-338-5p appears to be a potential blood biomarker for early detection of CRC.

    Matched MeSH terms: Biomarkers, Tumor/genetics
  12. Chang HY, Hor SY, Lim KP, Zain RB, Cheong SC, Rahman MA, et al.
    Electrophoresis, 2013 Aug;34(15):2199-208.
    PMID: 23712713 DOI: 10.1002/elps.201300126
    This study aims to identify cancer-associated proteins in the secretome of oral cancer cell lines. We have successfully established four primary cell cultures of normal cells with a limited lifespan without human telomerase reverse transcriptase (hTERT) immortalization. The secretome of these primary cell cultures were compared with that of oral cancer cell lines using 2DE. Thirty five protein spots were found to have changed in abundance. Unambiguous identification of these proteins was achieved by MALDI TOF/TOF. In silico analysis predicted that 24 of these proteins were secreted via classical or nonclassical mechanisms. The mRNA expression of six genes was found to correlate with the corresponding protein abundance. Ingenuity Pathway Analysis (IPA) core analysis revealed that the identified proteins were relevant in, and related to, cancer development with likely involvements in tumor growth, metastasis, hyperproliferation, tumorigenesis, neoplasia, hyperplasia, and cell transformation. In conclusion, we have demonstrated that a comparative study of the secretome of cancer versus normal cell lines can be used to identify cancer-associated proteins.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  13. Mohd Azmi MA, Tehrani Z, Lewis RP, Walker KA, Jones DR, Daniels DR, et al.
    Biosens Bioelectron, 2014 Feb 15;52:216-24.
    PMID: 24060972 DOI: 10.1016/j.bios.2013.08.030
    In this article we present ultra-sensitive, silicon nanowire (SiNW)-based biosensor devices for the detection of disease biomarkers. An electrochemically induced functionalisation method has been employed to graft antibodies targeted against the prostate cancer risk biomarker 8-hydroxydeoxyguanosine (8-OHdG) to SiNW surfaces. The antibody-functionalised SiNW sensor has been used to detect binding of the 8-OHdG biomarker to the SiNW surface within seconds of exposure. Detection of 8-OHdG concentrations as low as 1 ng/ml (3.5 nM) has been demonstrated. The active device has been bonded to a disposable printed circuit which can be inserted into an electronic readout system as part of an integrated Point of Care (POC) diagnostic. The speed, sensitivity and ease of detection of biomarkers using SiNW sensors render them ideal for eventual POC diagnostics.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  14. Wong YP, Chia WK, Low SF, Mohamed-Haflah NH, Sharifah NA
    Pathol. Int., 2014 Jul;64(7):346-51.
    PMID: 25047505 DOI: 10.1111/pin.12176
    Dendritic fibromyxolipoma (DFML), a rare, recently described distinct benign soft tissue tumor, has many clinicopathological features reminiscent of spindle cell lipoma and solitary fibrous tumor with myxoid change. It is distinguished histologically from both entities by the presence of spindle and stellate cells with dendritic cytoplasmic prolongations, prominent myxoid stroma with abundant keloidal collagen and occasional small plexiform vascular proliferation. We describe a case of histologically confirmed DFML of the left shoulder in a 67-year-old male, in which subsequent cytogenetic analysis revealed deletion involving 13q14.3 region in all the tumor cells, typically detected in spindle cell lipoma. In the presence of many clinicopathological similarities between DFML and spindle cell lipoma including chromosomal abnormalities, we postulate that DFML is merely a rare variant of spindle cell lipoma with extensive myxoid degeneration, and may not be considered as a separate entity. The possible differential diagnosis and their distinguishing features are briefly discussed.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  15. Tan JK, Tan EL, Gan SY
    Exp Oncol, 2014 Sep;36(3):170-3.
    PMID: 25265349
    Deregulation of microRNA has been associated with cancer progression and the modification of cancer phenotypes could be achieved by targeting microRNA expression. This study aimed to determine the effects of miR-372 on cell progression and gene expression in nasopharyngeal carcinoma cell line, TW01.
    Matched MeSH terms: Biomarkers, Tumor/genetics*
  16. Nurul-Syakima AM, Learn-Han L, Yoke-Kqueen C
    Asian Pac J Cancer Prev, 2014;15(21):9071-5.
    PMID: 25422181
    BACKGROUND: microRNAs are small non-coding RNA that control gene expression by mRNA degradation or translational inhibition. These molecules are known to play essential roles in many biological and physiological processes. miR-205 may be differentially expressed in head and neck cancers; however, there are conflicting data and localization of expression has yet to be determined.

    MATERIALS AND METHODS: miR-205 expression was investigated in 48 cases of inflammatory, benign and malignant tumor tissue array of the neck, oronasopharynx, larynx and salivary glands by Locked Nucleic Acid in situ hybridization (LNA-ISH) technology.

    RESULTS: miR-205 expression was significantly differentially expressed across all of the inflammatory, benign and malignant tumor tissues of the neck. A significant increase in miR-205 staining intensity (p<0.05) was observed from inflammation to benign and malignant tumors in head and neck tissue array, suggesting that miR-205 could be a biomarker to differentiate between cancer and non-cancer tissues.

    CONCLUSIONS: LNA-ISH revealed that miR-205 exhibited significant differential cytoplasmic and nuclear staining among inflammation, benign and malignant tumors of head and neck. miR-205 was not only exclusively expressed in squamous epithelial malignancy. This study offers information and a basis for a comprehensive study of the role of miR-205 that may be useful as a biomarker and/or therapeutic target in head and neck tumors.

    Matched MeSH terms: Biomarkers, Tumor/genetics*
  17. Krishnappa P, Mohamad IB, Lin YJ, Barua A
    Diagn Pathol, 2014;9:202.
    PMID: 25361681 DOI: 10.1186/s13000-014-0202-z
    Cervical cancer is one of the most common cancers affecting women worldwide. It is well established that human papilloma virus (HPV) infection is the prime risk factor in the development of cervical cancer. The current screening and diagnostic tests have limitations in identifying the range of lesions caused by HPV. The current study aims to evaluate the diagnostic value of p16 immunohistochemical (IHC) investigation in high-risk human papillomavirus (HR-HPV) related lesions of the uterine cervix in Hospital Tuanku Jaafar, Seremban, Malaysia.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  18. Khor GH, Froemming GR, Zain RB, Abraham MT, Thong KL
    Asian Pac J Cancer Prev, 2014;15(20):8957-61.
    PMID: 25374236
    BACKGROUND: Promoter hypermethylation leads to altered gene functions and may result in malignant cellular transformation. Thus, identification of biomarkers for hypermethylated genes could be useful for diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC).

    OBJECTIVES: To screen hypermethylated genes with a microarray approach and to validate selected hypermethylated genes with the methylation-specific polymerase chain reaction (MSPCR).

    MATERIALS AND METHODS: Genome-wide analysis of normal oral mucosa and OSCC tissues was conducted using the Illumina methylation microarray. The specified differential genes were selected and hypermethylation status was further verified with an independent cohort sample of OSCC samples. Candidate genes were screened using microarray assay and run by MSPCR analysis.

    RESULTS: TP73, PIK3R5, and CELSR3 demonstrated high percentages of differential hypermethylation status.

    CONCLUSIONS: Our microarray screening and MSPCR approaches revealed that the signature candidates of differentially hypermethylated genes may possibly become potential biomarkers which would be useful for diagnostic, prognostic and therapeutic targets of OSCC in the near future.

    Matched MeSH terms: Biomarkers, Tumor/genetics*
  19. Phuah NH, Nagoor NH
    Biomed Res Int, 2014;2014:804510.
    PMID: 25254214 DOI: 10.1155/2014/804510
    MicroRNAs (miRNAs) are short noncoding RNA which regulate gene expression by messenger RNA (mRNA) degradation or translation repression. The plethora of published reports in recent years demonstrated that they play fundamental roles in many biological processes, such as carcinogenesis, angiogenesis, programmed cell death, cell proliferation, invasion, migration, and differentiation by acting as tumour suppressor or oncogene, and aberrations in their expressions have been linked to onset and progression of various cancers. Furthermore, each miRNA is capable of regulating the expression of many genes, allowing them to simultaneously regulate multiple cellular signalling pathways. Hence, miRNAs have the potential to be used as biomarkers for cancer diagnosis and prognosis as well as therapeutic targets. Recent studies have shown that natural agents such as curcumin, resveratrol, genistein, epigallocatechin-3-gallate, indole-3-carbinol, and 3,3'-diindolylmethane exert their antiproliferative and/or proapoptotic effects through the regulation of one or more miRNAs. Therefore, this review will look at the regulation of miRNAs by natural agents as a means to potentially enhance the efficacy of conventional chemotherapy through combinatorial therapies. It is hoped that this would provide new strategies in cancer therapies to improve overall response and survival outcome in cancer patients.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  20. Kavitha N, Vijayarathna S, Jothy SL, Oon CE, Chen Y, Kanwar JR, et al.
    Asian Pac J Cancer Prev, 2014;15(18):7489-97.
    PMID: 25292018
    MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.
    Matched MeSH terms: Biomarkers, Tumor/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links