Displaying publications 1 - 20 of 104 in total

Abstract:
Sort:
  1. NG PEI QI, NOR HAYATI IBRAHIM, AZLIN SHAFRINA HASIM
    MyJurnal
    Biopolymer interaction in oil-in-water (o/w) emulsions has been demonstrated to positively modify the emulsion physicochemical properties which lead to desirable stability. The present work focused on the effect of pea protein isolate (PPI), pectin, carboxymethyl cellulose (CMC) and their interaction on physicochemical properties and oxidative stability of o/w emulsions using a mixture design approach. The emulsions were prepared with 40 % sunflower oil stabilized with 1 % of PPI, pectin and CMC, respectively, as well as their mixtures according to a simplex-centroid design (10 points). ThepH values for all emulsions were within acidic condition (3.22 to 4.66) and increased significantly (p
    Matched MeSH terms: Biopolymers
  2. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS
    J Chromatogr A, 2018 Jan 12;1532:50-57.
    PMID: 29241956 DOI: 10.1016/j.chroma.2017.11.059
    A facile dispersive-micro-solid phase extraction (D-μ-SPE) method coupled with HPLC for the analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed using a newly prepared magnetic sporopollenin-cyanopropyltriethoxysilane (MS-CNPrTEOS) sorbent. Sporopollenin homogenous microparticles of Lycopodium clavatum spores possessed accessible functional groups that facilitated surface modification. Simple modification was performed by functionalization with 3-cyanopropyltriethoxysilane (CNPrTEOS) and magnetite was introduced onto the biopolymer to simplify the extraction process. MS-CNPrTEOS was identified by infrared spectrometrywhile the morphology and the magnetic property were confirmed by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. To maximize the extraction performance of ketoprofen, ibuprofen, diclofenac and mefenamic acid using the proposed MS-CNPrTEOS, important D-μ-SPE parameters were comprehensively optimized. The optimum extraction conditions were sorbent amount, 40 mg; extraction time, 5 min; desorption time; 5 min; sample volume, 15 mL; sample pH 2.0; and salt addition, 2.5% (w/v). The feasibility of the developed method was evaluated using spiked tap water, lake water, river water and waste water samples. Results showed that ketoprofen and ibuprofen were linear in the range of 1.0-1000 μg L-1whilst diclofenac and mefenamic acid were linear in the range 0.8-500 μg L-1. The results also showed good detection limits for the studied NSAIDs in the range of 0.21-0.51 μg L-1and good recoveries for spiked water samples in the range of 85.1-106.4%. The MS-CNPrTEOS proved a promising dispersive sorbent and applicable to facile and rapid assay of NSAIDs in water samples.
    Matched MeSH terms: Biopolymers/analysis; Biopolymers/chemistry
  3. Khalil KA, Mustafa S, Mohammad R, Ariff AB, Ahmad SA, Dahalan FA, et al.
    Int J Microbiol, 2019;2019:4208986.
    PMID: 31093290 DOI: 10.1155/2019/4208986
    Bovine gelatin is a biopolymer which has good potential to be used in encapsulating matrices for probiotic candidate Bifidobacterium pseudocatenulatum strain G4 (G4) because of its amphoteric nature characteristic. Beads were prepared by the extrusion method using genipin and sodium alginate as a cross-linking agent. The optimisation of bovine gelatin-genipin-sodium alginate combinations was carried out using face central composition design (FCCD) to investigate G4 beads' strength, before and after exposed to simulated gastric (SGF), intestinal fluids (SIF), and encapsulation yield. A result of ANOVA and the polynomial regression model revealed the combinations of all three factors have a significant effect (p < 0.05) on the bead strength. Meanwhile, for G4 encapsulation yield, only genipin showed less significant effect on the response. However, the use of this matrix remained due to the intermolecular cross-linking ability with bovine gelatin. Optimum compositions of bovine gelatin-genipin-sodium alginate were obtained at 11.21% (w/v), 1.96 mM, and 2.60% (w/v), respectively. A model was validated for accurate prediction of the response and showed no significant difference (p > 0.05) with experimental values.
    Matched MeSH terms: Biopolymers
  4. Abd Manan FM, Attan N, Zakaria Z, Mahat NA, Abdul Wahab R
    J Biotechnol, 2018 May 28;280:19-30.
    PMID: 29852195 DOI: 10.1016/j.jbiotec.2018.05.015
    To overcome drawbacks in the conventional chemical route to synthesize eugenyl benzoate, immobilized Rhizomucor miehei lipase (RML) as the biocatalyst was proposed. The RML conjugated to a hybrid support consisting of biopolymers, chitosan (CS) and chitin nanowhiskers (CNWs). 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDAC) was used as the crosslinker to bind the lipase. Immobilization of RML was the highest on crosslinked CS/CNWs which gave a protein loading of ∼8.12 mg/g, corresponding to specific and residual activity of 537 U/g and 137%, respectively. Fourier transform infrared spectroscopy, thermogravimetric analysis-differential thermogravimetry, field emission scanning electron and atomic force microscopy of RML-CS/CNWs revealed that RML was successfully attached to the surface of crosslinked CS/CNWs. Under an optimized condition, the highest yield of eugenyl benzoate (56.3%) was attained after 5 h using 3 mg/mL of RML-CS/CNWs with molar ratio of eugenol: benzoic acid of 3:1, as compared to only 47.3% for the free RML. Analyses of FTIR and NMR on purified eugenyl benzoate affirmed that the ester was successfully produced in the enzymatic esterification. Therefore, the use of the RML-CS/CNWs biocatalysts appears promising to afford good yields of eugenyl benzoate within a relatively shorter reaction time.
    Matched MeSH terms: Biopolymers
  5. Azami NA, Wirjon IA, Kannusamy S, Teh AH, Abdullah AA
    3 Biotech, 2017 May;7(1):75.
    PMID: 28452023 DOI: 10.1007/s13205-017-0716-7
    The contribution of microbial depolymerase has received much attention because of its potential in biopolymer degradation. In this study, the P(3HB) depolymerase enzyme of a newly isolated Burkholderia cepacia DP1 from soil in Penang, Malaysia, was optimized using response surface methodology (RSM). The factors affecting P(3HB) depolymerase enzyme production were studied using one-variable-at-a-time approach prior to optimization. Preliminary experiments revealed that the concentration of nitrogen source, concentration of carbon source, initial pH and incubation time were among the main factors influencing the enzyme productivity. An increase of 9.4 folds in enzyme production with an activity of 5.66 U/mL was obtained using optimal medium containing 0.028% N of di-ammonium hydrogen phosphate and 0.31% P(3HB-co-21%4HB) as carbon source at the initial pH of 6.8 for 38 h of incubation. Moreover, the RSM model showed great similarity between predicted and actual enzyme production indicating a successful model validation. This study warrants the ability of P(3HB) degradation by B. cepacia DP1 in producing higher enzyme activity as compared to other P(3HB) degraders being reported. Interestingly, the production of P(3HB) depolymerase was rarely reported within genus Burkholderia. Therefore, this is considered to be a new discovery in the field of P(3HB) depolymerase production.
    Matched MeSH terms: Biopolymers
  6. Udenni Gunathilake TMS, Ching YC, Ching KY, Chuah CH, Abdullah LC
    Polymers (Basel), 2017 Apr 29;9(5).
    PMID: 30970839 DOI: 10.3390/polym9050160
    Extensive employment of biomaterials in the areas of biomedical and microbiological applications is considered to be of prime importance. As expected, oil based polymer materials were gradually replaced by natural or synthetic biopolymers due to their well-known intrinsic characteristics such as biodegradability, non-toxicity and biocompatibility. Literature on this subject was found to be expanding, especially in the areas of biomedical and microbiological applications. Introduction of porosity into a biomaterial broadens the scope of applications. In addition, increased porosity can have a beneficial effect for the applications which exploit their exceptional ability of loading, retaining and releasing of fluids. Different applications require a unique set of pore characteristics in the biopolymer matrix. Various pore morphologies have different characteristics and contribute different performances to the biopolymer matrix. Fabrication methods for bio-based porous materials more related to the choice of material. By choosing the appropriate combination of fabrication technique and biomaterial employment, one can obtain tunable pore characteristic to fulfill the requirements of desired application. In our previous review, we described the literature related to biopolymers and fabrication techniques of porous materials. This paper we will focus on the biomedical and microbiological applications of bio-based porous materials.
    Matched MeSH terms: Biopolymers
  7. Ahmady A, Abu Samah NH
    Int J Pharm, 2021 Oct 25;608:121037.
    PMID: 34438009 DOI: 10.1016/j.ijpharm.2021.121037
    Bioadhesive polymers offer versatility to medical and pharmaceutical inventions. The incorporation of such materials to conventional dosage forms or medical devices may confer or improve the adhesivity of the bioadhesive systems, subsequently prolonging their residence time at the site of absorption or action and providing sustained release of actives with improved bioavailability and therapeutic outcomes. For decades, much focus has been put on scientific works to replace synthetic polymers with biopolymers with desirable functional properties. Gelatine has been considered one of the most promising biopolymers. Despite its biodegradability, biocompatibility and unique biological properties, gelatine exhibits poor mechanical and adhesive properties, limiting its end-use applications. The chemical modification and blending of gelatine with other biomaterials are strategies proposed to improve its bioadhesivity. Here we discuss the classical approaches involving a variety of polymer blends and composite systems containing gelatine, and gelatine modifications via thiolation, methacrylation, catechol conjugation, amination and other newly devised strategies. We highlight several of the latest studies on these strategies and their relevant findings.
    Matched MeSH terms: Biopolymers
  8. Zakuwan SZ, Ahmad I
    Nanomaterials (Basel), 2018 Oct 24;8(11).
    PMID: 30352971 DOI: 10.3390/nano8110874
    The synergistic effect of using κ-carrageenan bionanocomposites with the hybridization of cellulose nanocrystals (CNCs) and organically modified montmorillonite (OMMT) reinforcements was studied. The effects of different reinforcements and filler contents were evaluated through mechanical testing, and morphological and water uptake properties. The tensile strength and Young's modulus of both bionanocomposites increased with filler loading and optimized at 4%. OMMT incorporation into the κ-carrageenan/CNCs bionanocomposites resulted in further mechanical property improvement with an optimum ratio of 1:1 (CNCs:OMMT) while maintaining high film transparency. X-ray diffraction and morphological analyses revealed that intercalation occurred between the κ-carrageenan bionanocomposite matrix and OMMT. The water uptake of the κ-carrageenan bionanocomposites was significantly reduced by the addition of both CNCs and OMMT. The enhancements in the mechanical properties and performance of the hybrid bionanocomposite indicate compatibility among the reinforcement, biopolymer, and well-dispersed nanoparticles. This renders the hybrid CNC/OMMT/κ-carrageenan nanocomposites extremely promising for food packaging applications.
    Matched MeSH terms: Biopolymers
  9. Salmiati, Ujang Z, Salim MR, Md Din MF, Ahmad MA
    Water Sci Technol, 2007;56(8):179-85.
    PMID: 17978446
    This study aimed to produce polyhydroxyalkanoates (PHAs) from organic wastes by mixed bacterial cultures using anaerobic-aerobic fermentation systems. Palm oil mill effluent (POME) was used as an organic source, which was cultivated in a two-step-process of acidogenesis and acid polymerization. POME was operated in a continuous flow anaerobic reactor to access volatile fatty acids (VFAs) for PHAs production. During fermentation, VFA concentration was produced in the range of 5 to 8 g/L and the COD concentration reduced up to 80% from 65 g/L. The VFA from anaerobic fermentation was then utilised for PHA production using a mixed culture in availability of aerobic bioreactor. Production of PHAs was recorded high when using a high volume of substrates because of the higher VFA concentration. Even though the maximum PHA content was observed at only 40% of the cell dried weight (CDW), their production and performance are significant in mixed microbial culture.
    Matched MeSH terms: Biopolymers/biosynthesis*
  10. Khan MSJ, Sidek LM, Kamal T, Asiri AM, Khan SB, Basri H, et al.
    Int J Biol Macromol, 2024 Feb;257(Pt 1):128544.
    PMID: 38061525 DOI: 10.1016/j.ijbiomac.2023.128544
    This work reports silver nanoparticles (AgNPs) supported on biopolymer carboxymethyl cellulose beads (Ag-CMC) serves as an efficient catalyst in the reduction process of p-nitrophenol (p-NP) and methyl orange (MO). For Ag-CMC synthesis, first CMC beads were prepared by crosslinking the CMC solution in aluminium nitrate solution and then the CMC beads were introduced into AgNO3 solution to adsorb Ag ions. Field emission scanning electron microscopy (FE-SEM) analysis suggests the uniform distribution of Ag nanoparticles on the CMC beads. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis revealed the metallic and fcc planes of AgNPs, respectively, in the Ag-CMC catalyst. The Ag-CMC catalyst exhibits remarkable reduction activity for the p-NP and MO dyes with the highest rate constant (kapp) of a chemical reaction is 0.519 and 0.697 min-1, respectively. Comparative reduction studies of Ag-CMC with CMC, Fe-CMC and Co-CMC disclosed that Ag-CMC containing AgNPs is an important factore in reducing the organic pollutants like p-NP and MO dyes. During the recyclability tests, the Ag-CMC also maintained high reduction activity, which suggests that CMC protects the AgNPs from leaching during dye reduction reactions.
    Matched MeSH terms: Biopolymers
  11. Khan, A. A., Butt, M.S., Randhawa, M.A., Karim, R., Sultan, M.T., Ahmed, W.
    MyJurnal
    Globally, agro-industrial by products such as fruit waste has attained immense recognition to be used for the extraction of valuable functional ingredients. Pectin is naturally occurring biopolymer that is widely recognized in food industry as well as in biotechnology. Keeping in view, current research was conducted for extraction, characterization and utilization of grapefruit peel pectin from Duncan cultivar. The extracted pectin was characterized for different parameters that explored its role in value added products. Acid extraction was carried out and then pectin was characterized for equivalent weight, ash content and methoxyl content. With the addition of extracted pectin, jam was prepared and analysed for physicochemical analysis and sensory attributes. The maximum extraction (22.55%) was done from grapefruit peel at temperature-120°C with pH-1.5, while minimum extraction (0.41%) was obtained at temperature-120°C with pH-2. Moreover, adding pectin in jam formulation resulted in significant effect on texture of the final product. Conclusively, pectin holds a great potential to be extracted and utilized in fruit based products for best quality and value addition.
    Matched MeSH terms: Biopolymers
  12. Sanagi MM, Loh SH, Wan Ibrahim WN, Pourmand N, Salisu A, Wan Ibrahim WA, et al.
    J Sep Sci, 2016 Mar;39(6):1152-9.
    PMID: 27027592 DOI: 10.1002/jssc.201501207
    Recently, there has been considerable interest in the use of miniaturized sample preparation techniques before the chromatographic monitoring of the analytes in unknown complex compositions. The use of biopolymer-based sorbents in solid-phase microextraction techniques has achieved a good reputation. A great variety of polysaccharides can be extracted from marine plants or microorganisms. Seaweeds are the major sources of polysaccharides such as alginate, agar, agarose, as well as carrageenans. Agarose and alginate (green biopolymers) have been manipulated for different microextraction approaches. The present review is focused on the classification of biopolymer and their applications in multidisciplinary research. Besides, efforts have been made to discuss the state-of-the-art of the new microextraction techniques that utilize commercial biopolymer interfaces such as agarose in liquid-phase microextraction and solid-phase microextraction.
    Matched MeSH terms: Biopolymers
  13. Mirhosseini H, Amid BT
    Chem Cent J, 2013 Jan 04;7(1):1.
    PMID: 23289739 DOI: 10.1186/1752-153X-7-1
    BACKGROUND: A natural carbohydrate biopolymer was extracted from the agricultural biomass waste (durian seed). Subsequently, the crude biopolymer was purified by using the saturated barium hydroxide to minimize the impurities. Finally, the effect of different drying techniques on the flow characteristics and functional properties of the purified biopolymer was investigated. The present study elucidated the main functional characteristics such as flow characteristics, water- and oil-holding capacity, solubility, and foaming capacity.

    RESULTS: In most cases except for oven drying, the bulk density decreased, thus increasing the porosity. This might be attributed to the increase in the inter-particle voids of smaller sized particles with larger contact surface areas per unit volume. The current study revealed that oven-dried gum and freeze-dried gum had the highest and lowest compressibility index, thus indicating the weakest and strongest flowability among all samples. In the present work, the freeze-dried gum showed the lowest angle of repose, bulk, tapped and true density. This indicates the highest porosity degree of freeze dried gum among dried seed gums. It also exhibited the highest solubility, and foaming capacity thus providing the most desirable functional properties and flow characteristics among all drying techniques.

    CONCLUSION: The present study revealed that freeze drying among all drying techniques provided the most desirable functional properties and flow characteristics for durian seed gum.

    Matched MeSH terms: Biopolymers
  14. Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, et al.
    Molecules, 2021 Jan 25;26(3).
    PMID: 33504080 DOI: 10.3390/molecules26030619
    The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
    Matched MeSH terms: Biopolymers/chemistry*
  15. Vigneswari S, Vijaya S, Majid MI, Sudesh K, Sipaut CS, Azizan MN, et al.
    J Ind Microbiol Biotechnol, 2009 Apr;36(4):547-56.
    PMID: 19189144 DOI: 10.1007/s10295-009-0525-z
    Cupriavidus sp. USMAA1020, a local isolate was able to biosynthesis poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer with various 4HB precursors as the sole carbon source. Manipulation of the culture conditions such as cell concentration, phosphate ratio and culture aeration significantly affected the synthesis of P(3HB-co-4HB) copolymer and 4HB composition. P(3HB-co-4HB) copolymer with 4HB compositions ranging from 23 to 75 mol% 4HB with various mechanical and thermal properties were successfully produced by varying the medium aeration. The physical and mechanical properties of P(3HB-co-4HB) copolymers were characterized by NMR spectroscopy, gel-permeation chromatography, tensile test, and differential scanning calorimetry. The number-average molecular weights (M (n)) of copolymers ranged from 260 x 10(3) to 590 x 10(3)Da, and the polydispersities (M (w)/M (n)) were between 1.8 and 3.0. Increases in the 4HB composition lowered the molecular weight of these copolymers. In addition, the increase in 4HB composition affected the randomness of copolymer, melting temperature (T (m)), glass transition temperature (T (g)), tensile strength, and elongation to break. Enzymatic degradation of P(3HB-co-4HB) films with an extracellular depolymerase from Ochrobactrum sp. DP5 showed that the degradation rate increased proportionally with time as the 4HB fraction increased from 17 to 50 mol% but were much lower with higher 4HB fraction. Degradation of P(3HB-co-4HB) films with lipase from Chromobacterium viscosum exhibited highest degradation rate at 75 mol% 4HB. The biocompatibility of P(3HB-co-4HB) copolymers were evaluated and these copolymers have been shown to support the growth and proliferation of fibroblast cells.
    Matched MeSH terms: Biopolymers/metabolism; Biopolymers/chemistry
  16. Shafie NA, Lau NS, Ramachandran H, Amirul AA
    Genome Announc, 2017 Jan 19;5(3).
    PMID: 28104662 DOI: 10.1128/genomeA.01498-16
    Cupriavidus sp. USMAA1020, USMAA2-4, and USMAHM13 are capable of producing polyhydroxyalkanoate (PHA). This biopolymer is an alternative solution to synthetic plastics, whereby polyhydroxyalkanoate synthase is the key enzyme involved in PHA biosynthesis. Here, we report the complete genomes of three Cupriavidus sp. strains: USMAA1020, USMAA2-4, and USMAHM13.
    Matched MeSH terms: Biopolymers
  17. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS One, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
    Matched MeSH terms: Biopolymers/chemistry*
  18. Cheng, L.H., Nur Halawiah, H., Lai, B.N, Yong, H.M., Ang, S.L.
    MyJurnal
    Konjac glucomannan (KGM) was treated with or without sonication and/or hydrochloric acid (HCl).
    Hydrolysis effects on KGM were studied for properties such as degree of hydrolysis, fluidity, molecular mass, and creep properties. The degree of hydrolysis for sonicated KGM and acid treated KGM were not significantly different. However, the combination treatment of acid hydrolysis and sonication was found effective in yielding a smaller molecular weight fraction of KGM and solution with higher fluidity. From the creep analysis, KGM treated with combination treatment exhibited the highest compliance among samples tested. In general, ultrasound mediated acid hydrolysis was found to be a promising technique in degrading high molecular weight biopolymer. This could be attributed to a localized high temperature and high shear forces generated during cavitation that facilitated the endothermic acid hydrolysis.
    Matched MeSH terms: Biopolymers
  19. Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S
    Polymers (Basel), 2021 May 12;13(10).
    PMID: 34065779 DOI: 10.3390/polym13101544
    Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
    Matched MeSH terms: Biopolymers
  20. Salehabadi A, Bakar MA, Bakar NHHA
    Materials (Basel), 2014 Jun 13;7(6):4508-4523.
    PMID: 28788689 DOI: 10.3390/ma7064508
    Multi-component nanohybrids comprising of organo-modified montmorillonite (MMT) and immiscible biopolymer blends of poly(3-hydroxybutyrate) (PHB) and epoxidized natural rubber (ENR-50) were prepared by solvent casting technique. The one and three dimensional morphology of PHB/ENR-50/MMT systems were studied using Polarizing Optical Microscopy (POM) and Scanning Electron Microscopy (SEM). Differential scanning calorimetry (DSC) technique was used to evaluate the thermal properties of the nanohybrids. The melting temperature (Tm) and enthalpy of melting (ΔHm) of PHB decrease with respect to the increase in ENR-50 as well as MMT content. The non-isothermal decomposition of the nanohybrids was studied using thermogravimetric (TG-DTG) analysis. FTIR-ATR spectra supported ring opening of the epoxide group via reaction with carboxyl group of PHB and amines of organic modifier. The reaction mechanism towards the formation of the nanohybrids is proposed.
    Matched MeSH terms: Biopolymers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links