Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Abd-Aziz S, Fernandez CC, Salleh MM, Illias RM, Hassan MA
    Appl Biochem Biotechnol, 2008 Aug;150(2):193-204.
    PMID: 18633736 DOI: 10.1007/s12010-008-8140-4
    Shrimps have been a popular raw material for the burgeoning marine and food industry contributing to increasing marine waste. Shrimp waste, which is rich in organic compounds is an abundant source of chitin, a natural polymer of N-acetyl-D-glucosamine (GluNac), a reducing sugar. For this respect, chitinase-producing fungi have been extensively studied as biocontrol agents. Locally isolated Trichoderma virens UKM1 was used in this study. The effect of agitation and aeration rates using colloidal chitin as control substrate in a 2-l stirred tank reactor gave the best agitation and aeration rates at 200 rpm and 0.33 vvm with 4.1 U/l per hour and 5.97 U/l per hour of maximum volumetric chitinase activity obtained, respectively. Microscopic observations showed shear sensitivity at higher agitation rate of the above system. The oxygen uptake rate during the highest chitinase productivity obtained using sun-dried ground shrimp waste of 1.74 mg of dissolved oxygen per gram of fungal biomass per hour at the kappaL a of 8.34 per hour.
    Matched MeSH terms: Bioreactors/microbiology*
  2. Abdul Manas NH, Chong LY, Tesfamariam YM, Zulkharnain A, Mahmud H, Abang Mahmod DS, et al.
    J Biotechnol, 2020 Jun 20;317:16-26.
    PMID: 32348830 DOI: 10.1016/j.jbiotec.2020.04.011
    Bacterial pigments are potential substitute of chemical photosensitizer for dye-sensitized solar cell (DSSC) due to its non-toxic property and cost-effective production from microbial fermentation. Serratia nematodiphila YO1 was isolated from waterfall in Malaysia and identified using 16S ribosomal RNA. Characterization of the red pigment produced by the bacteria has confirmed the pigment as prodigiosin. Prodigiosin was produced from the fermentation of the bacteria in the presence of different oil substrates. Palm oil exhibited the best performance of cell growth and equivalent prodigiosin yield compared to olive oil and peanut oil. Prodigiosin produced with palm oil supplementation was 93 mg/l compared to 7.8 mg/l produced without supplementation, which recorded 11.9 times improvement. Specific growth rate of the cells improved 1.4 times when palm oil was supplemented in the medium. The prodigiosin pigment produced showed comparable performance as a DSSC sensitizer by displaying an open circuit voltage of 336.1 mV and a maximum short circuit current of 0.098 mV/cm2. This study stands a novelty in proving that the production of prodigiosin is favorable in the presence of palm oil substrate with high saturated fat content, which has not been studied before. This is also among the first bacterial prodigiosin tested as photosensitizer for DSSC application.
    Matched MeSH terms: Bioreactors/microbiology*
  3. Ahmad WA, Zakaria ZA, Khasim AR, Alias MA, Ismail SM
    Bioresour Technol, 2010 Jun;101(12):4371-8.
    PMID: 20185301 DOI: 10.1016/j.biortech.2010.01.106
    The enzymatic reduction of Cr(VI) to Cr(III) by Cr(VI) resistant bacteria followed by chemical precipitation constitutes the ChromeBac system. Acinetobacter haemolyticus was immobilized onto carrier material inside a 0.2m(3) bioreactor. Neutralized electroplating wastewater with Cr(VI) concentration of 17-81 mg L(-1) was fed into the bioreactor (0.11-0.33 m(3)h(-1)). Complete Cr(VI) reduction to Cr(III) was obtained immediately after the start of bioreactor operation. Together with the flocculation, coagulation and filtration, outflow concentration of less than 0.02 mg Cr(VI)L(-1) and 1mg total CrL(-1) were always obtained. Performance of the bioreactor was not affected by fluctuations in pH (6.2-8.4), Cr(VI) (17-81 mg L(-1)), nutrient (liquid pineapple waste, 1-20%v/v) and temperature (30-38 degrees C). Standby periods of up to 10 days can be tolerated without loss in activity. A robust yet effective biotechnology to remove chromium from wastewater is thus demonstrated.
    Matched MeSH terms: Bioreactors/microbiology
  4. Ahmed Z, Hwang SJ, Shin SK, Song J
    J Hazard Mater, 2010 Apr 15;176(1-3):849-55.
    PMID: 20031312 DOI: 10.1016/j.jhazmat.2009.11.114
    The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in a bubble-column bioreactor, and the toluene removal efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The toluene removal efficiency was enhanced when granular activated carbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated toluene removal efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m(3)/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m(3)/h at a toluene loading of 291 g/m(3)/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high toluene removal capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene.
    Matched MeSH terms: Bioreactors/microbiology
  5. Aida AA, Hatamoto M, Yamamoto M, Ono S, Nakamura A, Takahashi M, et al.
    J Biosci Bioeng, 2014 Nov;118(5):540-5.
    PMID: 24930844 DOI: 10.1016/j.jbiosc.2014.04.011
    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors.
    Matched MeSH terms: Bioreactors/microbiology*
  6. Alam MZ, Fakhru'l-Razi A
    PMID: 15508283
    A study on liquid state bioconversion of sewage treatment plant (STP) sludge was assisted to evaluate the performance of batch fermenter compared to shake flask in a laboratory. Bioconversion of STP sludge was highly influenced by the mixed fungal culture of Penicillium corylophilum and Aspergillus niger after 4 days of treatment. The results showed that about 24.9 g kg(-1) dry sludge cake (DSC) was produced with enrichment of fungal biomass protein in fermenter while 20.1 g kg(-1) in shake flask after 4 days of fungal treatment. The effective biodegradation of STP sludge was recorded in both fermenter and shake flask experiment compared to control (uninnoculated sample). The results presented in this study revealed that the overall performance of fermenter in terms of sludge cake (biosolids) accumulation and biodegradation of STP sludge was higher than the shake flask.
    Matched MeSH terms: Bioreactors/microbiology*
  7. Alam MZ, Kabbashi NA, Hussin SN
    J Ind Microbiol Biotechnol, 2009 Jun;36(6):801-8.
    PMID: 19294441 DOI: 10.1007/s10295-009-0554-7
    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.
    Matched MeSH terms: Bioreactors/microbiology*
  8. Alam MZ, Mansor MF, Jalal KC
    J Ind Microbiol Biotechnol, 2009 May;36(5):757-64.
    PMID: 19259713 DOI: 10.1007/s10295-009-0548-5
    A laboratory-scale study was carried out to produce lignin peroxidase (ligninase) by white rot fungus (Phanerochaete chrysosporium) using sewage-treatment-plant (STP) sludge as the major substrate. The optimization was done using full-factorial design (FFD) with agitation and aeration as the two parameters. Nine experiments indicated by the FFD were fermented in a stirred-tank bioreactor for 3 days. A second-order quadratic model was developed using the regression analysis of the experimental results with the linear, quadratic, and interaction effects of the parameters. Analysis of variance (ANOVA) showed a high coefficient of determination (R (2)) value of 0.972, thus indicating a satisfactory fit of the quadratic model with the experimental data. Using statistical analysis, the optimum aeration and agitation rates were determined to be 2.0 vvm and 200 rpm, respectively, with a maximum activity of 225 U l(-1) in the first 3 days of fermentation. The validation experiment showed the maximum activity of lignin peroxidase was 744 U l(-1) after 5 days of fermentation. The results for the tests of the stability of lignin peroxidase showed that the activity was more than 80% of the maximum for the first 12 h of incubation at an optimum pH of 5 and temperature of 55 degrees C.
    Matched MeSH terms: Bioreactors/microbiology*
  9. Alshelmani MI, Loh TC, Foo HL, Lau WH, Sazili AQ
    ScientificWorldJournal, 2013;2013:689235.
    PMID: 24319380 DOI: 10.1155/2013/689235
    Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). The objectives of this study were to characterize the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF) of palm kernel cake (PKC). The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30°C and agitated at 200 rpm. Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC. The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w) on different PKC concentration-to-moisture ratios: 1 : 0.2, 1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067 DSMZ, Bacillus megaterium 9885 ATCC, Paenibacillus curdlanolyticus 10248 DSMZ, and Paenibacillus polymyxa 842 ATCC produced higher enzyme activities as compared to other bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.
    Matched MeSH terms: Bioreactors/microbiology*
  10. Ariffin H, Hassan MA, Shah UK, Abdullah N, Ghazali FM, Shirai Y
    J Biosci Bioeng, 2008 Sep;106(3):231-6.
    PMID: 18929997 DOI: 10.1263/jbb.106.231
    In this study, endoglucanase was produced from oil palm empty fruit bunch (OPEFB) by a locally isolated aerobic bacterium, Bacillus pumilus EB3. The effects of the fermentation parameters such as initial pH, temperature, and nitrogen source on the endoglucanase production were studied using carboxymethyl cellulose (CMC) as the carbon source. Endoglucanase from B. pumilus EB3 was maximally secreted at 37 degrees C, initial pH 7.0 with 10 g/l of CMC as carbon source, and 2 g/l of yeast extract as organic nitrogen source. The activity recorded during the fermentation was 0.076 U/ml. The productivity of the enzyme increased twofold when 2 g/l of yeast extract was used as the organic nitrogen supplement as compared to the non-supplemented medium. An interesting finding from this study is that pretreated OPEFB medium showed comparable results to CMC medium in terms of enzyme production with an activity of 0.063 U/ml. As OPEFB is an abundant solid waste at palm oil mills, it has the potential of acting as a substrate in cellulase production.
    Matched MeSH terms: Bioreactors/microbiology*
  11. Asrami MR, Pirouzi A, Nosrati M, Hajipour A, Zahmatkesh S
    Chemosphere, 2024 Jan;347:140652.
    PMID: 37967679 DOI: 10.1016/j.chemosphere.2023.140652
    Although algal-based membrane bioreactors (AMBRs) have been demonstrated to be effective in treating wastewater (landfill leachate), there needs to be more research into the effectiveness of these systems. This study aims to determine whether AMBR is effective in treating landfill leachate with hydraulic retention times (HRTs) of 8, 12, 14, 16, 21, and 24 h to maximize AMBR's energy efficiency, microalgal biomass production, and removal efficiency using artificial neural network (ANN) models. Experimental results and simulations indicate that biomass production in bioreactors depends heavily on HRT. A decrease in HRT increases algal (Chlorella vulgaris) biomass productivity. Results also showed that 80% of chemical oxygen demand (COD) was removed from algal biomass by bioreactors. To determine the most efficient way to process the features as mentioned above, nondominated sorting genetic algorithm II (NSGA-II) techniques were applied. A mesophilic, suspended-thermophilic, and attached-thermophilic organic loading rate (OLR) of 1.28, 1.06, and 2 kg/m3/day was obtained for each method. Compared to suspended-thermophilic growth (3.43 kg/m3.day) and mesophilic growth (1.28 kg/m3.day), attached-thermophilic growth has a critical loading rate of 10.5 kg/m3.day. An energy audit and an assessment of the system's auto-thermality were performed at the end of the calculation using the Monod equation for biomass production rate (Y) and bacteria death constant (Kd). According to the results, a high removal level of COD (at least 4000 mg COD/liter) leads to auto-thermality.
    Matched MeSH terms: Bioreactors/microbiology
  12. Bari MN, Alam MZ, Muyibi SA, Jamal P, Abdullah-Al-Mamun
    Bioresour Technol, 2009 Jun;100(12):3113-20.
    PMID: 19231166 DOI: 10.1016/j.biortech.2009.01.005
    A sequential optimization based on statistical design and one-factor-at-a-time (OFAT) method was employed to optimize the media constituents for the improvement of citric acid production from oil palm empty fruit bunches (EFB) through solid state bioconversion using Aspergillus niger IBO-103MNB. The results obtained from the Plackett-Burman design indicated that the co-substrate (sucrose), stimulator (methanol) and minerals (Zn, Cu, Mn and Mg) were found to be the major factors for further optimization. Based on the OFAT method, the selected medium constituents and inoculum concentration were optimized by the central composite design (CCD) under the response surface methodology (RSM). The statistical analysis showed that the optimum media containing 6.4% (w/w) of sucrose, 9% (v/w) of minerals and 15.5% (v/w) of inoculum gave the maximum production of citric acid (337.94 g/kg of dry EFB). The analysis showed that sucrose (p<0.0011) and mineral solution (p<0.0061) were more significant compared to inoculum concentration (p<0.0127) for the citric acid production.
    Matched MeSH terms: Bioreactors/microbiology*
  13. Chan YJ, Chong MF, Law CL
    Bioresour Technol, 2012 Dec;125:145-57.
    PMID: 23026327 DOI: 10.1016/j.biortech.2012.08.118
    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system.
    Matched MeSH terms: Bioreactors/microbiology*
  14. Chua LH, Tan SC, Liew MWO
    J Biotechnol, 2018 Jun 20;276-277:34-41.
    PMID: 29679607 DOI: 10.1016/j.jbiotec.2018.04.012
    An intensified process was developed that enables high level production of recombinant core streptavidin (cSAV), a non-glycosylated tetrameric protein utilised in a wide range of applications. A pH-stat fed-batch feeding strategy was employed to achieve high-cell-density and improve volumetric yield of cSAV which was expressed as inclusion bodies (IBs). The effect of induction at different cell densities (OD 20, 60 and 100) on volumetric and specific yield were then studied. Highest volumetric yield of cSAV (1550 mg L-1) was obtained from induction at OD 100 without significant reductions in specific yield. To recover active cSAV from IBs, the possibility of refolding using a temperature-based refolding method was investigated. Refolded cSAV obtained from temperature-based refolding were then compared against cSAV refolded with conventional dialysis and dilution methods using quantitative and qualitative metrics. The temperature-based refolding method was found to improve the yield of cSAV by 6-18% in comparison to conventional methods without compromising quality. Intensification was achieved by reductions in process volumes and a more concentrated product stream. Using the newly developed process, the volumetric yield of cSAV IBs was improved by thirty-six fold in comparison to low-cell-density shake flask cultivation, and 33% of cSAV can be recovered from IBs at 90% purity.
    Matched MeSH terms: Bioreactors/microbiology
  15. Dan Jiang, Fang Z, Chin SX, Tian XF, Su TC
    Sci Rep, 2016 06 02;6:27205.
    PMID: 27251222 DOI: 10.1038/srep27205
    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.
    Matched MeSH terms: Bioreactors/microbiology
  16. Darah I, Sumathi G, Jain K, Lim SH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1682-90.
    PMID: 21947762 DOI: 10.1007/s12010-011-9387-8
    Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.
    Matched MeSH terms: Bioreactors/microbiology
  17. Dinarvand M, Rezaee M, Foroughi M
    Braz J Microbiol, 2017 Jul-Sep;48(3):427-441.
    PMID: 28359854 DOI: 10.1016/j.bjm.2016.10.026
    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R2) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications.
    Matched MeSH terms: Bioreactors/microbiology
  18. El Enshasy H, Malik K, Malek RA, Othman NZ, Elsayed EA, Wadaan M
    PMID: 26907552
    Human gastrointestinal microbiota (HGIM) incorporate a large number of microbes from different species. Anaerobic bacteria are the dominant organisms in this microbial consortium and play a crucial role in human health. In addition to their functional role as the main source of many essential metabolites for human health, they are considered as biotherapeutic agents in the regulation of different human metabolites. They are also important in the prevention and in the treatment of different physical and mental diseases. Bifidobacteria are the dominant anaerobic bacteria in HGIM and are widely used in the development of probiotic products for infants, children and adults. To develop bifidobacteria-based bioproducts, therefore, it is necessary to develop a large-scale biomass production platform based on a good understanding of the ideal medium and bioprocessing parameters for their growth and viability. In addition, high cell viability should be maintained during downstream processing and storage of probiotic cell powder or the final formulated product. In this work we review the latest information about the biology, therapeutic activities, cultivation and industrial production of bifidobacteria.
    Matched MeSH terms: Bioreactors/microbiology*
  19. El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M
    BMC Biotechnol, 2018 11 09;18(1):71.
    PMID: 30413198 DOI: 10.1186/s12896-018-0481-7
    BACKGROUND: Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

    RESULTS: The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

    CONCLUSIONS: Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.

    Matched MeSH terms: Bioreactors/microbiology
  20. Fan S, Ji B, Abu Hasan H, Fan J, Guo S, Wang J, et al.
    Bioprocess Biosyst Eng, 2021 Aug;44(8):1733-1739.
    PMID: 33772637 DOI: 10.1007/s00449-021-02556-0
    Microalgal-bacterial granular sludge (MBGS) process has become a focal point in treating municipal wastewater. However, it remains elusive whether the emerging process can be applied for the treatment of aquaculture wastewater, which contains considerable concentrations of nitrate and nitrite. This study evaluated the feasibility of MBGS process for aquaculture wastewater treatment. Result showed that the MBGS process was competent to remove respective 64.8%, 84.9%, 70.8%, 50.0% and 84.2% of chemical oxygen demand, ammonia-nitrogen, nitrate-nitrogen, nitrite-nitrogen and phosphate-phosphorus under non-aerated conditions within 8 h. The dominant microalgae and bacteria were identified to be Coelastrella and Rhodobacteraceae, respectively. Further metagenomics analysis implied that microbial assimilation was the main contributor in organics, nitrogen and phosphorus removal. Specifically, considerable nitrate and nitrite removals were also obtained with the synergy between microalgae and bacteria. Consequently, this work demonstrated that the MBGS process showed a prospect of becoming an environmentally friendly and efficient alternative in aquaculture wastewater treatment.
    Matched MeSH terms: Bioreactors/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links