Displaying publications 1 - 20 of 366 in total

Abstract:
Sort:
  1. Sheikhzadeh E, Eissa S, Ismail A, Zourob M
    Talanta, 2020 Dec 01;220:121392.
    PMID: 32928412 DOI: 10.1016/j.talanta.2020.121392
    COVID-19 pandemic is a serious global health issue today due to the rapid human to human transmission of SARS-CoV-2, a new type of coronavirus that causes fatal pneumonia. SARS -CoV-2 has a faster rate of transmission than other coronaviruses such as SARS and MERS and until now there are no approved specific drugs or vaccines for treatment. Thus, early diagnosis is crucial to prevent the extensive spread of the disease. The reverse transcription-polymerase chain reaction (RT-PCR) is the most routinely used method until now to detect SARS-CoV-2 infections. However, several other faster and accurate assays are being developed for the diagnosis of COVID-19 aiming to control the spread of infection through the identification of patients and immediate isolation. In this review, we will discuss the various detection methods of the SARS-CoV-2 virus including the recent developments in immunological assays, amplification techniques as well as biosensors.
    Matched MeSH terms: Biosensing Techniques
  2. Yao J, Li S, Zhang L, Yang Y, Gopinath SCB, Lakshmipriya T, et al.
    Int J Biol Macromol, 2020 May 15;151:1133-1138.
    PMID: 31743722 DOI: 10.1016/j.ijbiomac.2019.10.156
    Haemophilia is a blood clotting disorder known as 'Christmas disease' caused when the blood has defect with the clotting factor(s). Bleeding leads various issues, such as chronic pain, arthritis and a serious complication during the surgery. Identifying this disease is mandatory to take the necessary treatment and maintains the normal clotting. It has been proved that the level of factor IX (FIX) is lesser with haemophilia patient and the attempt here is focused to quantify FIX level by interdigitated electrode (IDE) sensor. Single-walled carbon nanotube (SWCNT) was utilized to modify IDE sensing surface. On this surface, dual probing was evaluated with aptamer and antibody to bring the possible advantages. The detection limit with antibody was found to be 1 pM, while aptamer shows 100 fM. Further, a fine-tuning was attempted with sandwich pattern of aptamer-FIX-antibody and antibody-FIX-aptamer and compared. Specific elevation of detection with 10 folds was noticed and displayed the detection at 100 f. in both sandwich patterns. In addition, FIX was detected in the diluted human serum by aptamer-FIX-antibody sandwich, it was found that FIX detected from the dilution factor 1:640. A novel demonstration is with higher discrimination against other clotting factors, XI and VII.
    Matched MeSH terms: Biosensing Techniques*
  3. Zhao X, Gopinath SCB, Zhao W
    Biotechnol Appl Biochem, 2023 Apr;70(2):502-508.
    PMID: 35661417 DOI: 10.1002/bab.2372
    Abdominal aortic aneurysm (AAA), a medical complication, occurs when the aortic area becomes swollen and very large. It is mandatory to identify AAA to avoid the breakdown of aneurysms. C-reactive protein (CRP) has been recognized as one of the biomarkers for identifying AAA due to the possibility of CRP produced in vascular tissue, which contributes to the formation of an aneurysm, and it is elevated in patients with a ruptured AAA. This research work was designed to develop an immunosensor on a multiwalled carbon nanotube (MWCNT)-modified surface to quantify the CRP level. Anti-CRP specificity was constructed on the MWCNT surface through a silane linker to interact with CRP. The detection limit of CRP was calculated as 100 pM with an R2 (determination coefficient) value of 0.9855 (y = 2.3446x - 1.9922) on a linear regression graph. The dose-dependent linear pattern was registered from 200 to 3000 pM and attained the saturation level during binding at 3000 pM. Furthermore, serum-spiked CRP showed a clear increase in the current response, proving the specific recognition of CRP in biological samples. This designed biosensor identifies CRP at a lower level and can help diagnose AAA.
    Matched MeSH terms: Biosensing Techniques*
  4. Liu Z, Gopinath SCB, Wang Z, Li Y, Anbu P, Zhang W
    Mikrochim Acta, 2021 05 15;188(6):187.
    PMID: 33990848 DOI: 10.1007/s00604-021-04834-w
    A new zeolite-iron oxide nanocomposite (ZEO-IO) was extracted from waste fly ash of a thermal power plant and utilized for capturing aptamers used to quantify the myocardial infarction (MI) biomarker N-terminal prohormone B-type natriuretic peptide (NT-ProBNP); this was used in a probe with an integrated microelectrode sensor. High-resolution microscopy revealed that ZEO-IO displayed a clubbell structure and a particle size range of 100-200 nm. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the presence of Si, Al, Fe, and O in the synthesized ZEO-IO. The limit of detection for NT-ProBNP was 1-2 pg/mL (0.1-0.2 pM) when the aptamer was sandwiched with antibody and showed the doubled current response even at a low NT-ProBNP abundance. A dose-dependent interaction was identified for this sandwich with a linear plot in the concentration range 1 to 32 pg/mL (0.1-3.2 pM) with a determination coefficient R2 = 0.9884; y = 0.8425x-0.5771. Without  sandwich, the detection limit was 2-4 pg/mL (0.2-0.4 pM) and the determination coefficient was R2 = 0.9854; y = 1.0996x-1.4729. Stability and nonfouling assays in the presence of bovine serum albumin, cardiac troponin I, and myoglobin revealed that the aptamer-modified surface is stable and specific for NT-Pro-BNP. Moreover, NT-ProBNP-spiked human serum exhibited selective detection. This new nanocomposite-modified surface helps in detecting NT-Pro-BNP and diagnosing MI at stages of low expression.
    Matched MeSH terms: Biosensing Techniques/instrumentation; Biosensing Techniques/methods*
  5. Marlina S, Shu MH, AbuBakar S, Zandi K
    Parasit Vectors, 2015;8:579.
    PMID: 26553263 DOI: 10.1186/s13071-015-1104-y
    The xCELLigence real-time cell analysis (RTCA) system is an established electronic cell sensor array. This system uses microelectronic biosensor technology that is verified for real-time, label-free, dynamic and non-offensive monitoring of cellular features, including detection of viral cytopathic effect (CPE). Screening viral replication inhibitors based on presence of CPE has been applied for different viruses, including chikungunya virus (CHIKV). However, most CPE-based methods, including MTT and MTS assays, do not provide information on the initiation of CPE nor the changes in reaction rate of the virus propagation over time. Therefore, in this study we developed an RTCA method as an accurate and time-based screen for antiviral compounds against CHIKV.
    Matched MeSH terms: Biosensing Techniques
  6. Zandi K
    Methods Mol Biol, 2016;1426:255-62.
    PMID: 27233278 DOI: 10.1007/978-1-4939-3618-2_23
    Screening of viral inhibitors through induction of cytopathic effects (CPE) by conventional method has been applied for various viruses including Chikungunya virus (CHIKV), a significant arbovirus. However, it does not provide the information about cytopathic effect from the beginning and throughout the course of virus replication. Conventionally, most of the approaches are constructed on laborious end-point assays which are not capable for detecting minute and rapid changes in cellular morphology. Therefore, we developed a label-free and dynamical method for monitoring the cellular features that comprises cell attachment, proliferation, and viral cytopathogenicity, known as the xCELLigence real-time cell analysis (RTCA). In this chapter, we provide a RTCA protocol for quantitative analysis of CHIKV replication using an infected Vero cell line treated with ribavirin as an in vitro model.
    Matched MeSH terms: Biosensing Techniques
  7. Loh KS, Lee YH, Musa A, Salmah AA, Zamri I
    Sensors (Basel), 2008 Sep 18;8(9):5775-5791.
    PMID: 27873839
    Magnetic nanoparticles of Fe₃O₄ were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe₃O₄ nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe₃O₄ nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe₃O₄ nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe₃O₄ nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method.
    Matched MeSH terms: Biosensing Techniques
  8. Hidayah, N., Abu Bakar, F., Mahyudin, N.A., Faridah, S., Nur-Azura, M.S., Zaman, M.Z.
    MyJurnal
    This article summarises the current methods for total malachite green (MG) detection which is known as a sum of MG and leuco-malachite green (LMG) that has been used extensively in aquaculture as fungicide, dye color in textile and other purposes in food industries. LMG is a reducing form of MG, where the MG is easily reduced due to the photo-oxidative de-methylation process. Nevertheless, the use of MG had become an issue due to its toxicity effects. Many analytical instruments such as HPLC, LC—MS/MS, GC—MS, and spectrometry have been widely used for detection of MG. However, these methods require long time sample preparation and analysis, expensive, use hazardous reagents and indirect measurements. Hence, other analytical methods which are more sensitive, safe, rapid, inexpensive and portable are required. Alternatively, biosensors promise a more sensitive and rapid detection method for MG and LMG.
    Matched MeSH terms: Biosensing Techniques
  9. Subari N, Mohamad Saleh J, Md Shakaff AY, Zakaria A
    Sensors (Basel), 2012;12(10):14022-40.
    PMID: 23202033 DOI: 10.3390/s121014022
    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.
    Matched MeSH terms: Biosensing Techniques/instrumentation; Biosensing Techniques/methods*
  10. Kafi AKM, Yam CCL, Azmi NS, Yusoff MM
    J Nanosci Nanotechnol, 2018 Apr 01;18(4):2422-2428.
    PMID: 29442911 DOI: 10.1166/jnn.2018.14327
    In this work, the direct electrochemistry of hemoglobin (Hb), which was immobilized on carbonyl functionalized single walled carbon nanotube (SWCNT) and deposited onto a gold (Au) electrode has been described. The synthesis of the network of crosslinked SWCNT/Hb was done with the help of crosslinking agent EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide). The UV-Vis and FTIR spectroscopy of SWCNT/Hb networks showed that Hb maintained its natural structure and kept good stability. In addition with this, scanning electron microscopy (SEM) illustrated that SWCNT/Hb networks had a featured layered structure and Hb being strongly liked with SWCNT surface. Cyclic voltammetry (CV) was used to study and to optimize the performance of the resulting modified electrode. The cyclic voltammetric (CV) responses of SWCNT/Hb networks in pH 7.0 exhibit prominent redox couple for the FeIII/II redox process with a midpoint potential of -0.46 V and -0.34, cathodic and anodic respectively. Furthermore, SWCNT/Hb networks are utilized for the detection of hydrogen peroxide (H2O2). Electrochemical measurements reveal that the resulting SWCNT/Hb electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, and low detection limit. Overall, the electrochemical results are due to excellent biocompatibility and excellent electron transport efficiency of CNT as well as high Hb loading and synergistic catalytic effect of the modified electrode toward H2O2.
    Matched MeSH terms: Biosensing Techniques
  11. Kafi AKM, Alim S, Jose R, Yusoff MM
    J Nanosci Nanotechnol, 2019 04 01;19(4):2027-2033.
    PMID: 30486943 DOI: 10.1166/jnn.2019.15465
    A multiporous nanofiber (MPNFs) of SnO₂ and chitosan has been used for the immobilization of a redox protein, hemoglobin (Hb), onto the surface of glassy carbon electrode (GCE). The multiporous nanofiber of SnO₂ that has very high surface area is synthesized by using electrospinning technique through controlling the tin precursor concentration. Since the constructed MPNFs of SnO₂ exposes very high surface area, it increases the efficiency for biomolecule-loading. The morphology of fabricated electrodes is examined by SEM observation and the absorbance spectra of Hb/(MPNFs) of SnO₂ are studied by UV-Vis analysis. Cyclic Voltammetry and amperometry are employed to study and optimize the performance of the resulting fabricated electrode. After fabrication of the electrode with the Hb and MPNFs of SnO₂, a direct electron transfer between the protein's redox centre and the glassy carbon electrode was established. The modified electrode has showed a couple of redox peak located at -0.29 V and -0.18 V and found to be sensitive to H₂O₂. The fabricated electrode also exhibited an excellent electrocatalytic activity towards the reduction of H₂O₂. The catalysis currents increased linearly to the H₂O₂ concentration in a wide range of 5.0×10-6-1.5×10-4 M. Overall experimental results show that MPNFs of SnO₂ has a role towards the enhancement of the electroactivity of Hb at the electrode surface. Thus the MPNFs of SnO₂ is a very promising candidate for future biosensor applications.
    Matched MeSH terms: Biosensing Techniques*
  12. Azmi NE, Ramli NI, Abdullah J, Abdul Hamid MA, Sidek H, Abd Rahman S, et al.
    Biosens Bioelectron, 2015 May 15;67:129-33.
    PMID: 25113659 DOI: 10.1016/j.bios.2014.07.056
    A novel optical detection system consisting of combination of uricase/HRP-CdS quantum dots (QDs) for the determination of uric acid in urine sample is described. The QDs was used as an indicator to reveal fluorescence property of the system resulting from enzymatic reaction of uricase and HRP (horseradish peroxidase), which is involved in oxidizing uric acid to allaintoin and hydrogen peroxide. The hydrogen peroxide produced was able to quench the QDs fluorescence, which was proportional to uric acid concentration. The system demonstrated sufficient activity of uricase and HRP at a ratio of 5U:5U and pH 7.0. The linearity of the system toward uric acid was in the concentration range of 125-1000 µM with detection limit of 125 µM.
    Matched MeSH terms: Biosensing Techniques*
  13. Dutse SW, Yusof NA
    Sensors (Basel), 2011;11(6):5754-68.
    PMID: 22163925 DOI: 10.3390/s110605754
    Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment.
    Matched MeSH terms: Biosensing Techniques/instrumentation*; Biosensing Techniques/methods*
  14. Rashid JIA, Kannan V, Ahmad MH, Mon AA, Taufik S, Miskon A, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;120:111625.
    PMID: 33545813 DOI: 10.1016/j.msec.2020.111625
    Multidrug resistant Pseudomonas aeruginosa (P. aeruginosa) is known to be a problematic bacterium for being a major cause of opportunistic and nosocomial infections. In this study, reduced graphene oxide decorated with gold nanoparticles (AuNPs/rGO) was utilized as a new sensing material for a fast and direct electrochemical detection of pyocyanin as a biomarker of P. aeruginosa infections. Under optimal condition, the developed electrochemical pyocyanin sensor exhibited a good linear range for the determination of pyocyanin in phosphate-buffered saline (PBS), human saliva and urine at a clinically relevant concentration range of 1-100 μM, achieving a detection limit of 0.27 μM, 1.34 μM, and 2.3 μM, respectively. Our developed sensor demonstrated good selectivity towards pyocyanin in the presence of interfering molecule such as ascorbic acid, uric acid, NADH, glucose, and acetylsalicylic acid, which are commonly found in human fluids. Furthermore, the developed sensor was able to discriminate the signal with and without the presence of pyocyanin directly in P. aeruginosa culture. This proposed technique demonstrates its potential application in monitoring the presence of P. aeruginosa infection in patients.
    Matched MeSH terms: Biosensing Techniques*
  15. Bahadoran M, Noorden AF, Chaudhary K, Mohajer FS, Aziz MS, Hashim S, et al.
    Sensors (Basel), 2014;14(7):12885-99.
    PMID: 25046015 DOI: 10.3390/s140712885
    A new photonics biosensor configuration comprising a Double-side Ring Add-drop Filter microring resonator (DR-ADF) made from SiO2-TiO2 material is proposed for the detection of Salmonella bacteria (SB) in blood. The scattering matrix method using inductive calculation is used to determine the output signal's intensities in the blood with and without presence of Salmonella. The change in refractive index due to the reaction of Salmonella bacteria with its applied antibody on the flagellin layer loaded on the sensing and detecting microresonator causes the increase in through and dropper port's intensities of the output signal which leads to the detection of SB in blood. A shift in the output signal wavelength is observed with resolution of 0.01 nm. The change in intensity and shift in wavelength is analyzed with respect to the change in the refractive index which contributes toward achieving an ultra-high sensitivity of 95,500 nm/RIU which is almost two orders higher than that of reported from single ring sensors and the limit of detection is in the order of 1 × 10(-8) RIU. In applications, such a system can be employed for a high sensitive and fast detection of bacteria.
    Matched MeSH terms: Biosensing Techniques/methods*
  16. Bahadoran M, Noorden AF, Mohajer FS, Abd Mubin MH, Chaudhary K, Jalil MA, et al.
    Artif Cells Nanomed Biotechnol, 2016;44(1):315-21.
    PMID: 25133457 DOI: 10.3109/21691401.2014.948549
    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.
    Matched MeSH terms: Biosensing Techniques/instrumentation*; Biosensing Techniques/methods
  17. Amiri IS, Azzuhri SRB, Jalil MA, Hairi HM, Ali J, Bunruangses M, et al.
    Micromachines (Basel), 2018 Sep 11;9(9).
    PMID: 30424385 DOI: 10.3390/mi9090452
    Light has found applications in data transmission, such as optical fibers and waveguides and in optoelectronics. It consists of a series of electromagnetic waves, with particle behavior. Photonics involves the proper use of light as a tool for the benefit of humans. It is derived from the root word "photon", which connotes the tiniest entity of light analogous to an electron in electricity. Photonics have a broad range of scientific and technological applications that are practically limitless and include medical diagnostics, organic synthesis, communications, as well as fusion energy. This will enhance the quality of life in many areas such as communications and information technology, advanced manufacturing, defense, health, medicine, and energy. The signal transmission methods used in wireless photonic systems are digital baseband and RoF (Radio-over-Fiber) optical communication. Microwave photonics is considered to be one of the emerging research fields. The mid infrared (mid-IR) spectroscopy offers a principal means for biological structure analysis as well as nonintrusive measurements. There is a lower loss in the propagations involving waveguides. Waveguides have simple structures and are cost-efficient in comparison with optical fibers. These are important components due to their compactness, low profile, and many advantages over conventional metallic waveguides. Among the waveguides, optofluidic waveguides have been found to provide a very powerful foundation for building optofluidic sensors. These can be used to fabricate the biosensors based on fluorescence. In an optical fiber, the evanescent field excitation is employed to sense the environmental refractive index changes. Optical fibers as waveguides can be used as sensors to measure strain, temperature, pressure, displacements, vibrations, and other quantities by modifying a fiber. For some application areas, however, fiber-optic sensors are increasingly recognized as a technology with very interesting possibilities. In this review, we present the most common and recent applications of the optical fiber-based sensors. These kinds of sensors can be fabricated by a modification of the waveguide structures to enhance the evanescent field; therefore, direct interactions of the measurand with electromagnetic waves can be performed. In this research, the most recent applications of photonics components are studied and discussed.
    Matched MeSH terms: Biosensing Techniques
  18. Masrie M, Majlis BY, Yunas J
    Biomed Mater Eng, 2014;24(6):1951-8.
    PMID: 25226891 DOI: 10.3233/BME-141004
    This paper discusses the process technology to fabricate multilayer-Polydimethylsiloxane (PDMS) based microfluidic device for bio-particles concentration detection in Lab-on-chip system. The micro chamber and the fluidic channel were fabricated using standard photolithography and soft lithography process. Conventional method by pouring PDMS on a silicon wafer and peeling after curing in soft lithography produces unspecific layer thickness. In this work, a multilayer-PDMS method is proposed to produce a layer with specific and fixed thickness micron size after bonding that act as an optimum light path length for optimum light detection. This multilayer with precise thickness is required since the microfluidic is integrated with optical transducer. Another significant advantage of this method is to provide excellent bonding between multilayer-PDMS layer and biocompatible microfluidic channel. The detail fabrication process were illustrated through scanning electron microscopy (SEM) and discussed in this work. The optical signal responses obtained from the multilayer-PDMS microfluidic channel with integrated optical transducer were compared with those obtained with the microfluidic channel from a conventional method. As a result, both optical signal responses did not show significant differences in terms of dispersion of light propagation for both media.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  19. Ariffin EY, Tan LL, Abd Karim NH, Yook Heng L
    Sensors (Basel), 2018 Apr 12;18(4).
    PMID: 29649118 DOI: 10.3390/s18041173
    A sensitive and selective optical DNA biosensor was developed for dengue virus detection based on novel square-planar piperidine side chain-functionalized N,N'-bis-4-(hydroxysalicylidene)-phenylenediamine-nickel(II), which was able to intercalate via nucleobase stacking within DNA and be functionalized as an optical DNA hybridization marker. 3-Aminopropyltriethoxysilane (APTS)-modified porous silica nanospheres (PSiNs), was synthesized with a facile mini-emulsion method to act as a high capacity DNA carrier matrix. The Schiff base salphen complexes-labelled probe to target nucleic acid on the PSiNs renders a colour change of the DNA biosensor to a yellow background colour, which could be quantified via a reflectance transduction method. The reflectometric DNA biosensor demonstrated a wide linear response range to target DNA over the concentration range of 1.0 × 10-16-1.0 × 10-10 M (R² = 0.9879) with an ultralow limit of detection (LOD) at 0.2 aM. The optical DNA biosensor response was stable and maintainable at 92.8% of its initial response for up to seven days of storage duration with a response time of 90 min. The reflectance DNA biosensor obtained promising recovery values of close to 100% for the detection of spiked synthetic dengue virus serotypes 2 (DENV-2) DNA concentration in non-invasive human samples, indicating the high accuracy of the proposed DNA analytical method for early diagnosis of all potential infectious diseases or pathological genotypes.
    Matched MeSH terms: Biosensing Techniques*
  20. Nurul Najian AB, Engku Nur Syafirah EA, Ismail N, Mohamed M, Yean CY
    Anal Chim Acta, 2016 Jan 15;903:142-8.
    PMID: 26709307 DOI: 10.1016/j.aca.2015.11.015
    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10(-1) genomic equivalent ml(-1). An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device.
    Matched MeSH terms: Biosensing Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links