Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA
    J Agric Food Chem, 2020 Jul 15;68(28):7281-7297.
    PMID: 32551569 DOI: 10.1021/acs.jafc.0c01916
    Glucosinolates (GSLs) are plant secondary metabolites comprising sulfur and nitrogen mainly found in plants from the order of Brassicales, such as broccoli, cabbage, and Arabidopsis thaliana. The activated forms of GSL play important roles in fighting against pathogens and have health benefits to humans. The increasing amount of data on A. thaliana generated from various omics technologies can be investigated more deeply in search of new genes or compounds involved in GSL biosynthesis and metabolism. This review describes a comprehensive inventory of A. thaliana GSLs identified from published literature and databases such as KNApSAcK, KEGG, and AraCyc. A total of 113 GSL genes encoding for 23 transcription components, 85 enzymes, and five protein transporters were experimentally characterized in the past two decades. Continuous efforts are still on going to identify all molecules related to the production of GSLs. A manually curated database known as SuCCombase (http://plant-scc.org) was developed to serve as a comprehensive GSL inventory. Realizing lack of information on the regulation of GSL biosynthesis and degradation mechanisms, this review also includes relevant information and their connections with crosstalk among various factors, such as light, sulfur metabolism, and nitrogen metabolism, not only in A. thaliana but also in other crucifers.
    Matched MeSH terms: Biosynthetic Pathways
  2. Swamy MK, Sinniah UR, Ghasemzadeh A
    Appl Microbiol Biotechnol, 2018 Sep;102(18):7775-7793.
    PMID: 30022261 DOI: 10.1007/s00253-018-9223-y
    Rosmarinic acid (RA) is a highly valued natural phenolic compound that is very commonly found in plants of the families Lamiaceae and Boraginaceae, including Coleus blumei, Heliotropium foertherianum, Rosmarinus officinalis, Perilla frutescens, and Salvia officinalis. RA is also found in other members of higher plant families and in some fern and horned liverwort species. The biosynthesis of RA is catalyzed by the enzymes phenylalanine ammonia lyase and cytochrome P450-dependent hydroxylase using the amino acids tyrosine and phenylalanine. Chemically, RA can be produced via methods involving the esterification of 3,4-dihydroxyphenyllactic acid and caffeic acid. Some of the derivatives of RA include melitric acid, salvianolic acid, lithospermic acid, and yunnaneic acid. In plants, RA is known to have growth-promoting and defensive roles. Studies have elucidated the varied pharmacological potential of RA and its derived molecules, including anticancer, antiangiogenic, anti-inflammatory, antioxidant, and antimicrobial activities. The demand for RA is therefore, very high in the pharmaceutical industry, but this demand cannot be met by plants alone because RA content in plant organs is very low. Further, many plants that synthesize RA are under threat and near extinction owing to biodiversity loss caused by unscientific harvesting, over-collection, environmental changes, and other inherent features. Moreover, the chemical synthesis of RA is complicated and expensive. Alternative approaches using biotechnological methodologies could overcome these problems. This review provides the state of the art information on the chemistry, sources, and biosynthetic pathways of RA, as well as its anticancer properties against different cancer types. Biotechnological methods are also discussed for producing RA using plant cell, tissue, and organ cultures and hairy-root cultures using flasks and bioreactors. The recent developments and applications of the functional genomics approach and heterologous production of RA in microbes are also highlighted. This chapter will be of benefit to readers aiming to design studies on RA and its applicability as an anticancer agent.
    Matched MeSH terms: Biosynthetic Pathways
  3. Chee MJ, Lycett GW, Khoo TJ, Chin CF
    Mol Biotechnol, 2017 Jan;59(1):1-8.
    PMID: 27826796 DOI: 10.1007/s12033-016-9986-2
    Production of vanillin by bioengineering has gained popularity due to consumer demand toward vanillin produced by biological systems. Natural vanillin from vanilla beans is very expensive to produce compared to its synthetic counterpart. Current bioengineering works mainly involve microbial biotechnology. Therefore, alternative means to the current approaches are constantly being explored. This work describes the use of vanillin synthase (VpVAN), to bioconvert ferulic acid to vanillin in a plant system. The VpVAN enzyme had been shown to directly convert ferulic acid and its glucoside into vanillin and its glucoside, respectively. As the ferulic acid precursor and vanillin were found to be the intermediates in the phenylpropanoid biosynthetic pathway of Capsicum species, this work serves as a proof-of-concept for vanillin production using Capsicum frutescens (C. frutescens or hot chili pepper). The cells of C. frutescens were genetically transformed with a codon optimized VpVAN gene via biolistics. Transformed explants were selected and regenerated into callus. Successful integration of the gene cassette into the plant genome was confirmed by polymerase chain reaction. High-performance liquid chromatography was used to quantify the phenolic compounds detected in the callus tissues. The vanillin content of transformed calli was 0.057% compared to 0.0003% in untransformed calli.
    Matched MeSH terms: Biosynthetic Pathways
  4. Mohd Nadzir M, Nurhayati RW, Idris FN, Nguyen MH
    Polymers (Basel), 2021 Feb 10;13(4).
    PMID: 33578978 DOI: 10.3390/polym13040530
    Bacterial exopolysaccharides (EPSs) are an essential group of compounds secreted by bacteria. These versatile EPSs are utilized individually or in combination with different materials for a broad range of biomedical field functions. The various applications can be explained by the vast number of derivatives with useful properties that can be controlled. This review offers insight on the current research trend of nine commonly used EPSs, their biosynthesis pathways, their characteristics, and the biomedical applications of these relevant bioproducts.
    Matched MeSH terms: Biosynthetic Pathways
  5. Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, et al.
    Mar Drugs, 2020 Feb 05;18(2).
    PMID: 32033403 DOI: 10.3390/md18020103
    Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
    Matched MeSH terms: Biosynthetic Pathways
  6. Lee WK, Lim YY, Leow AT, Namasivayam P, Ong Abdullah J, Ho CL
    Carbohydr Polym, 2017 May 15;164:23-30.
    PMID: 28325321 DOI: 10.1016/j.carbpol.2017.01.078
    Agar is a jelly-like biopolymer synthesized by many red seaweeds as their major cell wall component. Due to its excellent rheological properties, it has been exploited commercially for applications in food, cosmetic, pharmaceutical, biomedical and biotechnology industries. Despite its multiple uses, the biosynthesis of this phycocolloid is not fully understood. The current knowledge on agar biosynthesis is inferred from plant biochemistry and putative pathways for ulvan and alginate biosynthesis in green and brown seaweeds, respectively. In this review, the gaps in our current knowledge on agar biosynthetic pathway are discussed, focusing on the biosynthesis of agar precursors, elongation of agar polysaccharide chain and side chain modification. The development of molecular markers for the screening of desired seaweeds for industrial exploitation is also discussed.
    Matched MeSH terms: Biosynthetic Pathways
  7. Saika A, Watanabe Y, Sudesh K, Tsuge T
    J Biosci Bioeng, 2014 Jun;117(6):670-5.
    PMID: 24484910 DOI: 10.1016/j.jbiosc.2013.12.006
    An obligate anaerobic bacterium Clostridium difficile has a unique metabolic pathway to convert leucine to 4-methylvalerate, in which 4-methyl-2-pentenoyl-CoA (4M2PE-CoA) is an intermediate of this pathway. 4M2PE-CoA is also able to be converted to 3-hydroxy-4-methylvalerate (3H4MV), a branched side chain monomer unit, for synthesis of polyhydroxyalkanoate (PHA) copolymer. In this study, to synthesize 3H4MV-containing PHA copolymer from leucine, the leucine metabolism-related enzymes (LdhA and HadAIBC) derived from C. difficile and PHA biosynthesis enzymes (PhaPCJAc and PhaABRe) derived from Aeromonas caviae and Ralstonia eutropha were co-expressed in the codon usage-improved Escherichia coli. Under microaerobic culture conditions, this E. coli was able to synthesize P(3HB-co-12.2 mol% 3H4MV) from glucose with the supplementation of 1 g/L leucine. This strain also produced P(3HB-co-12.6 mol% 3H4MV) using the culture supernatant of leucine overproducer E. coli strain NS1391 as the medium for PHA production, achieving 3H4MV copolymer synthesis only from glucose. Furthermore, we tested the feasibility of the 3H4MV copolymer synthesis in E. coli strain NS1391 from glucose. The recombinant E. coli NS1391 was able to synthesize P(3HB-co-3.0 mol% 3H4MV) from glucose without any leucine supplementation. This study demonstrates the potential of the new metabolic pathway for 3H4MV synthesis using leucine metabolism-related enzymes from C. difficile.
    Matched MeSH terms: Biosynthetic Pathways/genetics
  8. Eng-Chong T, Yean-Kee L, Chin-Fei C, Choon-Han H, Sher-Ming W, Li-Ping CT, et al.
    PMID: 23243448 DOI: 10.1155/2012/473637
    Boesenbergia rotunda is a herb from the Boesenbergia genera under the Zingiberaceae family. B. rotunda is widely found in Asian countries where it is commonly used as a food ingredient and in ethnomedicinal preparations. The popularity of its ethnomedicinal usage has drawn the attention of scientists worldwide to further investigate its medicinal properties. Advancement in drug design and discovery research has led to the development of synthetic drugs from B. rotunda metabolites via bioinformatics and medicinal chemistry studies. Furthermore, with the advent of genomics, transcriptomics, proteomics, and metabolomics, new insights on the biosynthetic pathways of B. rotunda metabolites can be elucidated, enabling researchers to predict the potential bioactive compounds responsible for the medicinal properties of the plant. The vast biological activities exhibited by the compounds obtained from B. rotunda warrant further investigation through studies such as drug discovery, polypharmacology, and drug delivery using nanotechnology.
    Matched MeSH terms: Biosynthetic Pathways
  9. Tan Y, Neo PC, Najimudin N, Sudesh K, Muhammad TS, Othman AS, et al.
    J Basic Microbiol, 2010 Apr;50(2):179-89.
    PMID: 20082371 DOI: 10.1002/jobm.200900138
    Pseudomonas sp. USM 4-55 is a locally isolated bacterium that possesses the ability to produce polyhydroxyalkanoates (PHA) consisting of both poly(3-hydroxybutyrate) [P(3HB)] homopolymer and medium-chain length (mcl) monomers (6 to 14 carbon atoms) when sugars or fatty acids are utilized as the sole carbon source. In this study, the P(3HB) biosynthesis operon carrying the phbC(Ps) P(3HB) synthase was successfully cloned and sequenced using a homologous probe. Three open reading frames encoding NADPH-dependent acetoacetyl-coenzyme A reductase (PhbB(Ps)), beta-ketothiolase (PhbA(Ps)) and P(3HB) synthase (PhbC(Ps)) were found in the phb operon. The genetic organization of phb operon showed a putative promoter region, followed by phbB(Ps)-phbA(Ps)-phbC(Ps). phbR(Ps)which encoded a putative transcriptional activator was located in the opposite orientation, upstream of phbBAC(Ps). Heterologous expression of pGEM''ABex harboring phbC(Ps) in Escherichia coli JM109 resulted in P(3HB) accumulation of up to 40% of dry cell weight (DCW).
    Matched MeSH terms: Biosynthetic Pathways/genetics*
  10. Ng SM, Lee XW, Mat-Isa MN, Aizat-Juhari MA, Adam JH, Mohamed R, et al.
    Sci Rep, 2018 11 22;8(1):17258.
    PMID: 30467394 DOI: 10.1038/s41598-018-35173-1
    Parasitic plants are known to discard photosynthesis thus leading to the deletion or loss of the plastid genes. Despite plastid genome reduction in non-photosynthetic plants, some nucleus-encoded proteins are transported back to the plastid to carry out specific functions. In this work, we study such proteins in Rafflesia cantleyi, a member of the holoparasitic genus well-known for producing the largest single flower in the world. Our analyses of three transcriptome datasets, two holoparasites (R. cantleyi and Phelipanche aegyptiaca) and one photosynthetic plant (Arabidopsis thaliana), suggest that holoparasites, such as R. cantleyi, retain some common plastid associated processes such as biosynthesis of amino acids and lipids, but are missing photosynthesis components that can be extensions of these pathways. The reconstruction of two selected biosynthetic pathways involving plastids correlates the trend of plastid retention to pathway complexity - transcriptome evidence for R. cantleyi suggests alternate mechanisms in regulating the plastidial heme and terpenoid backbone biosynthesis pathways. The evolution to holoparasitism from autotrophy trends towards devolving the plastid genes to the nuclear genome despite the functional sites remaining in the plastid, or maintaining non-photosynthetic processes in the plastid, before the eventual loss of the plastid and any site dependent functions.
    Matched MeSH terms: Biosynthetic Pathways*
  11. Peramuna A, Bae H, Quiñonero López C, Fromberg A, Petersen B, Simonsen HT
    PLoS One, 2020;15(12):e0243620.
    PMID: 33284858 DOI: 10.1371/journal.pone.0243620
    Plant-derived terpenoids are extensively used in perfume, food, cosmetic and pharmaceutical industries, and several attempts are being made to produce terpenes in heterologous hosts. Native hosts have evolved to accumulate large quantities of terpenes in specialized cells. However, heterologous cells lack the capacity needed to produce and store high amounts of non-native terpenes, leading to reduced growth and loss of volatile terpenes by evaporation. Here, we describe how to direct the sesquiterpene patchoulol production into cytoplasmic lipid droplets (LDs) in Physcomitrium patens (syn. Physcomitrella patens), by attaching patchoulol synthase (PTS) to proteins linked to plant LD biogenesis. Three different LD-proteins: Oleosin (PpOLE1), Lipid Droplet Associated Protein (AtLDAP1) and Seipin (PpSeipin325) were tested as anchors. Ectopic expression of PTS increased the number and size of LDs, implying an unknown mechanism between heterologous terpene production and LD biogenesis. The expression of PTS physically linked to Seipin increased the LD size and the retention of patchoulol in the cell. Overall, the expression of PTS was lower in the anchored mutants than in the control, but when normalized to the expression the production of patchoulol was higher in the seipin-linked mutants.
    Matched MeSH terms: Biosynthetic Pathways*
  12. Lim PC, Ali Z, Khan IA, Khan SI, Kassim NK, Awang K, et al.
    Nat Prod Res, 2021 Feb 12.
    PMID: 33576269 DOI: 10.1080/14786419.2021.1885031
    An undescribed conjugated sesquiterpene, amelicarin (1), together with nine known compounds (2-10) were isolated for the first time from Melicope latifolia. Their structures were elucidated by extensive NMR spectroscopic and mass spectrometric methods. The conjugated sesquiterpene possesses a unique 6/6/9/4-ring fused tetracyclic skeleton. The proposed biosynthesis pathway of 1 consist of three reactions steps: (1) polyketide formation, (2) cyclisation and (3) addition to form the conjugated sesquiterpenoid as final metabolite. Out of the ten isolated metabolites, amelicarin (1) showed activity against 4 cancerous cell lines namely SK-MEL skin cancer, KB oral cancer, BT-549 breast cancer, and SK-OV-3 ovarian cancer with IC50 values between 15 and 25 µg/mL.
    Matched MeSH terms: Biosynthetic Pathways
  13. Ong WD, Voo LY, Kumar VS
    PLoS One, 2012;7(10):e46937.
    PMID: 23091603 DOI: 10.1371/journal.pone.0046937
    BACKGROUND: Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed.

    METHODOLOGY/PRINCIPAL FINDINGS: To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown.

    CONCLUSIONS: The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

    Matched MeSH terms: Biosynthetic Pathways
  14. Lajis AFB, Ariff AB
    J Cosmet Dermatol, 2019 Jun;18(3):703-727.
    PMID: 30866156 DOI: 10.1111/jocd.12900
    Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
    Matched MeSH terms: Biosynthetic Pathways/drug effects
  15. Goh LPW, Mahmud F, Lee PC
    Data Brief, 2021 Jun;36:107128.
    PMID: 34095378 DOI: 10.1016/j.dib.2021.107128
    The genome data of Streptomyces sp. FH025 comprised of 8,381,474 bp with a high GC content of 72.51%. The genome contains 7035 coding sequences spanning 1261 contigs. Streptomyces sp. FH025 contains 57 secondary metabolite gene clusters including polyketide synthase, nonribosomal polyketide synthase and other biosynthetic pathways such as amglyccycl, butyrolactone, terpenes, siderophores, lanthipeptide-class-iv, and ladderane. 16S rRNA analysis of Streptomyces sp. FH025 is similar to the Streptomyces genus. This whole genome project has been deposited at NCBI under the accession JAFLNG000000000.
    Matched MeSH terms: Biosynthetic Pathways
  16. Yamamoto T, Tsunematsu Y, Noguchi H, Hotta K, Watanabe K
    Org. Lett., 2015 Oct 16;17(20):4992-5.
    PMID: 26414728 DOI: 10.1021/acs.orglett.5b02435
    Successful activation of the pyranonigrin biosynthetic gene cluster and gene knockout in Aspergillus niger plus in vivo and in vitro assays led to isolation of six new products, including a spiro cyclobutane-containing dimeric compound, which served as the basis for the proposed comprehensive pyranonigrin biosynthetic pathway. Two redox enzymes are key to forming the characteristic fused γ-pyrone core, and a protease homologue performs the exo-methylene formation.
    Matched MeSH terms: Biosynthetic Pathways/genetics
  17. Samadlouie HR, Hamidi-Esfahani Z, Alavi SM, Varastegani B
    Braz J Microbiol, 2014;45(2):439-45.
    PMID: 25242926
    The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA) as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.
    Matched MeSH terms: Biosynthetic Pathways/genetics*
  18. Sangappillai V, Nadarajah K
    Int J Mol Sci, 2020 Sep 30;21(19).
    PMID: 33007862 DOI: 10.3390/ijms21197224
    Lipid biosynthesis produces glycerol, which is important in fueling turgor pressure necessary for germination and penetration of plant host by fungi. As the relationship between pathogenicity and the lipid biosynthetic pathway is not fully understood, we have elucidated the role of the fatty acid synthase beta subunit dehydratase (FAS1) gene in lipid biosynthesis. The FAS1 gene was silenced through homologous double crossover in Magnaporthe oryzae strain S6 to study the effect on lipid biosynthesis. The vegetative growth of Δfas1 mutants show the highest drop on oleic acid (between 10 and 50%), while the mycelial dry weight of mutants dropped significantly on all media. Conidiation of FAS1 mutants show a ~10- and ~5-fold reduction on oatmeal and Potato Dextrose Agar (PDA), respectively. Mutants formed mycelium that were mildly pigmented, indicating that the deletion of FAS1 may have affected melanin biosynthesis. Biochemical and gene expression studies concluded that the fatty acid degradation pathway might have been interrupted by FAS1 deletion. FAS1 mutants showed no enzyme activity on glucose or olive oil, suggesting that the mutants may lack functional peroxisomes and be defective in β-oxidation of fatty acids, hence explaining the reduced lipid deposits in the spores.
    Matched MeSH terms: Biosynthetic Pathways/genetics
  19. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I, et al.
    Int J Mol Sci, 2012;13(3):2692-706.
    PMID: 22489118 DOI: 10.3390/ijms13032692
    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
    Matched MeSH terms: Biosynthetic Pathways/genetics*
  20. Lau NS, Tsuge T, Sudesh K
    Appl Microbiol Biotechnol, 2011 Mar;89(5):1599-609.
    PMID: 21279348 DOI: 10.1007/s00253-011-3097-6
    Burkholderia sp. synthase has been shown to polymerize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate, and 3-hydroxy-4-pentenoic acid monomers. This study was carried out to evaluate the ability of Burkholderia sp. USM (JCM 15050) and its transformant harboring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae to incorporate the newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer. Various culture parameters such as concentrations of nutrient rich medium, fructose and 4-methylvaleric acid as well as harvesting time were manipulated to produce P(3HB-co-3H4MV) with different 3H4MV compositions. The structural properties of PHA containing 3H4MV monomer were investigated by using nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The relative intensities of the bands at 1,183 and 1,228 cm⁻¹ in the FTIR spectra enabled the rapid detection and differentiation of P(3HB-co-3H4MV) from other types of PHA. In addition, the presence of 3H4MV units in the copolymer was found to considerably lower the melting temperature and enthalpy of fusion values compared with poly(3-hydroxybutyrate) (P(3HB)). The copolymer exhibited higher thermo-degradation temperature but similar molecular weight and polydispersity compared with P(3HB).
    Matched MeSH terms: Biosynthetic Pathways/genetics
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links