Displaying publications 1 - 20 of 226 in total

Abstract:
Sort:
  1. Hiew VV, Teoh PL
    Mol Biol Rep, 2024 Mar 03;51(1):383.
    PMID: 38433142 DOI: 10.1007/s11033-024-09324-9
    BACKGROUND: Graphene oxide (GO) is widespread in scaffold engineering owing to its extraordinary properties such as multiple oxygen functional groups, high hydrophilicity ability and biocompatibility. It is known to promote differentiation in mesenchymal stem cells, but concomitant comparison of its modulation on the expression profiles of Wharton's jelly (WJ)-MSC surface markers, lineage differentiation, and epigenetic regulatory genes in basal and induced condition are still lacking. Unraveling the fundamental mechanisms is essential for the effective utilization of WJ-MSCs incorporated with GO in therapy. This study aims to explore the unique gene expression profiles and epigenetic characteristics of WJ-MSCs influenced by GO.

    METHODS AND RESULTS: The characterized GO-coated coverslip served as a substrate for culturing WJ-MSCs. In addition to investigating the impact of GO on cell proliferation and differentiation, we conducted a gene expression study using PCR array, while epigenetic control was assessed through bisulfite sequencing and Western blot analysis. Our findings indicate that the presence of GO maintained the proliferation and survival of WJ-MSCs. In the absence of induction, GO led to minor lipid and glycosaminoglycan deposition in WJ-MSCs. This was evidenced by the sustained expression of pluripotency and lineage-specific genes, demethylation at the OCT4 promoter, and a decrease in H3K9 methylation. In osteo-induced condition, the occurrence of osteogenesis appeared to be guided by BMP/TGF and ERK pathway activation, accompanied by the upregulation of osteogenic-related genes and downregulation of DNMT3b.

    CONCLUSIONS: GO in osteo-induced condition create a favorable microenvironment that promotes the osteogenesis of WJ-MSCs by influencing genetic and epigenetic controls. This helps in advancing our knowledge on the use of GO as priming platform and WJ-MSCs an alternate source for bone repair and regeneration.

    Matched MeSH terms: Blotting, Western
  2. Zangeneh FZ, Bagheri M, Shoushtari MS, Naghizadeh MM
    J Recept Signal Transduct Res, 2021 Jun;41(3):263-272.
    PMID: 32878560 DOI: 10.1080/10799893.2020.1806320
    OBJECTIVE: Alpha and beta-adrenoceptors (ADR-α1, 2, and β2) play a regulatory role in the folliculogenesis and steroidogenesis in the ovarian follicles. This study aimed to measure these adrenoceptors mRNA and its protein levels in cumulus cells (CCs) culture of poor ovarian reserve (POR) and polycystic ovarian syndrome (PCOS) infertile women (IVF candidate) and the effect of clonidine treatment at CCs culture.

    METHODS: This case/control study was conducted in 2017 includes a control (donation oocytes) and two studies (PCO and POR) groups. The ovulation induction drugs were prescribed in all groups. After the oocyte puncture, the follicular fluid was collected and CCs were isolated were cultured. RNA was extracted and cDNA was synthesized and designed the primer for the ADR-α1, 2 and ADR-β2 gene expression. The protein levels were investigated by Western Blot.

    RESULTS: The results showed a high level of three adrenergic expressions in PCO women compared to the control group (p-value

    Matched MeSH terms: Blotting, Western
  3. Raikundalia S, Sa'Dom SAFM, Few LL, Too WCS
    Oncol Lett, 2021 Mar;21(3):183.
    PMID: 33574922 DOI: 10.3892/ol.2021.12444
    Choline kinase (ChK) catalyzes the first step in the CDP-choline pathway for the synthesis of phosphatidylcholine. The α isoform of this enzyme is overexpressed in various types of cancer and its inhibition or downregulation has been applied as an anticancer strategy. In spite of increasing attention being paid to ChK expression, as well as its activity and inhibition in cancer, there are only limited studies available on the regulation of ChK, including its regulation by microRNAs (miRNAs/miRs). The dysregulation of gene expression by miRNAs is a common cause for carcinogenesis. In the present study, miR-367-3p was predicted to target the 3'-untranslated region (UTR) of the ChK α (chka) mRNA transcript. The binding of miR-367-3p to the 3'-UTR of chka was validated by a luciferase assay. The effects of the miR-367-3p mimic on chka gene and protein expression levels were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. miR-367-3p significantly downregulated the expression of chka to ~60% of the negative control. Cells transfected with miR-367-3p exhibited higher levels of apoptosis and a lower cell migration compared with the control. To the best of our knowledge, the present study provided the first experimental evidence of the regulation of chka expression by miR-367-3p. The pro-apoptotic and suppressive effects of miR-367-3p on cell migration were similar to the anticancer effects resulting from the inhibition of ChK enzyme activity or the knockdown of chka gene expression by small interfering RNA. Therefore, these findings may potentially lead to the use of miR-367-3p in anticancer strategies that target ChK.
    Matched MeSH terms: Blotting, Western
  4. Tian Y, Li P, Xiao Z, Zhou J, Xue X, Jiang N, et al.
    Transl Lung Cancer Res, 2021 Feb;10(2):1007-1019.
    PMID: 33718039 DOI: 10.21037/tlcr-21-145
    Background: Chemotherapy is one of the primary treatments for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), however, chemoresistance develops over time and is a bottleneck to effective chemotherapy worldwide. Therefore, the development of new potent therapeutic agents to overcome chemoresistance is of utmost importance. Triptolide is a natural component extracted from Tripterygium Wilfordii, a Chinese plant; our study aimed to evaluate its anti-tumor effects in taxol-resistant human lung adenocarcinoma and investigate its molecular mechanisms of chemoresistance.

    Methods: Triptolide's inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by western blot and IHC.

    Results: Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway.

    Conclusions: Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung adenocarcinoma.

    Matched MeSH terms: Blotting, Western
  5. Choy KW, Zain ZM, Murugan DD, Giribabu N, Zamakshshari NH, Lim YM, et al.
    Front Pharmacol, 2021;12:632169.
    PMID: 33986669 DOI: 10.3389/fphar.2021.632169
    Type 2 diabetes mellitus is characterized by both resistance to the action of insulin and defects in insulin secretion. Bird's nest, which is derived from the saliva of swiftlets are well known to possess multiple health benefits dating back to Imperial China. However, it's effect on diabetes mellitus and influence on the actions of insulin action remains to be investigated. In the present study, the effect of standardized aqueous extract of hydrolyzed edible bird nest (HBN) on metabolic characteristics and insulin signaling pathway in pancreas, liver and skeletal muscle of db/db, a type 2 diabetic mice model was investigated. Male db/db diabetic and its euglycemic control, C57BL/6J mice were administered HBN (75 and 150 mg/kg) or glibenclamide (1 mg/kg) orally for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin and oral glucose tolerance test (OGTT). Insulin signaling and activation of inflammatory pathways in liver, adipose, pancreas and muscle tissue were evaluated by Western blotting and immunohistochemistry. Pro-inflammatory cytokines were measured in the serum at the end of the treatment. The results showed that db/db mice treated with HBN significantly reversed the elevated fasting blood glucose, serum insulin, serum pro-inflammatory cytokines levels and the impaired OGTT without affecting the body weight of the mice in all groups. Furthermore, HBN treatment significantly ameliorated pathological changes and increased the protein expression of insulin, and glucose transporters in the pancreatic islets (GLUT-2), liver and skeletal muscle (GLUT-4). Likewise, the Western blots analysis denotes improved insulin signaling and antioxidant enzyme, decreased reactive oxygen species producing enzymes and inflammatory molecules in the liver and adipose tissues of HBN treated diabetic mice. These results suggest that HBN improves β-cell function and insulin signaling by attenuation of oxidative stress mediated chronic inflammation in the type 2 diabetic mice.
    Matched MeSH terms: Blotting, Western
  6. Rahumatullah A, Ahmad A, Noordin R, Lai JY, Baharudeen Z, Lim TS
    Exp Parasitol, 2020 Dec;219:108029.
    PMID: 33096112 DOI: 10.1016/j.exppara.2020.108029
    Echinococcus granulosus is a worldwide zoonotic infection that causes human cystic echinococcosis (CE) or hydatid disease. The present study describes the isolation and production of a monoclonal antibody against recombinant AgB protein using the developed Human AntibodY Disease ENhanced (HAYDEN)-Filariasis library. The DNA sequences of the isolated clones were analyzed, followed by gene analysis and binding assays. Clone E1 showed a full-length sequence and represents the IgHV5-LV3 antibody gene family. The antibody protein yield was satisfactory, and it reacted specifically against rAgB. The novel E1 protein is potentially useful for the development of an antigen detection assay for CE. The ability of the Brugia malayi immune antibody library to isolate antibodies against Echinococcus granulosus antigens highlights the broad coverage of immune antibody libraries.
    Matched MeSH terms: Blotting, Western
  7. Lua YH, Ong WW, Wong HK, Chew CH
    Trop Life Sci Res, 2020 Oct;31(3):63-75.
    PMID: 33214856 DOI: 10.21315/tlsr2020.31.3.5
    The metabolism of alcohol involves cytochrome P450 2E1 (CYP2E1)-induced oxidative stress, with the association of phosphatidylinositol-3-kinases (PI3K) and nuclear factor kappa B (NFκB) signalling pathways. CYP2E1 is primarily involved in the microsomal ethanol oxidising system, which generates massive reactive oxygen species (ROS) and ultimately leads to oxidative stress and tissue damage. Lauric acid, a major fatty acid in palm kernel oil, has been shown as a potential antioxidant. Here, we aimed to evaluate the use of lauric acid as a potential antioxidant against ethanol-mediated oxidative stress by investigating its effect on CYP2E1 mRNA expression and the signalling pathway in ethanol-induced HepG2 cells. HepG2 cells were firstly treated with different concentrations of ethanol, and subsequently co-treated with different concentrations of lauric acid for 24 h. Total cellular RNA and total protein were extracted, and qPCR and Western blot was carried out. Ethanol induced the mRNA expression of CYP2E1 significantly, but lauric acid was able to downregulate the induced CYP2E1 expression in a dose-dependent manner. Similarly, Western blot analysis and densitometry analysis showed that the phosphorylated PI3K p85 (Tyr458) protein was significantly elevated in ethanol-treated HepG2 cells, but co-treatment with lauric acid repressed the activation of PI3K. However, there was no significant difference in NFκB pathway, in which the normalised NFκB p105 (Ser933) phosphorylation remained constant in any treatment conditions in this study. This suggests that ethanol induced CYP2E1 expression by activating PI3K p85 (Tyr458) pathway, but not the NFκB p105 (Ser933) pathway in HepG2 cells.
    Matched MeSH terms: Blotting, Western
  8. Kumarasamy G, Abdus Sani AA, Olivos-García A, Noordin R, Othman N
    Pathog Glob Health, 2020 09;114(6):333-342.
    PMID: 32536281 DOI: 10.1080/20477724.2020.1780402
    Amoebiasis, caused by Entamoeba histolytica, is one of the leading parasitic infections in the world. This study was aimed at profiling antigenic membrane proteins of a virulent variant of E. histolytica HM-1:IMSS. The membrane proteins were extracted using ProteoExtract® kit (Merck, Darmstadt, Germany) or conventional method, separated using OFFGEL 3100 fractionator (Agilent Technologies, Santa Clara, California), followed by SDS-PAGE and Western blot analysis. Selected antigenic membrane proteins were identified using LC-ESI-MS/MS. Subsequently, the proteins were classified according to their biological processes and predictions were made on membrane and membrane-associated proteins. When the proteins were probed with pooled sera from amoebic liver abscess (ALA) patients, 10 and 15 antigenic proteins with molecular weights 25 to 200 kDa were identified using the ProteoExtract® kit and conventional method, respectively. LC-ESI-MS/MS identified 13 antigenic proteins, and both extraction methods predicted six of them as membrane and membrane-associated proteins. The topmost biological processes which comprised of six proteins were involved in cellular processes.. These antigenic membrane proteins merit further investigations as potential candidates for vaccine studies.
    Matched MeSH terms: Blotting, Western
  9. Ibrahim K, Abdul Murad NA, Harun R, Jamal R
    Int J Mol Med, 2020 Aug;46(2):685-699.
    PMID: 32468002 DOI: 10.3892/ijmm.2020.4619
    Glioblastoma multiforme (GBM) is an aggressive type of brain tumour that commonly exhibits resistance to treatment. The tumour is highly heterogenous and complex kinomic alterations have been reported leading to dysregulation of signalling pathways. The present study aimed to investigate the novel kinome pathways and to identify potential therapeutic targets in GBM. Meta‑analysis using Oncomine identified 113 upregulated kinases in GBM. RNAi screening was performed on identified kinases using ON‑TARGETplus siRNA library on LN18 and U87MG. Tousled‑like kinase 1 (TLK1), which is a serine/threonine kinase was identified as a potential hit. In vitro functional validation was performed as the role of TLK1 in GBM is unknown. TLK1 knockdown in GBM cells significantly decreased cell viability, clonogenicity, proliferation and induced apoptosis. TLK1 knockdown also chemosensitised the GBM cells to the sublethal dose of temozolomide. The downstream pathways of TLK1 were examined using microarray analysis, which identified the involvement of DNA replication, cell cycle and focal adhesion signalling pathways. In vivo validation of the subcutaneous xenografts of stably transfected sh‑TLK1 U87MG cells demonstrated significantly decreased tumour growth in female BALB/c nude mice. Together, these results suggested that TLK1 may serve a role in GBM survival and may serve as a potential target for glioma.
    Matched MeSH terms: Blotting, Western
  10. Lau YS, Zhao L, Zhang C, Li H, Han R
    Life Sci, 2020 Jul 10.
    PMID: 32659370 DOI: 10.1016/j.lfs.2020.118069
    AIM: Up-regulation of inflammasome proteins was reported in dystrophin-deficient muscles. However, it remains to be determined whether inflammasome activation plays a role in the pathogenesis of Duchenne muscular dystrophy. This study was therefore set out to investigate whether genetic disruption of the inflammasome pathway impacts the disease progression in mdx mice.

    MAIN METHODS: Mice deficient in both dystrophin and ASC (encoded by Pycard [PYD And CARD Domain Containing]) were generated. The impact of ASC deficiency on muscular dystrophy of mdx mice were assessed by measurements of serum cytokines, Western blot, real-time PCR and histopathological staining.

    KEY FINDINGS: The pro-inflammatory cytokines such as TNF-α, IL-6, KC/GRO and IL-10 were markedly increased in the sera of 8-week-old mdx mice compared to WT. Western blotting showed that P2X7, caspase-1, ASC and IL-18 were upregulated. Disruption of ASC and dystrophin expression in the mdx/ASC-/- mice was verified by Western blot analysis. Histopathological analysis did not find significant alterations in the muscular dystrophy phenotype in mdx/ASC-/- mice as compared to mdx mice.

    SIGNIFICANCE: Taken together, our results show that disruption of the central adaptor ASC of the inflammasome is insufficient to alleviate muscular dystrophy phenotype in mdx mice.

    Matched MeSH terms: Blotting, Western
  11. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM
    Exp Eye Res, 2020 05;194:107996.
    PMID: 32156652 DOI: 10.1016/j.exer.2020.107996
    Endothelin-1 (ET-1), a potent vasoconstrictor, plays a significant role in the pathophysiology of ocular conditions like glaucoma. Glaucoma is characterized by apoptotic loss of retinal ganglion cells (RGCs) and loss of visual fields and is a leading cause of irreversible blindness. In glaucomatous eyes, retinal ischemia causes release of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α and promotes activation of transcription factors such as nuclear factor kappa B (NFKB) and c-Jun. Magnesium acetyltaurate (MgAT) has previously been shown to protect against ET-1 induced retinal and optic nerve damage. Current study investigated the mechanisms underlying these effects of MgAT, which so far remain unknown. Sprague dawley rats were intravitreally injected with ET-1 with or without pretreatment with MgAT. Seven days post-injection, retinal expression of IL-1β, IL-6, TNF-α, NFKB and c-Jun protein and genes was determined using multiplex assay, Western blot and PCR. Animals were subjected to retrograde labeling of RGCs to determine the extent of RGC survival. RGC survival was also examined using Brn3A staining. Furthermore, visual functions of rats were determined using Morris water maze. It was observed that pre-treatment with MgAT protects against ET-1 induced increase in the retinal expression of IL-1β, IL-6 and TNF-α proteins and genes. It also protected against ET-1 induced activation of NFKB and c-Jun. These effects of MgAT were associated with greater RGC survival and preservation of visual functions in rats. In conclusion, MgAT prevents ET-1 induced RGC loss and loss of visual functions by suppressing neuroinflammatory reaction in rat retinas.
    Matched MeSH terms: Blotting, Western
  12. Aliyu A, Shaari MR, Ahmad Sayuti NS, Reduan MFH, Sithambaram S, Noordin MM, et al.
    Cancers (Basel), 2020 Mar 13;12(3).
    PMID: 32183192 DOI: 10.3390/cancers12030678
    Chemical carcinogens are commonly used to investigate the biology and prognoses of various cancers. This study investigated the mechanism of leukaemogenic effects of n-ethyl-n-nitrosourea (ENU) in a mouse model. A total of 14 3-week-old male Institute of Cancer Research (ICR)-mice were used for the study. The mice were divided into groups A and B with seven mice each. Group A served as the control while group B received intraperitoneal (IP) injections of 80 mg/kg ENU twice with a one-week interval and were monitored monthly for 3 months for the development of leukaemia via blood smear examination. The mice were sacrificed humanely using a CO2 chamber. Blood, spleen, lymph nodes, liver, kidney and lung samples were collected for blood smear examination and histopathological evaluation. The expression of angiogenic protein (VEGF), and pro and anti-apoptotic proteins (BCL2 and BAX), was detected and quantified using Western blot technique. Leukaemia was confirmed by the presence of numerous blast cells in the peripheral blood smear in group B. Similarly, the VEGF and BCL2 proteins were significantly (p < 0.05) upregulated in group B compared to A. It is concluded that IP administration of 80 mg/kg ENU induced leukaemia in ICR-mice 12 weeks post administration through upregulation of angiogenic and anti-apoptotic proteins: VEGF and BCL2.
    Matched MeSH terms: Blotting, Western
  13. Goh XT, Chua KH, Kee BP, Lim YAL
    Trop Med Int Health, 2020 02;25(2):172-185.
    PMID: 31733137 DOI: 10.1111/tmi.13348
    OBJECTIVE: Plasmodium knowlesi, the fifth human malaria parasite, has caused mortality in humans. We aimed to identify P. knowlesi novel binding peptides through a random linear dodecapeptide phage display targeting the 19-kDa fragment of Merozoite Surface Protein-1 protein.

    METHODS: rPkMSP-119 protein was heterologously expressed using Expresso® Solubility and Expression Screening System and competent E. cloni® 10G cells according to protocol. Three rounds of biopanning were performed on purified rPkMSP-119 to identify binding peptides towards rPkMSP-119 using Ph.D.™-12 random phage display library. Binding sites of the identified peptides to PkMSP-119 were in silico predicted using the CABS-dock web server.

    RESULTS: Four phage peptide variants that bound to PkMSP-119 were identified after three rounds of biopanning, namely Pkd1, Pkd2, Pkd3 and Pkd4. The sequences of both Pkd1 and Pkd2 consist of a large number of histidine residues. Pkd1 showed positive binding signal with 6.1× vs. BSA control. Docking results showed that Pkd1 and Pkd2 were ideal binding peptides for PkMSP-119 .

    CONCLUSION: We identified two novel binding peptides of PkMSP-119 , Pkd1 (HFPFHHHKLRAH) and Pkd2 (HPMHMLHKRQHG), through phage display. They provide a valuable starting point for the development of novel therapeutics.

    Matched MeSH terms: Blotting, Western
  14. Nadzirah TTI, Yik FM, Ling LY
    Korean J Parasitol, 2020 Feb;58(1):1-5.
    PMID: 32145721 DOI: 10.3347/kjp.2020.58.1.1
    Sarcocystosis was diagnosed worldwide by serodiagnostic tests utilising the whole parasite, for which the protozoa were maintained in vitro are more costly. In this study, antigenicity of Sarcocystis falcatula recombinant protein (rSfSAG4) was investigated towards the local communities of Pangkor and Tioman Islands and its seroprevalence was surveyed in these islands. A total of 348 human sera were tested using rSfSAG4 by Western blot and ELISA. High prevalence of sarcocystosis was observed in Tioman Island (80.6%) than in Pangkor Island (50.0%) by Western blot. In ELISA, the seroprevalence observed in Tioman Island was 45.9%, whereas in Pangkor Island 63.0%. In other parasitic infections, the prevalence was 34.0% by Western blot and 46.0% by ELISA. In healthy control group, 7% by Western blot and 8% by ELISA showed positivity to rSfSAG4. It is suggested SfSAG4 is a candidate antigen to measure seroprevalence of sarcocystosis.
    Matched MeSH terms: Blotting, Western
  15. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, et al.
    Malar J, 2020 Jan 17;19(1):31.
    PMID: 31952523 DOI: 10.1186/s12936-020-3111-5
    BACKGROUND: Malaria remains a global health problem and accurate surveillance of Plasmodium parasites that are responsible for this disease is required to guide the most effective distribution of control measures. Serological surveillance will be particularly important in areas of low or periodic transmission because patient antibody responses can provide a measure of historical exposure. While methods for detecting host antibody responses to Plasmodium falciparum and Plasmodium vivax are well established, development of serological assays for Plasmodium knowlesi, Plasmodium ovale and Plasmodium malariae have been inhibited by a lack of immunodiagnostic candidates due to the limited availability of genomic information.

    METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.

    RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.

    CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.

    Matched MeSH terms: Blotting, Western
  16. Tai L, Huang CJ, Choo KB, Cheong SK, Kamarul T
    Int J Med Sci, 2020;17(4):457-470.
    PMID: 32174776 DOI: 10.7150/ijms.38832
    Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
    Matched MeSH terms: Blotting, Western
  17. Liu BH, Chong FL, Yuan CC, Liu YL, Yang HM, Wang WW, et al.
    Front Pharmacol, 2020;11:586725.
    PMID: 33708111 DOI: 10.3389/fphar.2020.586725
    Background: Recently, chronic kidney disease (CKD)-mineral and bone disorder (MBD) has become one of common complications occurring in CKD patients. Therefore, development of a new treatment for CKD-MBD is very important in the clinic. In China, Fucoidan (FPS), a natural compound of Laminaria japonica has been frequently used to improve renal dysfunction in CKD. However, it remains elusive whether FPS can ameliorate CKD-MBD. FGF23-Klotho signaling axis is reported to be useful for regulating mineral and bone metabolic disorder in CKD-MBD. This study thereby aimed to clarify therapeutic effects of FPS in the CKD-MBD model rats and its underlying mechanisms in vivo and in vitro, compared to Calcitriol (CTR). Methods: All male rats were divided into four groups: Sham, CKD-MBD, FPS and CTR. The CKD-MBD rat models were induced by adenine administration and uninephrectomy, and received either FPS or CTR or vehicle after induction of renal injury for 21 days. The changes in parameters related to renal dysfunction and renal tubulointerstitial damage, calcium-phosphorus metabolic disorder and bone lesion were analyzed, respectively. Furthermore, at sacrifice, the kidneys and bone were isolated for histomorphometry, immunohistochemistry and Western blot. In vitro, the murine NRK-52E cells were used to investigate regulative actions of FPS or CTR on FGF23-Klotho signaling axis, ERK1/2-SGK1-NHERF-1-NaPi-2a pathway and Klotho deficiency. Results: Using the modified CKD-MBD rat model and the cultured NRK-52E cells, we indicated that FPS and CTR alleviated renal dysfunction and renal tubulointerstitial damage, improved calcium-phosphorus metabolic disorder and bone lesion, and regulated FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. In addition, using the shRNA-Klotho plasmid-transfected cells, we also detected, FPS accurately activated ERK1/2-SGK1-NHERF-1-NaPi-2a pathway through Klotho loss reversal. Conclusion: In this study, we emphatically demonstrated that FPS, a natural anti-renal dysfunction drug, similar to CTR, improves renal injury-related calcium-phosphorus metabolic disorder and bone abnormality in the CKD-MBD model rats. More importantly, we firstly found that beneficial effects in vivo and in vitro of FPS on phosphorus reabsorption are closely associated with regulation of FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. This study provided pharmacological evidences that FPS directly contributes to the treatment of CKD-MBD.
    Matched MeSH terms: Blotting, Western
  18. Abu N, Othman N, Ab Razak NS, Bakarurraini NAAR, Nasir SN, Soh JEC, et al.
    Front Cell Dev Biol, 2020;8:564648.
    PMID: 33324632 DOI: 10.3389/fcell.2020.564648
    Colorectal cancer (CRC) is one of the most widely diagnosed cancers worldwide. It has been shown that the body-mass index (BMI) of the patients could influence the tumor microenvironment, treatment response, and overall survival rates. Nevertheless, the mechanism on how BMI affects the tumorigenesis process, particularly the tumor microenvironment is still elusive. Herein, we postulate that extracellular vesicles (EVs) from CRC patients and non-CRC volunteers with different BMI could affect immune cells differently, in CD8 T cells particularly. We isolated the EVs from the archived serum of CRC patients with high and low BMI, as well as healthy controls with similar BMI status. The EVs were further characterized via electron microscopy, western blot and dynamic light scattering. Then, functional analysis was performed on CD8 T cells including apoptosis, cell proliferation, gene expression profiling and cytokine release upon co-incubation with the different EVs. Our results suggest that CRC-derived EVs were able to regulate the CD8 T cells. In some assays, low BMI EVs were functionally different than high BMI EVs. This study highlights the possible difference in the regulatory mechanism of cancer patients-derived EVs, especially on CD8 T cells.
    Matched MeSH terms: Blotting, Western
  19. Noordin R, Yunus MH, Tan Farrizam SN, Arifin N
    Adv Parasitol, 2020;109:131-152.
    PMID: 32381194 DOI: 10.1016/bs.apar.2020.01.003
    Toxocariasis is a human infection primarily caused by larvae of Toxocara canis from dogs, and also by T. cati from cats. Children have a more significant risk of acquiring the infection due to their closer contact with pets, and greater chances of ingesting soil. Diagnosis of toxocariasis is based on clinical, epidemiological, and serological data. Indirect IgG ELISA is a widely used serodiagnostic method for toxocariasis, with native T. canis TES most commonly used as the antigen. Western blots, using the same antigen, can be used to confirm positive ELISA findings to reduce false-positive results. Improvements in Toxocara serodiagnosis include the use of recombinant TES antigens, simpler and more rapid assay formats, and IgG4 subclass detection. Also, incorporation of recombinant T. cati TES protein increases the diagnostic sensitivity. Development of antigen detection tests using polyclonal and monoclonal antibodies, nanobodies, or aptamers can complement the antibody detection assays, and enhance the effectiveness of the serodiagnosis.
    Matched MeSH terms: Blotting, Western/methods
  20. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Saad N, et al.
    Neurotoxicology, 2019 12;75:89-104.
    PMID: 31521693 DOI: 10.1016/j.neuro.2019.09.008
    Neurodegenerative diseases (NDDs) are pathological conditions characterised by progressive damage of neuronal cells leading to eventual loss of structure and function of the cells. Due to implication of multi-systemic complexities of signalling pathways in NDDs, the causes and preventive mechanisms are not clearly delineated. The study was designed to investigate the potential signalling pathways involved in neuroprotective activities of purely isolated glucomoringin isothiocyanate (GMG-ITC) against H2O2-induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. GMG-ITC was isolated from Moringa oleifera seeds, and confirmed with NMR and LC-MS based methods. Gene expression analysis of phase II detoxifying markers revealed significant increase in the expression of all the genes involved, due to GMG-ITC pre-treatment. GMG-ITC also caused significant decreased in the expression of NF-kB, BACE1, APP and increased the expressions of IkB and MAPT tau genes in the differentiated cells as confirmed by multiplex genetic system analysis. The effect was reflected on the expressed proteins in the differentiated cells, where GMG-ITC caused increased in expression level of Nrf2, SOD-1, NQO1, p52 and c-Rel of nuclear factor erythroid factor 2 (Nrf2) and nuclear factor kappa-B (NF-kB) pathways respectively. The findings revealed the potential of GMG-ITC to abrogate oxidative stress-induced neurodegeneration through Nrf2 and NF-kB signalling pathways.
    Matched MeSH terms: Blotting, Western
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links