Displaying publications 1 - 20 of 94 in total

Abstract:
Sort:
  1. Jani P, Mishra U, Buchmayer J, Walker K, Gözen D, Maheshwari R, et al.
    Pediatr Res, 2023 May;93(6):1701-1709.
    PMID: 36075989 DOI: 10.1038/s41390-022-02297-0
    BACKGROUND: Are thermoregulation and golden hour practices in extremely preterm (EP) infants comparable across the world? This study aims to describe these practices for EP infants based on the neonatal intensive care unit's (NICUs) geographic region, country's income status and the lowest gestational age (GA) of infants resuscitated.

    METHODS: The Director of each NICU was requested to complete the e-questionnaire between February 2019 and August 2021.

    RESULTS: We received 848 responses, from all geographic regions and resource settings. Variations in most thermoregulation and golden hour practices were observed. Using a polyethylene plastic wrap, commencing humidity within 60 min of admission, and having local protocols were the most consistent practices (>75%). The odds for the following practices differed in NICUs resuscitating infants from 22 to 23 weeks GA compared to those resuscitating from 24 to 25 weeks: respiratory support during resuscitation and transport, use of polyethylene plastic wrap and servo-control mode, commencing ambient humidity >80% and presence of local protocols.

    CONCLUSION: Evidence-based practices on thermoregulation and golden hour stabilisation differed based on the unit's region, country's income status and the lowest GA of infants resuscitated. Future efforts should address reducing variation in practice and aligning practices with international guidelines.

    IMPACT: A wide variation in thermoregulation and golden hour practices exists depending on the income status, geographic region and lowest gestation age of infants resuscitated. Using a polyethylene plastic wrap, commencing humidity within 60 min of admission and having local protocols were the most consistent practices. This study provides a comprehensive description of thermoregulation and golden hour practices to allow a global comparison in the delivery of best evidence-based practice. The findings of this survey highlight a need for reducing variation in practice and aligning practices with international guidelines for a comparable health care delivery.

    Matched MeSH terms: Body Temperature Regulation
  2. Honda Y, Onodera S, Takemoto H, Harun NFC, Nomoto T, Matsui M, et al.
    Pharm Res, 2023 Jan;40(1):157-165.
    PMID: 36307662 DOI: 10.1007/s11095-022-03414-8
    PURPOSE: Controlling small interfering RNA (siRNA) activity by external stimuli is useful to exert a selective therapeutic effect at the target site. This study aims to develop a technology to control siRNA activity in a thermo-responsive manner, which can be utilized even at temperatures close to body temperature.

    METHODS: siRNA was conjugated with a thermo-responsive copolymer that was synthesized by copolymerization of N-isopropylacrylamide (NIPAAm) and hydrophilic N,N-dimethylacrylamide (DMAA) to permit thermally controlled interaction between siRNA and an intracellular gene silencing-related protein by utilizing the coil-to-globule phase transition of the copolymer. The composition of the copolymer was fine-tuned to obtain lower critical solution temperature (LCST) around body temperature, and the phase transition behavior was evaluated. The cellular uptake and gene silencing efficiency of the copolymer-siRNA conjugates were then investigated in cultured cells.

    RESULTS: The siRNA conjugated with the copolymer with LCST of 38.0°C exhibited ~ 11.5 nm of the hydrodynamic diameter at 37°C and ~ 9.8 nm of the diameter at 41°C, indicating the coil-globule transition above the LCST. In line with this LCST behavior, its cellular uptake and gene silencing efficiency were enhanced when the temperature was increased from 37°C to 41°C.

    CONCLUSION: By fine-tuning the LCST behavior of the copolymer that was conjugated with siRNA, siRNA activity could be controlled in a thermo-responsive manner around the body temperature. This technique may offer a promising approach to induce therapeutic effects of siRNA selectively in the target site even in the in vivo conditions.

    Matched MeSH terms: Body Temperature*
  3. Koh W, Chakravarthy M, Simon E, Rasiah R, Charuluxananan S, Kim TY, et al.
    BMC Anesthesiol, 2021 08 16;21(1):205.
    PMID: 34399681 DOI: 10.1186/s12871-021-01414-6
    BACKGROUND: Anesthesia leads to impairments in central and peripheral thermoregulatory responses. Inadvertent perioperative hypothermia is hence a common perioperative complication, and is associated with coagulopathy, increased surgical site infection, delayed drug metabolism, prolonged recovery, and shivering. However, surveys across the world have shown poor compliance to perioperative temperature management guidelines. Therefore, we evaluated the prevalent practices and attitudes to perioperative temperature management in the Asia-Pacific region, and determined the individual and institutional factors that lead to noncompliance.

    METHODS: A 40-question anonymous online questionnaire was distributed to anesthesiologists and anesthesia trainees in six countries in the Asia-Pacific (Singapore, Malaysia, Philippines, Thailand, India and South Korea). Participants were polled about their current practices in patient warming and temperature measurement across the preoperative, intraoperative and postoperative periods. Questions were also asked regarding various individual and environmental barriers to compliance.

    RESULTS: In total, 1154 valid survey responses were obtained and analyzed. 279 (24.2%) of respondents prewarm, 508 (44.0%) perform intraoperative active warming, and 486 (42.1%) perform postoperative active warming in the majority of patients. Additionally, 531 (46.0%) measure temperature preoperatively, 767 (67.5%) measure temperature intraoperatively during general anesthesia, and 953 (82.6%) measure temperature postoperatively in the majority of patients. The availability of active warming devices in the operating room (p 

    Matched MeSH terms: Body Temperature*
  4. Fayaz H, Afzal A, Samee ADM, Soudagar MEM, Akram N, Mujtaba MA, et al.
    PMID: 33935484 DOI: 10.1007/s11831-021-09571-0
    Covid-19 has given one positive perspective to look at our planet earth in terms of reducing the air and noise pollution thus improving the environmental conditions globally. This positive outcome of pandemic has given the indication that the future of energy belong to green energy and one of the emerging source of green energy is Lithium-ion batteries (LIBs). LIBs are the backbone of the electric vehicles but there are some major issues faced by the them like poor thermal performance, thermal runaway, fire hazards and faster rate of discharge under low and high temperature environment,. Therefore to overcome these problems most of the researchers have come up with new methods of controlling and maintaining the overall thermal performance of the LIBs. The present review paper mainly is focused on optimization of thermal and structural design parameters of the LIBs under different BTMSs. The optimized BTMS generally demonstrated in this paper are maximum temperature of battery cell, battery pack or battery module, temperature uniformity, maximum or average temperature difference, inlet temperature of coolant, flow velocity, and pressure drop. Whereas the major structural design optimization parameters highlighted in this paper are type of flow channel, number of channels, length of channel, diameter of channel, cell to cell spacing, inlet and outlet plenum angle and arrangement of channels. These optimized parameters investigated under different BTMS heads such as air, PCM (phase change material), mini-channel, heat pipe, and water cooling are reported profoundly in this review article. The data are categorized and the results of the recent studies are summarized for each method. Critical review on use of various optimization algorithms (like ant colony, genetic, particle swarm, response surface, NSGA-II, etc.) for design parameter optimization are presented and categorized for different BTMS to boost their objectives. The single objective optimization techniques helps in obtaining the optimal value of important design parameters related to the thermal performance of battery cooling systems. Finally, multi-objective optimization technique is also discussed to get an idea of how to get the trade-off between the various conflicting parameters of interest such as energy, cost, pressure drop, size, arrangement, etc. which is related to minimization and thermal efficiency/performance of the battery system related to maximization. This review will be very helpful for researchers working with an objective of improving the thermal performance and life span of the LIBs.
    Matched MeSH terms: Body Temperature
  5. Syafaat MN, Azra MN, Mohamad F, Che-Ismail CZ, Amin-Safwan A, Asmat-Ullah M, et al.
    Animals (Basel), 2021 Apr 16;11(4).
    PMID: 33923853 DOI: 10.3390/ani11041146
    This study was carried out to determine the physiological changes (survival, growth, molting cycle, sex differentiation, and gill condition) of mud crab, Scylla paramamosain crablet at different water temperatures of 24, 28 and 32 °C, and ambient temperature of 27 to 30 °C. Thermoregulatory behavior, represented by preferred temperature (29.83 ± SD 2.47 °C), critical thermal minimum (17.33 ± SD 0.58 °C), critical thermal maximum (40 ± SD 0.00 °C), and thermal tolerance interval (22.67 ± SD 0.58 °C), were checked for Crablet 1 stage only (with ambient temperature as acclimation temperature).Both low (24 °C) and high (32 °C) temperatures were associated with lower growth performance, and survival rate (p < 0.05), in comparison with both 28 °C and ambient temperature treatments.Male ratio at low temperaturetreatment (24 °C) was higher (80.09 ± SD 18.86%) than for other treatments (p < 0.05), observed as 44.81 ± D 10.50%, 41.94 ± SD 19.44%, and 76.30 ± SD 5.13% for 28 °C, 32 °C and ambient temperature treatments, respectively. However, there was no significant difference observed between 24 °C, 28 °C, and ambient temperature treatments. Anatomical alterations of gill lamellae of S. paramamosain crablet for both 32 °C, and 24 °C treatments, appeared thinner and paler than at both 28 °C, and ambient temperature treatments. Based on this study, temperature of 28 to 30 °C was recommended as the optimal temperature for the long-term nursery phase of S. paramamosain.
    Matched MeSH terms: Body Temperature
  6. Mishu MK, Rokonuzzaman M, Pasupuleti J, Shakeri M, Rahman KS, Binzaid S, et al.
    Sensors (Basel), 2021 Apr 08;21(8).
    PMID: 33917665 DOI: 10.3390/s21082604
    In this paper, an integrated thermoelectric (TE) and photovoltaic (PV) hybrid energy harvesting system (HEHS) is proposed for self-powered internet of thing (IoT)-enabled wireless sensor networks (WSNs). The proposed system can run at a minimum of 0.8 V input voltage under indoor light illumination of at least 50 lux and a minimum temperature difference, ∆T = 5 °C. At the lowest illumination and temperature difference, the device can deliver 0.14 W of power. At the highest illumination of 200 lux and ∆T = 13 °C, the device can deliver 2.13 W. The developed HEHS can charge a 0.47 F, 5.5 V supercapacitor (SC) up to 4.12 V at the combined input voltage of 3.2 V within 17 s. In the absence of any energy sources, the designed device can back up the complete system for 92 s. The sensors can successfully send 39 data string to the webserver within this time at a two-second data transmission interval. A message queuing telemetry transport (MQTT) based IoT framework with a customised smartphone application 'MQTT dashboard' is developed and integrated with an ESP32 Wi-Fi module to transmit, store, and monitor the sensors data over time. This research, therefore, opens up new prospects for self-powered autonomous IoT sensor systems under fluctuating environments and energy harvesting regimes, however, utilising available atmospheric light and thermal energy.
    Matched MeSH terms: Body Temperature
  7. Yasmin F, Tamrin KF, Sheikh NA, Barroy P, Yassin A, Khan AA, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803364 DOI: 10.3390/ma14051311
    Laser-assisted high speed milling is a subtractive machining method that employs a laser to thermally soften a difficult-to-cut material's surface in order to enhance machinability at a high material removal rate with improved surface finish and tool life. However, this machining with high speed leads to high friction between workpiece and tool, and can result in high temperatures, impairing the surface quality. Use of conventional cutting fluid may not effectively control the heat generation. Besides, vegetable-based cutting fluids are invariably a major source of food insecurity of edible oils which is traditionally used as a staple food in many countries. Thus, the primary objective of this study is to experimentally investigate the effects of water-soluble sago starch-based cutting fluid on surface roughness and tool's flank wear using response surface methodology (RSM) while machining of 316 stainless steel. In order to observe the comparison, the experiments with same machining parameters are conducted with conventional cutting fluid. The prepared water-soluble sago starch based cutting fluid showed excellent cooling and lubricating performance. Therefore, in comparison to the machining using conventional cutting fluid, a decrease of 48.23% in surface roughness and 38.41% in flank wear were noted using presented approach. Furthermore, using the extreme learning machine (ELM), the obtained data is modeled to predict surface roughness and flank wear and showed good agreement between observations and predictions.
    Matched MeSH terms: Body Temperature Regulation
  8. Pazikadin AR, Rifai D, Ali K, Mamat NH, Khamsah N
    Sensors (Basel), 2020 Nov 25;20(23).
    PMID: 33255797 DOI: 10.3390/s20236744
    Photovoltaic (PV) systems need measurements of incident solar irradiance and PV surface temperature for performance analysis and monitoring purposes. Ground-based network sensor measurement is preferred in many near real-time operations such as forecasting and photovoltaic (PV) performance evaluation on the ground. Hence, this study proposed a Fuzzy compensation scheme for temperature and solar irradiance wireless sensor network (WSN) measurement on stand-alone solar photovoltaic (PV) system to improve the sensor measurement. The WSN installation through an Internet of Things (IoT) platform for solar irradiance and PV surface temperature measurement was fabricated. The simulation for the solar irradiance Fuzzy Logic compensation (SIFLC) scheme and Temperature Fuzzy Logic compensation (TFLC) scheme was conducted using Matlab/Simulink. The simulation result identified that the scheme was used to compensate for the error temperature and solar irradiance sensor measurements over a variation temperature and solar irradiance range from 20 to 60 °C and from zero up to 2000 W/m2. The experimental results show that the Fuzzy Logic compensation scheme can reduce the sensor measurement error up to 17% and 20% for solar irradiance and PV temperature measurement.
    Matched MeSH terms: Body Temperature
  9. Arif MMA, Fauzi MB, Nordin A, Hiraoka Y, Tabata Y, Yunus MHM
    Polymers (Basel), 2020 Nov 13;12(11).
    PMID: 33202700 DOI: 10.3390/polym12112678
    Gelatin possesses biological properties that resemble native skin and can potentially be fabricated as a skin substitute for full-thickness wound treatment. The native property of gelatin, whereby it is easily melted and degraded at body temperature, could prevent its biofunctionality for various applications. This study aimed to fabricate and characterise buffalo gelatin (Infanca halal certified) crosslinked with chemical type crosslinker (genipin and genipin fortified with EDC) and physicaly crosslink using the dihydrothermal (DHT) method. A porous gelatin sponge (GS) was fabricated by a freeze-drying process followed by a complete crosslinking via chemical-natural and synthetic-or physical intervention using genipin (GNP), 1-ethyl-3-(3-dimethylaminopropyl) (EDC) and dihydrothermal (DHT) methods, respectively. The physicochemical, biomechanical, cellular biocompatibility and cell-biomaterial interaction of GS towards human epidermal keratinocytes (HEK) and dermal fibroblasts (HDF) were evaluated. Results showed that GS had a uniform porous structure with pore size ranging between 60 and 200 µm with high porosity (>78.6 ± 4.1%), high wettability (<72.2 ± 7.0°), high tensile strain (>13.65 ± 1.10%) and 14 h of degradation rate. An increase in the concentration and double-crosslinking approach demonstrated an increment in the crosslinking degree, enzymatic hydrolysis resistance, thermal stability, porosity, wettability and mechanical strength. The GS can be tuned differently from the control by approaching the GS via a different crosslinking strategy. However, a decreasing trend was observed in the pore size, water retention and water absorption ability. Crosslinking with DHT resulted in large pore sizes (85-300 µm) and low water retention (236.9 ± 18.7 g/m2·day) and a comparable swelling ratio with the control (89.6 ± 7.1%). Moreover no changes in the chemical content and amorphous phase identification were observed. The HEK and HDF revealed slight toxicity with double crosslinking. HEK and HDF attachment and proliferation remain similar to each crosslinking approach. Immunogenicity was observed to be higher in the double-crosslinking compared to the single-crosslinking intervention. The fabricated GS demonstrated a dynamic potential to be tailored according to wound types by manipulating the crosslinking intervention.
    Matched MeSH terms: Body Temperature
  10. Tan PH, Teng XX, Gan ZY, Tan SQ
    Malays J Med Sci, 2020 Jul;27(4):139-146.
    PMID: 32863753 MyJurnal DOI: 10.21315/mjms2020.27.4.13
    Background: Appendicitis complicated with appendiceal perforation is common among children. The delay in diagnosis of appendicitis is due to children's varied presentations and their difficulty in communicating symptoms. We aimed to identify clinical factors that aid in predicting acute appendicitis (AA) and perforated appendicitis (PA) among children.

    Methods: This retrospective study involved 215 children aged 12 years and below with the initial diagnosis of AA and PA. Clinical factors studied were demographics, presenting symptoms, body temperature on admission (BTOA), white cell count (WCC), absolute neutrophil count (ANC), platelet count and urinalysis. Simple and multiple logistic regressions were used to determine the odds ratio of the statistically significant clinical factors. Results: The mean age of the included children was 7.98 ± 2.37 years. The odds of AA increased by 2.177 times when the age was ≥ 8 years (P = 0.022), 2.380 times when duration of symptoms ≥ 2 days (P = 0.011), 2.447 times with right iliac fossa (RIF) pain (P = 0.007), 2.268 times when BTOA ≥ 38 °C (P = 0.020) and 2.382 times when neutrophil percentage was ≥ 76% (P = 0.045). It decreased by 0.409 times with non-RIF pain (P = 0.007). The odds of PA was increased by 4.672 times when duration of symptoms ≥ 2 days (P = 0.005), 3.611 times when BTOA ≥ 38 °C (P = 0.015) and 3.678 times when neutrophil percentage ≥ 76% (P = 0.016). There was no significant correlation between WCC and ANC with AA and PA.

    Conclusion: Older children with longer duration of symptoms, RIF pain and higher BTOA are more likely to have appendicitis. The risk of appendiceal perforation increases with longer duration of symptoms and higher BTOA.

    Matched MeSH terms: Body Temperature
  11. Jafar AB, Shafie S, Ullah I
    Heliyon, 2020 Jun;6(6):e04201.
    PMID: 32637680 DOI: 10.1016/j.heliyon.2020.e04201
    In this article, we numerically investigate the influence of thermal radiation and heat generation on the flow of an electrically conducting nanofluid past a nonlinear stretching sheet through a porous medium with frictional heating. The partial differential equations governing the flow problems are reduced to ordinary differential equations via similarity variables. The reduced equations are then solved numerically with the aid of Keller box method. The influence of physical parameters such as nanoparticle volume fraction ϕ, permeability parameter K, nonlinear stretching sheet parameter n, magnetic field parameter M, heat generation parameter Q and Eckert number Ec on the flow field, temperature distribution, skin friction and Nusselt number are studied and presented in graphical illustrations and tabular forms. The results obtained reveal that there is an enhancement in the rate of heat transfer with the rise in nanoparticle volume fraction and permeability parameter. The temperature distribution is also influenced with the presence of K, Q, R and ϕ. This shows that the solid volume fraction of nanoparticle can be used in controlling the behaviours of heat transfer and nanofluid flows.
    Matched MeSH terms: Body Temperature Regulation
  12. Lei TH, Schlader ZJ, Che Muhamed AM, Zheng H, Stannard SR, Kondo N, et al.
    Eur J Appl Physiol, 2020 Apr;120(4):841-852.
    PMID: 32072226 DOI: 10.1007/s00421-020-04322-8
    PURPOSE: Recent studies have determined that ambient humidity plays a more important role in aerobic performance than dry-bulb temperature does in warm environments; however, no studies have kept humidity constant and independently manipulated temperature. Therefore, the purpose of this study was to determine the contribution of dry-bulb temperature, when vapor pressure was matched, on the thermoregulatory, perceptual and performance responses to a 30-min cycling work trial.

    METHODS: Fourteen trained male cyclists (age: 32 ± 12 year; height: 178 ± 6 cm; mass: 76 ± 9 kg; [Formula: see text]: 59 ± 9 mL kg-1 min-1; body surface area: 1.93 ± 0.12 m2; peak power output: 393 ± 53 W) volunteered, and underwent 1 exercise bout in moderate heat (MOD: 34.9 ± 0.2 °C, 50.1 ± 1.1% relative humidity) and 1 in mild heat (MILD: 29.2 ± 0.2 °C, 69.4 ± 0.9% relative humidity) matched for vapor pressure (2.8 ± 0.1 kPa), with trials counterbalanced.

    RESULTS: Despite a higher weighted mean skin temperature during MOD (36.3 ± 0.5 vs. 34.5 ± 0.6 °C, p 

    Matched MeSH terms: Body Temperature Regulation*
  13. Thonis A, Ceballos RM, Tuen AA, Lovegrove BG, Levesque DL
    Physiol Biochem Zool, 2020 3 21;93(3):199-209.
    PMID: 32196407 DOI: 10.1086/708467
    Tropical ectotherms are generally believed to be more vulnerable to global heating than temperate species. Currently, however, we have insufficient knowledge of the thermoregulatory physiology of equatorial tropical mammals, particularly of small diurnal mammals, to enable similar predictions. In this study, we measured the resting metabolic rates (via oxygen consumption) of wild-caught lesser treeshrews (Tupaia minor, order Scandentia) over a range of ambient temperatures. We predicted that, similar to other treeshrews, T. minor would exhibit more flexibility in body temperature regulation and a wider thermoneutral zone compared with other small mammals because these thermoregulatory traits provide both energy and water savings at high ambient temperatures. Basal metabolic rate was on average

    1.03
    ±
    0.10

    mL O2 h-1 g-1, which is within the range predicted for a 65-g mammal. We calculated the lower critical temperature of the thermoneutral zone at 31.0°C (95% confidence interval: 29.3°-32.7°C), but using metabolic rates alone, we could not determine the upper critical temperature at ambient temperatures as high as 36°C. The thermoregulatory characteristics of lesser treeshrews provide a means of saving energy and water at temperatures well in excess of their current environmental temperatures. Our research highlights the knowledge gaps in our understanding of the energetics of mammals living in high-temperature environments, specifically in the equatorial tropics, and questions the purported lack of variance in the upper critical temperatures of the thermoneutral zone in mammals, emphasizing the importance of further research in the tropics.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  14. Kirimtat A, Krejcar O, Selamat A, Herrera-Viedma E
    BMC Bioinformatics, 2020 Mar 11;21(Suppl 2):88.
    PMID: 32164529 DOI: 10.1186/s12859-020-3355-7
    BACKGROUND: In biomedicine, infrared thermography is the most promising technique among other conventional methods for revealing the differences in skin temperature, resulting from the irregular temperature dispersion, which is the significant signaling of diseases and disorders in human body. Given the process of detecting emitted thermal radiation of human body temperature by infrared imaging, we, in this study, present the current utility of thermal camera models namely FLIR and SEEK in biomedical applications as an extension of our previous article.

    RESULTS: The most significant result is the differences between image qualities of the thermograms captured by thermal camera models. In other words, the image quality of the thermal images in FLIR One is higher than SEEK Compact PRO. However, the thermal images of FLIR One are noisier than SEEK Compact PRO since the thermal resolution of FLIR One is 160 × 120 while it is 320 × 240 in SEEK Compact PRO.

    CONCLUSION: Detecting and revealing the inhomogeneous temperature distribution on the injured toe of the subject, we, in this paper, analyzed the imaging results of two different smartphone-based thermal camera models by making comparison among various thermograms. Utilizing the feasibility of the proposed method for faster and comparative diagnosis in biomedical problems is the main contribution of this study.

    Matched MeSH terms: Body Temperature
  15. Nurfarhana Rosman, Nur Syazwani Abdul Malek, Mohamad Rusop Mahmood, Zuraida Khusaimi, Noor Asnida Asli
    Science Letters, 2020;14(2):47-57.
    MyJurnal
    Effect of different storage temperatures on physical and physiological changes of Golden Lily mango was investigated. Zinc oxide (ZnO) nanoparticles edible coating was prepared by sol-gel method and Golden Lily mangoes were dipped in the solution and stored at different (32℃, 27℃ and 5℃) temperatures for 7 days. The mangoes were characterized by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), Fourier-transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) after 7 days of storage. Both the analysis of FESEM and EDX revealed the highest volume ratio of ZnO nanoparticles with a homogeneous dispersion throughout the mango peel surface is at 5℃. FTIR spectra revealed the absence of Zn–O bonding as metal oxides absorption is expected to be in the region below 700 cm-1. The mangoes stored at 5℃ delayed ripening, slowed down weight loss and found to be firmer than mangoes stored at 32℃ and 27℃.
    Matched MeSH terms: Body Temperature
  16. Laila Fadhillah Ulta Delestri, Kenshiro Ito, Gan Hong Seng, Muhammad Faiz Md Shakhih, Asnida Abdul Wahab
    MyJurnal
    Introduction: Detecting breast cancer at earlier stage is crucial to increase the survival rate. Mammography as the golden screening tool has shown to be less effective for younger women due to denser breast tissue. Infrared Ther- mography has been touted as an adjunct modality to mammography. Further investigation of thermal distribution in breast cancer patient is important prior to its clinical interpretation. Therefore, thermal profiling using 3D compu- tational simulation was carried out to understand the effect of changes in size and location of tumour embedded in breast to the surface temperature distribution at different breast densities. Methods: Extremely dense (ED) and pre- dominantly fatty dense (PF) breast models were developed and simulated using finite element analysis (FEA). Pennes’ bioheat equation was adapted to show the heat transfer mechanism by providing appropriate thermophysical prop- erties in each tissue layer. 20 case studies with various tumour size embedded at two asymmetrical positions in the breast models were analysed. Quantitative and qualitative analyses were performed by recording the temperature values along the arc of breast, calculating of temperature difference at the peaks and comparing multiple thermal images. Results: Bigger size of tumour demands a larger increase in breast surface temperatures. As tumour is located far from the centre of the breast or near to the edge, there was a greater shift of temperature peak. Conclusion: Size and location of tumour in various levels of breast density should be considered as a notable factor to thermal profile on breast when using thermography for early breast cancer detection.
    Matched MeSH terms: Body Temperature
  17. Lai LL, See MH, Rampal S, Ng KS, Chan L
    J Clin Monit Comput, 2019 Dec;33(6):1105-1112.
    PMID: 30915603 DOI: 10.1007/s10877-019-00259-2
    Thermal imbalances are very common during surgery. Hypothermia exposes the patient to post-operative shivering, cardiac dysfunction, coagulopathy, bleeding, wound infection, delayed anesthesia recovery, prolonged hospital stay and increased hospitalization cost. There are many factors contributing to intraoperative hypothermia. This is a prospective cohort study conducted through observation and measurement of pediatric surgical patients' temperature. Convenience sampling methods were used in this study. Initial skin temperature and core temperature at 10 min, 30 min,1 h, 2 h, 3 h, 4 h, 5 h, 6 h and at the end of surgery were recorded. Body temperature was monitored from time of transfer to the operating table until recovery and discharge to the respective pediatric ward. The overall incidence of intraoperative hypothermia was still very high at about 46.6% even though active and passive temperature management were carried out during surgery. Patient's age, body weight, duration of surgery, type of surgery, intraoperative blood loss, type of anesthesia and operating room temperature were factors that contributed to intraoperative hypothermia. Hypothermia is common in surgery, especially in major and long duration surgery. Intraoperative hypothermia can be life threatening if it is not handled carefully. Various methods are used before, during and after surgery to maintain a patient's body temperature within the normothermia range. The use of an active warming device like the Bair Hugger® air-forced warming system seems to be a good method for reducing the risk of intraoperative hypothermia and effectively maintaining body temperature for all major and minor surgeries.
    Matched MeSH terms: Body Temperature; Body Temperature Regulation
  18. Odhah MN, Abdullah Jesse FF, Teik Chung EL, Mahmood Z, Haron AW, Mohd Lila MA, et al.
    Microb Pathog, 2019 Oct;135:103628.
    PMID: 31325572 DOI: 10.1016/j.micpath.2019.103628
    Caseous lymphadenitis is an infectious disease of almost all animals, particularly small ruminants that are caused by Corynebacterium pseudotuberculosis. The organism causes the formation of suppurative abscesses in superficial and visceral lymph nodes and in visceral organs. This current study was designed to elucidate the clinicopathological responses and PCR detection of the aetiological agent in the vital organs of goats challenged with C. pseudotuberculosis and its immunogenic mycolic acid extract. A total of twelve clinically healthy crossbred Boer female goats were divided into three groups: A, B, and C (four goats per group). Group A was inoculated intradermally with 2 ml of sterile phosphate buffered saline (PBS) pH 7 as a control group. Group B was inoculated intradermally with 2 ml of mycolic acid extract (1 g/ml), while group C was inoculated intradermally with 2 ml of 10⁹ colony-forming unit (cfu) of live C. pseudotuberculosis. The experimental animals were observed for clinical responses for 90 days post-inoculation and the clinical signs were scored according to the severity. The clinical signs observed in this study were temperature, heart rate, respiratory rate, rumen motility, enlargement of lymph nodes, and body condition score. The experimental animals were euthanised and tissue samples from different anatomical regions of the vital organs were collected in 10% buffered formalin, processed, sectioned, and stained with H&E. Results of both C. pseudotuberculosis and mycolic acid treated groups indicated a significant difference (p 
    Matched MeSH terms: Body Temperature
  19. Muhammad A, Khan B, Iqbal Z, Khan AZ, Khan I, Khan K, et al.
    ACS Omega, 2019 Sep 03;4(10):14188-14192.
    PMID: 31508540 DOI: 10.1021/acsomega.9b01041
    The antipyretic potential of viscosine, a natural product isolated from the medicinal plant Dodonaea viscosa, was investigated using yeast-induced pyrexia rat model, and its structure-activity relationship was investigated through molecular docking analyses with the target enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1). The in vivo antipyretic experiments showed a progressive dose-dependent reduction in body temperatures of the hyperthermic test animals when injected with viscosine. Comparison of docking analyses with target enzymes showed strongest bonding interactions (binding energy -17.34 kcal/mol) of viscosine with the active-site pocket of mPGES-1. These findings suggest that viscosine shows antipyretic properties by reducing the concentration of prostaglandin E2 in brain through its mPGES-1 inhibitory action and make it a potential lead compound for developing effective and safer antipyretic drugs for treating fever and related pathological conditions.
    Matched MeSH terms: Body Temperature
  20. Manogaran G, Shakeel PM, Fouad H, Nam Y, Baskar S, Chilamkurti N, et al.
    Sensors (Basel), 2019 Jul 09;19(13).
    PMID: 31324070 DOI: 10.3390/s19133030
    According to the survey on various health centres, smart log-based multi access physical monitoring system determines the health conditions of humans and their associated problems present in their lifestyle. At present, deficiency in significant nutrients leads to deterioration of organs, which creates various health problems, particularly for infants, children, and adults. Due to the importance of a multi access physical monitoring system, children and adolescents' physical activities should be continuously monitored for eliminating difficulties in their life using a smart environment system. Nowadays, in real-time necessity on multi access physical monitoring systems, information requirements and the effective diagnosis of health condition is the challenging task in practice. In this research, wearable smart-log patch with Internet of Things (IoT) sensors has been designed and developed with multimedia technology. Further, the data computation in that smart-log patch has been analysed using edge computing on Bayesian deep learning network (EC-BDLN), which helps to infer and identify various physical data collected from the humans in an accurate manner to monitor their physical activities. Then, the efficiency of this wearable IoT system with multimedia technology is evaluated using experimental results and discussed in terms of accuracy, efficiency, mean residual error, delay, and less energy consumption. This state-of-the-art smart-log patch is considered as one of evolutionary research in health checking of multi access physical monitoring systems with multimedia technology.
    Matched MeSH terms: Body Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links